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SUMMARY
Disease recovery dynamics are often difficult to assess, as patients display heterogeneous recovery courses.
To model recovery dynamics, exemplified by severe COVID-19, we apply a computational scheme on longi-
tudinally sampled blood transcriptomes, generating recovery states, which we then link to cellular and
molecular mechanisms, presenting a framework for studying the kinetics of recovery compared with non-re-
covery over time and long-term effects of the disease. Specifically, a decrease in mature neutrophils is the
strongest cellular effect during recovery, with direct implications on disease outcome. Furthermore, we pre-
sent strong indications for global regulatory changes in gene programs, decoupled from cell compositional
changes, including an early rise in T cell activation and differentiation, resulting in immune rebalancing
between interferon and NF-kB activity and restoration of cell homeostasis. Overall, we present a clinically
relevant computational framework for modeling disease recovery, paving the way for future studies of the
recovery dynamics in other diseases and tissues.
INTRODUCTION

Recovery from many diseases is characterized by heteroge-

neous dynamics in individual patients, thus it is often difficult to

identify generalizable cellular and molecular mechanisms char-

acterizing and contributing to the recovery process. So far,

many studies utilized transcriptomics data to investigate the bio-

logical alterations between mild and severe patients mostly at

early time points describing disease progression, as well as

discovering major changes in molecular mechanisms and im-

mune cell compositional changes in both the myeloid and

lymphoid compartment.1–6 In addition, it was established that

the recovery process in severe COVID-19 varies dramatically be-
Cell
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tween patients with severe disease and can last between several

days to many months.7–9 However, whether common molecular

mechanisms of recovery from severe COVID exist, despite the

heterogeneity of disease recovery, is still unclear. We used

data of severe COVID-19 patients admitted to the intensive

care unit (ICU) to study recovery processes at the cell, pathway,

and gene level.

Studying the molecular and cellular principles of ICU recovery

over time requires longitudinal data, including multiple time

points from different patients, during their recovery process. As

the kinetics of recovery are patient specific, and patients may

enter the ICU at varying disease stages, analysis of fixed time

points (e.g., using days after admission to the ICU), might not
Reports Medicine 3, 100652, June 21, 2022 ª 2022 The Authors. 1
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Figure 1. Severe COVID-19 patient cohorts

(A) An illustration of COVID-19 patient cohorts used for the study, including themain cohort 1 and validation cohorts 2 and 3. Bar heights and colors represent the

molecular state of the disease, ranging from severe (high, red) to recovered (low, green) states.

(B) A detailed description of discharged (top) and deceased (bottom) patients from cohort 1 over the course of their stay in the ICU (x axis). Each row represents a

single patient, starting from ICU admission and ending with either release from the ICU or death. Patients’ sampling points and secondary infections also appear

along the line.

(C–G) Bar plot of age (C), gender (D), body mass index (E), time of ventilation (F), and the appearance of a secondary infection (G) across patients from cohort 1

(gray, discharged; black, deceased).
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be adequate to determine the underlying molecular and cellular

changes over time in a patient cohort. This is similarly true when

addressing disease progression, which also differs between pa-

tients. To capture disease progression dynamics in a patient

cohort as well as its molecular underpinnings, a method called

TimeAx was recently developed.10 In brief, TimeAx assembles

a disease consensus trajectory, shared across all patients,

based on longitudinal molecular data. It then allows the projec-

tion of any new sample on top of this trajectory, predicting its

corresponding disease state.

To study the disease dynamics during recovery from severe

COVID-19, we utilized the TimeAx modeling approach, so far

only used to describe disease progression, on whole-blood tran-

scriptomes in a longitudinal cohort of COVID-19 patients during

their stay at the ICU. Despite very heterogeneous time courses of

disease, we identified general principles of cellular and molecu-

lar changes across the recovery of these patients, which could

not be deduced from studying the original time course data.

Finally, studying fatal outcomes using the recovery trajectory

angle translated to the identification of putative disease outcome

biomarkers.

RESULTS

Severe COVID-19 patient cohorts
To identify disease trajectories toward recovery in severe

COVID-19, we conducted a longitudinal blood transcriptomics
2 Cell Reports Medicine 3, 100652, June 21, 2022
study in patients with severe disease (cohort 1) and validated

the findings in patients derived from different hospitals across

Europe (cohort 2 and 3) (Figure 1A).

The longitudinal cohort 1, collected at Radboud University

Medical Center in Nijmegen, the Netherlands, included 55

COVID-19 patients admitted to the ICU. Between 2 and 9 sam-

ples per patient were obtained after ICU admission for whole-

blood transcriptome analysis, resulting in 260 samples in total

(Figure 1B). In addition, flow cytometry data covering all major

immune cell subsets were generated in 41 patients for 1 to

5 time points, a total of 86 data points. Finally, plasma cytokine

levels were measured across patients, ranging between 147

and 252 data points per cytokine.

The first validation cohort (cohort 2) included 39 severe

COVID-19 patients, from whom whole-blood transcriptome

samples were collected at a single time point. These patients

were admitted to the ICUs of three medical centers in Germany,

including the University Hospital RWTH in Aachen, Kiel Univer-

sity Medical Center and Saarland University Medical Center in

Saarbr€ucken, as well as to the National and Kapodistrian Univer-

sity of Athens, Greece3,11 (see STAR Methods; Figure 1A). The

second validation cohort (cohort 3) included data from 45 severe

COVID-19 patients admitted to the ICU of either the Adden-

brooke’s or the Royal Papworth hospital in Cambridge, UK.12

For each patient, 1 to 2 consecutive whole-blood transcriptome

samples were collected during their stay in the ICU, resulting in

81 samples in total. In addition, for 55 of the samples, paired
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flow cytometry data were available. Finally, similar to cohort 1,

plasma cytokine levels were measured for all patients in this

cohort.

Specifically, median agewithin cohorts 1–3 was 65, 63, and 57

years, respectively, ranging from 21 to 86 years (Figures 1C and

S1A). In all three cohorts, the majority of the patients (76%, 82%,

and 84%) were males (Figures 1D and S1B). Survival rate was

lower in older patients (Figures 1C and S1A) corroborating previ-

ous studies.13,14

In cohort 1, 45 of 55 patients recovered from severe COVID-19

and eventually were discharged from the ICU, while 10 patients

deceased (survival rate of 82%). Time from onset of symptoms

to discharge or death (15–97 days) and ICU length-of-stay

(9–84 days) was highly variable irrespective of outcome (Fig-

ure 1B). Similar mortality rates were observed in cohort 3, with

8 deceased patients and 37 recovered patients (survival rate of

82%). Cohort 2 had a higher mortality rate, with 16 deceased

patients and 23 recovered patients (survival rate of 59%)

(Figure S1C).

In cohort 1, the patients’ body mass index (BMI) ranged from

21 to 37 with 69% of the patients being overweight (Figure 1E).

During their stay in the ICU, all patients were ventilated for 165

to 1,652 h (median of 588 h; Figure 1F).

Modeling COVID-19 recovery over time
To define whether blood transcriptomes harbor information

associated with recovery of severe COVID-19 in the ICU and

because the state of disease in an acute infection is difficult to

determine a priori, we applied the TimeAx algorithm,10 a method

designed to discover shared dynamics of biological processes

across multiple individuals based on time-series data. The

TimeAx model predicts the specific pseudotime of each sample

within the original time-series data and subsequently allows

inferring the pseudotime of new samples, which were not part

of the trajectory assembly, by projecting their profiles onto the

model (Figure 2A). To model recovery of severe COVID-19 pa-

tients, we assumed that survivors in cohort 1, who were dis-

charged from the ICU, although individually different, also share

a common underlying recovery process. We therefore trained

the model using gene expression profiles of all non-deceased

patients with five or more time points (n = 20). TimeAx uses the

temporal sample collection ordering of the samples from each

patient to assemble a robust model of COVID-19 recovery over

time, which spans a time course that is longer than that of any

single patient (robustness score = 0.86; Figure S2A; see STAR

Methods).We next related the TimeAxmodel-based pseudotime

assignment of each sample with clinical parameters, starting

with disease chronological time. We observed a high correlation

between time from onset of symptoms and the time from ICU

admission (r = 0.63; Figure S2B), yet weak associations between

predicted pseudotime and either of these chronological time-

lines (cohort 1: r = 0.21 and r = 0.2; Figure S2C, cohort 3: r =

0.35; Figure S2D), suggesting that the dynamics of the trajec-

tories significantly differed between patients (from hereon

we thus focus on ‘‘time from onset of symptoms’’ as ‘‘chronolog-

ical time’’). Furthermore, we identified similarities between dis-

ease trajectories of individual patients, with highly differing chro-

nological times, indicating that chronological time was not
capturing general disease trajectories, whereas pseudotime

was (Figure 2B).

We next validated whether the TimeAx model-based pseudo-

time indeed represented a continuous description of the COVID-

19 recovery process. Three lines of evidence strongly support

our model: (1) we observed a negative correlation of TimeAx

model-based pseudotime with known severity markers,15–18

such asCRP, creatinine, IL-6, and G-CSF (p < 10�5, cohort 1, Fig-

ure 2C; p < 10�6, cohort 3, Figure S2E), relationships that were

much weaker or absent when chronological time was used

instead; (2) we found that the meta-virus signature, a specific

gene signature that was shown to be associated with disease

severity in different viral infections, including COVID-19,19,20 had

a strong negative correlation with the pseudotime (r = �0.58; Fig-

ure 2D, left), a relationship that was lost when chronological time

was used (r =�0.09; Figure 2D, right); (3) we demonstrate concor-

dance between WHO COVID scores and trajectory positioning.

Specifically, we used TimeAx to predict pseudotime positions of

samples from the cross-sectional (i.e., single time point) cohort

2 and observed that higher pseudotime positioning correlates

with lower WHO scores (p = 0.0002; Figure 2E).

Next, we assessed gene expression trajectories as a function of

pseudotime in cohort 1. We calculated the difference in correla-

tions (pseudotime versus chronological time) and observed that,

while the agreement between association patterns was generally

kept (r = 0.52; Figure S2F), the associations of gene expression

levels with pseudotime were much stronger, providing a signifi-

cantly higher resolution of the regulatory processes governing

COVID-19 recovery (Figure 2F). Indeed, we observed significant

associations for more than 23% of the genes only with the pseu-

dotime, compared with merely 0.2% and 0.7% for associations

with the chronological time or with both measures, respectively

(Figures 2G and S2G). Similar gene associations were obtained

using additional time-series analysis tools (see STAR Methods;

Figure S2H), supporting the pseudotime’s ability in capturing re-

covery dynamics over time. We discovered many genes that

were either positively or inversely correlated with the pseudotime,

but showed only minor associations with the chronological time

(Figure 2H). For example, IL-17RA was identified as the top

inversely correlated gene, a known marker of disease severity

in COVID-1921,22 as well as a proposed drug target for

COVID-19.23 In addition, STAT5B, a gene from the STAT5 family

that was shown to play a major role in the activation of the

ACE2 receptor in COVID-19,24 was negatively correlated with

pseudotime, while ITGA4 displayed a positive correlation, sup-

porting previous findings concerning its elevation in mild

compared with severe COVID-19 patients3 (Figure S2I).

Overall, we devised a molecular model of COVID-19 recovery

over time. Based on this model, we were able to predict a contin-

uous pseudotime state for each sample, in each patient, which

successfully simulated the recovery process and its associations

with known disease covariates, showing consistently greater

value over the use of the chronological time.

An unregulated recovery process is associated with
clinical worsening
In principle, although disease recovery is largely a unidirectional

process, a molecular-based trajectory describing this process
Cell Reports Medicine 3, 100652, June 21, 2022 3
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Figure 2. Modeling COVID-19 recovery over time

(A) An illustration of the COVID-19 recovery TimeAx modeling and pseudotime inference using longitudinal cohort 1 and pseudotime predicted for validation co-

horts 2 and 3. Bar heights and colors represent the molecular state of the disease, ranging from severe (high, red) to recovered (low, green) states.

(B) A comparison between chronological time (time from onset of symptoms, x axis) and pseudotime (y axis) in four different patients.

(C) Associations between pseudotime and chronological time with known COVID-19 severity markers, including CRP, creatinine, IL-6, and GCSF, in cohort 1

(n = 260), shown as a heatmap (left) and scatterplots (right; trend line appears in orange).

(D) Association between pseudotime (left) and chronological time (right) (x axis) with the meta-virus score in cohort 1 (y axis) (n = 260). Trend line appears in red.

(E) Distribution of pseudotime (x axis) across different WHO score categories (y axis), for patients in validation cohort 2 (n = 45). Boxes represent the 25th, 50th,

and 75th percentiles; whiskers show maxima and minima. p value was calculated based on a linear regression.

(F) Difference in gene associations with either the pseudotime or the chronological time, across all genes. Here, positive and negative values relate to stronger

associations using pseudotime and chronological time, respectively.

(G) Gene association (–log10 transformed, FDR corrected, Q values) comparison between chronological time (x axis) and pseudotime (y axis), using a Q value

threshold of 0.01 (dashed lines).

(H) Stronger associations for pseudotime, compared with chronological time, with genes, in cohort 1, shown as a heatmap (left) and scatterplot for the known IL-

17RA disease marker (right; trend line appears in orange; n = 260). For the heatmaps in (C) and (H), negative to positive associations are colored in a blue to red

color scale.
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may also capture ‘‘molecular worsening’’ which may translate

into different clinical phenotypes (ICU discharge versus fatal

outcome). Aswe assumed thatmost patients in our study display

recovery trajectories, and hence generally underwent a unidirec-

tional transition from severe to recovered phenotypic states, and

due to the observation that deceased patients tend to display

lower pseudotime over time (Figure S3A), we hypothesized

that molecular worsening over time can be captured by altering

our viewpoint on the trajectory. To that end, we trained a second

TimeAx model based on reverse ordering of the sampling time

points of the original 20 patients of cohort 1 used for training of

the recovery model. Next, we calculated a score for each cohort

1 patient for both the recovery model and the reverse-time-

generated ‘‘worsening model’’ (model 2; Figure 3A; see STAR

Methods for score). Contrasting the scores from the two
4 Cell Reports Medicine 3, 100652, June 21, 2022
TimeAx models yielded three major patient groups: patients

with a high recovery score and a low worsening score (denoted

as ‘‘recovering’’), patients with a high worsening score and a low

recovery score (denoted as ‘‘worsening’’), and patients with low

recovery and worsening scores (denoted as ‘‘stable’’). Choosing

a cutoff of 0.1 for maximizing the number of worsening and

recovering patients, while keeping the number of out-group

patients low (Figure S3B), resulted in nine patients who were

classified as worsening (17%), and 41.5% either as stable or

recovering (Figure 3B). Two patients who presented high incon-

sistencies in pseudotime across the two models, due to a sharp

recovery after a worsening period, were omitted from the anal-

ysis (Figures 3B and S3C). The worsening group had the highest

percentage of individuals with age above 70 (p = 0.03; Figure 3C,

left), slightly more males (Figure 3C, middle), and higher BMI
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Figure 3. An unregulated recovery process is associated with clinical worsening

(A) An illustration of the modeling framework for differing between COVID-19 recovery and worsening. Bar heights and colors represent the molecular state of the

disease, ranging from severe (high, red) to recovered (low, green) states.

(B) Grouping of patients (n = 55) based on their recovery model scores (x axis) and the worsening model scores (y axis), colored differently for each group.

(C–E) Comparison of different metadata features across the recovering, stable, and worsening groups (x axis) (n = 55).

(C) Patient demographics, including the rate of patients above the age of 70 (left), the percentage of males (middle) and patients’ BMI (right).

(D) Medical history. The rate of different metabolic diseases, including diabetes (left), cardiovascular diseases (middle), and hypertension (right).

(E) Ratio of deceased patients.

(F) The level of change between the first and the second pseudotime values per patient (n = 55).

(G) Difference between patients’ time reaching minimal and maximal pseudotime (x axis and y axis, respectively), colored by patient groups. In (C)–(G), group

colors are the same as in (B). Bar plot p values are calculated using Fisher’s exact test. In boxplots, boxes represent the 25th, 50th, and 75th percentiles; whiskers

show maxima and minima. Boxplot p values are calculated based on a regression analysis. Barplot p values are calculated based on Fisher’s exact test.
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(Figure 3C, right). Although not significant, we also observed

more patients with comorbidities associated with unfavorable

outcomes in the worsening group, including diabetes, cardio-

vascular diseases, and hypertension25 (Figure 3D). Indeed, the

mortality rate (56%) in the worsening group was higher than in

the stable (18%) and recovering (8%) groups, respectively (p =

0.07; Figure 3E).

We next testedwhether pseudotime changesmight be predic-

tive markers of disease trajectories at early time points after ICU

admission. By evaluating the difference between the first two

pseudotime values in each patient, we observed a significant dif-

ference, including an increase and a decrease in recovering and

worsening patients, respectively (p = 0.003; Figure 3F). We

successfully validated the association between pseudotime

dynamics and patient survival by calculating the difference in

pseudotime between two consecutive time points in patients

from cohort 3. We defined patients in cohort 3 as ‘‘recovery-

like’’ if their second pseudotime was higher than their first, or

‘‘worsening-like’’ if we observed a decrease in their second

pseudotime (see STAR Methods). We found that the group of

worsening-like patients had a higher mortality rate compared

with the group of recovery-like patients (Figure S3D). Specif-

ically, we show that a strong increase in pseudotime is related

to recovery, while higher mortality rates are observed in patients

with a less prominent increase or a decrease in pseudotime

(Figure S3E).
We looked for potential pseudotime parameters that might

explain the unfavorable outcomes within the worsening group

as opposed to the recovery group. Comparing the minimal and

maximal pseudotime values of patients between the two groups

yielded no significant differences, arguing against higher overall

disease severity in the worsening group (Figures S3F and S3G).

However, we observed a strong distinction between the two

groups in the chronological time from ICU admission matching

the lowest and highest pseudotime levels in each patient (Fig-

ure 3G), suggesting that not the pseudotime values themselves

but their change over time can be utilized to predict patient tra-

jectories. Specifically, we observed a significant difference with

patients in the worsening group showing minimum severity at

earlier time points after ICU admission and maximum severity

at later time points, while this was not the case for recovering pa-

tients (Figures 3G and S3H).

Finally, we explored associations between pseudotime at the

last sampled time point and self-reported outcomes 3months af-

ter ICU admission. This analysis was performed on a subset of 24

patients from cohort 1 from whom these data were available

(length of ICU stay of these patients ranged from 10 to

45 days; see STARMethods). Patients with high disease severity

(i.e., lower pseudotime states) in their last sampled time point ex-

hibited higher frailty scores at 3 months post-ICU and were more

often categorized as being frail (r = �0.47, p = 0.01, and p =

0.006, respectively; Figure S3I). Furthermore, lower pseudotime
Cell Reports Medicine 3, 100652, June 21, 2022 5
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Figure 4. Altered neutrophil dynamics distinguish between recovery and fatal outcome

(A and B) Analysis of whole-blood count (WBC) of samples from cohort 1.

(A) Distribution of pseudotime (x axis) in three lymphocyte range groups, including lymphocytopenia, normal lymphocyte count, and lymphocytosis (y axis)

(n = 186). P value is calculated based on a regression analysis.

(B) Association of neutrophil/lymphocyte ratio (y axis; log10 transformed) with the pseudotime (x axis) based on WBC (n = 141). Trend line appears in blue.

(C) Heatmap of the associations between the pseudotime and the deconvolved cell-type compositions in cohorts 1–3 (left), as well as scatterplots (right; trend line

appears in orange) demonstrating the associations of pseudotime (x axis) with MME neutrophils, CD14+ monocytes and MAIT cells (y axis). In the heatmap,

negative to positive associations are colored in a blue to red color scale.

(D) An illustration of the disrupted model (model 3), integrating deceased patients during the modeling, disrupting the assumption of patient recovery.

(E) Cell-type associations with the pseudotime, for either the recovery model (x axis) or the disrupted model (y axis).

(F and G) Change in deconvolved cell compositions for neutrophils (F), lymphocytes (G) (left), and the neutrophil/lymphocyte ratio (G) (right), between the first and

second time point for each patient, for either the recovering or the worsening patient groups (x axis) (n = 55). In (A), (F), and (G), boxes represent the 25th, 50th, and

75th percentiles; whiskers show maxima and minima.
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was associated with lowermental and physical component qual-

ity of life summary scores 3 months post-ICU (r = 0.43, p = 0.03,

and r = 0.45, p = 0.03, respectively; Figures S3J and S3K).

Collectively, we extended the recovery model to also include

disease trajectories that would be associated with unfavorable

outcomes and determined that low-level pseudotime at later

time points after ICU admission are linked to this additional

trajectory as well as to long-term outcomes of COVID-19.

Altered neutrophil dynamics distinguish between
recovery and fatal outcome
Next, we asked whether the pseudotime model would infer

generalizable rules for immune cell composition changes during

the recovery process directly from blood transcriptomes. As a
6 Cell Reports Medicine 3, 100652, June 21, 2022
clinical reference, we first overlaid routinely measured white

blood cell counts onto the pseudotime model. Lowest pseudo-

time (reminiscent of most severe disease states) in cohort 1

was associated with lymphocytopenia, previously described as

a key hallmark of severe COVID-19 (Figure 4A).26,27 Indeed, a

gradual increase in lymphocyte abundance across the pseudo-

time was also observed using flow cytometry data from cohort

3 (Figure S4A). Next, we assessed associations between pseu-

dotime and the neutrophil-to-lymphocyte ratio, another well-

described characteristic for COVID-19 disease severity.28,29

We observed a decrease in this ratio along the recovery pseudo-

time, which was linear, starting with high ratios in low states (low

pseudotime) leading to low ratios in high states (high pseudo-

time), with a slight sharper decrease in low pseudotime (most
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severe states) (Figure 4B). With this clinical data framework in

mind, we next deconvoluted the blood transcriptome data using

CPM, a cellular deconvolution method that relies on single-cell

RNA-seq data to robustly predict cell state compositions in

bulk RNA-seq samples,30 using whole-blood single-cell RNA-

seq data collected from COVID-19 patients as a reference for

29 different immune cell subsets2 (STAR Methods).

We calculated the associations between the deconvoluted

data with either the pseudotime or chronological time and re-

vealed strong cell distribution changes across the pseudotime,

which were not observed when using chronological time, further

supporting the superior performance of the pseudotime model

when describing recovery (20 of 31 cell types with p < 0.05,

Fisher’s z test; Figure S4B). We plotted dynamics of lymphocyte

deconvolved abundance over time (Figure S4C), which illus-

trated that the same kinetics as determined by blood count

analysis (Figure 4A) was captured in the blood transcriptomes.

Similarly, the dynamics of the neutrophil-to-lymphocyte ratio

was also captured in the RNA-seq data following the pseudotime

model (Figure S4D), indicating that the combination of transcrip-

tomes and pseudotime modeling can capture cell abundance

dynamics during COVID-19 recovery. Signatures of different

types of T cells, including CD4+ T effector memory and CD8+

central memory T cells but also B cells, were correlated with re-

covery (high pseudotime values), while different subsets of

mature neutrophils (MME+, IFIT+, CXCL8+ neutrophils), eosino-

phils, and CD14+monocytes were the cell types mainly linked to

low pseudotime, reflecting the most severe disease states

(Figures 4C; Table S1), a finding that was corroborated by previ-

ously published single-cell RNA-seq data.2 The deconvoluted

transcriptome-based pseudotime model data were significantly

correlated with the flow cytometry data derived from a subset of

patients and time points (Figure S4E; see STARMethods) further

illustrating how pseudotime models applied to bulk blood RNA-

seq data can be used to uncover cell subset dynamics over time

in the recovery setting of COVID-19.

To determine if changes in cell composition are directly linked

to outcome, we focused on the main differences between

deceased and survived patients. Therefore, we extended our

pseudotime model by including data from deceased patients in

addition to all recovered patients (7 and 20 patients, respec-

tively, model 3; Figure 4D; see STAR Methods). Since the inclu-

sion of these data from diseased patients disrupts the recovery

assumption, we termed it the ‘‘disrupted’’ model. We observed

a major difference compared with the original model, as the pre-

dicted pseudotime based on the disrupted model only partially

overlapped with the recovery pseudotime (r = 0.5; Figure S4F).

Translating these differences into the cellular space, a group of

cell subsets correlated differently with pseudotime within the re-

covery and the disrupted models (Figure 4E). Specifically,

mature neutrophils, which were strongly inversely correlated

with the recovery pseudotime, had much weaker correlations

with the disrupted pseudotime (p < 10�5; Fisher’s z test). On

the other hand, different lymphocytes, including a variety of

T cells and B cell subsets, exhibited no significant change in their

correlations with the recovery and the disrupted pseudotime,

suggesting that these cell types are not strongly associated

with unfavorable patient outcomes (Figure 4E). One hypothesis
is that massive increase in mature neutrophil abundance in se-

vere states (low pseudotime) is crucial for proper recovery, while,

in deceased patients, there seems to be a delay in thematuration

of neutrophils, resulting in an unfavorable outcome.31,32 Indeed,

we found that patients from the recovery group displayed higher

levels of mature neutrophils compared with patients in the wors-

ening group early on during their ICU admission (p = 0.007; Fig-

ure S4G). On the other hand, much weaker associations were

found for lymphocytes and for the neutrophil-to-lymphocyte ra-

tio (p = 0.05 and p = 0.02, respectively; Figure S4H), suggesting

that neutrophil abundance alone might be a better clinical

predictor of patients’ outcomes compared with the neutrophil-

to-lymphocyte ratio. Moreover, we found even stronger discrim-

ination between recovering and worsening patients, focusing at

the change in abundance of mature neutrophils between the first

and second time points (Figure 4F). While the recovery group

presented a decrease in the abundance of mature neutrophils

over time, patients from the worsening group presented a signif-

icant increase in their abundance (p = 2.2 3 10�6; Figure 4F),

supporting the notion that there is a deviation in neutrophil dy-

namics. The discrimination between the groups was much

weaker based on either the lymphocyte abundance or the

neutrophil/lymphocyte ratio (p > 0.05 and p = 0.003, respec-

tively; Figure 4G). We also observed a superiority of changes

over time in mature neutrophils over the neutrophil-to-lympho-

cyte ratio, comparing the two time points in cohort 3 (p =

9 3 10�5 and p = 0.0001, respectively; Figure S4I), further

strengthening that mature neutrophils have more value for pa-

tient outcome prediction.

Overall, we show that patients in severe states (low pseudo-

time) contain high abundance of mature neutrophils, which are

reduced during the patients’ recovery process. Dysregulation

of this process, causing an increase in mature neutrophil

quantities over time, is highly predictive for unfavorable disease

outcomes and is superior to the neutrophil/lymphocyte ratio,

currently proposed as a suitable biomarker for COVID-19

severity.

Downregulation of molecular activation pathways is
associated with recovery progress and different
outcomes, unrelated to changes in cell compositions
As the recovery pseudotime model (model 1) is molecularly

driven, we reasoned that it may be used to identify underlying

molecular phenotypes of recovery from severe COVID-19. We

focused on differential gene expression patterns across the re-

covery process. Because a large part of the variance in gene

expression comes from changes in cell compositions,33 we

decoupled cell-type composition effects (denoted as ‘‘composi-

tional effect’’) from those that cannot be explained by composi-

tional changes (denoted as ‘‘non-compositional effect’’). We

estimated the detected differential expression that is due to dif-

ferences in cell abundance between samples (from hereon

‘‘compositional-based data’’) by combining all cell subsets’

gene expression profiles, weighted by their deconvolved

composition within each sample. We contrasted composition-

based data with the total gene expression data (denoted as

‘‘global data’’) (Figure 5A; see STAR Methods). We defined a

gene to be significantly associated with recovery if it presented
Cell Reports Medicine 3, 100652, June 21, 2022 7
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Figure 5. Downregulation of molecular activation pathways is associated with recovery progress and different outcomes, unrelated to

changes in cell compositions

(A) An illustration of the comparison between the global gene expression data and composition-based gene expression data.

(B) Comparison between the significance of gene associations with the pseudotime based on the global data (x axis) and the composition-based data (y axis).

Genes with different patterns of associations are colored differently.

(C) Heatmap of the associations between the pseudotime and genes, showing prominent associations in the global data and no associations or opposite

associations in the composition-based data in cohorts 1–3 (left). Changes in associations are also demonstrated as scatterplots for specific genes,

including STAT5A and KDM2A (right), where pseudotime is shown on the x axis and the gene expression levels on the y axis, while the trend line appears in

orange.

(D) Heatmap with enrichment scores of selected gene sets, using the global data (left column) or the composition-based data (right column). Here, stronger

enrichment scores are colored in darker shades of purple.

(E) Heatmap of the associations between the pseudotime and the gene expression values of interferon and NF-kB genes in the global data of cohorts 1–3.

(F) Heatmap of gene associations with the pseudotime in the global data from cohorts 1–3, as well as their association with the disrupted pseudotime (column 4).

Shown are genes that gain or lose their associations. T cell activation regulatory genes are in bold. For the heatmaps in (C), (E), and (F), negative to positive

associations are colored in a blue to red color scale.
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a significant p value score (Student’s t test) comparing its

expression between low and high pseudotime samples (STAR

Methods). We observed a large difference in associations of

the recovery pseudotime with the global data levels compared

with the composition-based data (Figure S5A). Overall, 21%

(n = 2,262) and 17% (n = 1,786) of the genes showed either no

significant effects or significant effects, respectively, in both

the global and composition-based data (Figure 5B). Conversely,

54% (n = 5,747) of genes had solely compositional effects with

no significant associations with the pseudotime using the global

data, while an additional 8% (n = 880) of the genes presented as-

sociations with the pseudotime that are not related to cell

composition (Figure 5B). In addition, we discovered a large

group of genes with positive compositional effects but negative

associations with global data levels (Figures S5B and S5C).

Overall, these results suggest that, aside from molecular

changes due to compositional effect, more general regulatory

changes occur along the pseudotime across all cell types

(Figure 5B).
8 Cell Reports Medicine 3, 100652, June 21, 2022
Based on these results, we were able to study these global

regulatory mechanisms of COVID-19 recovery by focusing on

genes with strong non-compositional effects and either non

or opposite compositional effects in cohorts 1, 2, and 3

(Figures 5C; Table S2). Among the genes with opposite associa-

tions between the recovery pseudotime and either the global

data (negative association) and composition-based data (posi-

tive association) is the cell surface receptor ITGAL, which is

involved in T cell regulation and indicative of activated mem-

ory/effector T cells34 (Figure S5D). While the increase in ITGAL

over the pseudotime, based on the composition-based data,

might be related to the increase in T cell abundance during the

recovery process (Figure 4C), it is decoupled from global regula-

tory effects on T cell activation, resulting in a peak during severe

states and decreases during recovery. Other genes associated

with immunomodulatory functions, such as gasdermin D (Fig-

ure S5D)35 and IL-16 (Figure S5D)36 presented similar trends,

further supporting the notion that T cell activation is decoupled

from T cell abundance during the recovery process.
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To determine major functional changes, we calculated enrich-

ment scores based on gene sets taken from GO, MSigDB Hall-

mark gene sets, Reactome, and KEGG. Here, a high enrichment

score accounts for enrichment of gene sets with strong associ-

ations with the recovery pseudotime (see STAR Methods).

Gene set enrichment scores highly overlapped between global

and composition-based data, suggesting that most gene

expression changes along the pseudotime, including immune

activation patterns as well as most of the cell metabolism, can

be explained solely by cell-type compositional changes (Fig-

ure S5F). One exception is heme metabolism, which presented

high enrichment based on the global data, while only marginal

enrichment was detected in the composition-based data (Fig-

ure 5D). Indeed, heme metabolism was shown before to be

related with late COVID-19.12,37 Our results strongly support

the importance of this program during COVID-19 recovery and

suggest that regulatory changes and not cell compositional

changes govern this effect. Additional pathways that were en-

riched in the global data but not in the composition-based data

included programs linked to homeostasis and cell cycle, such

as intracellular transport, centrosome, and microtubule cyto-

skeleton, hinting at processes of cellular normalization along

the pseudotime. On the other hand, the regulatory mechanisms

of catabolic processes, apoptosis, and P53 activation were

enriched, pointing toward a reduction of cell stress as a major

component of COVID-19 recovery (Figures 5D and S5F;

Table S3). These effects were normalized along the pseudotime,

providing another indication for homeostasis in recovered pa-

tients (Figures 5C and S5E). Alterations of NF-kB and interferon

signaling have been linked with acute COVID-19.38–40 A strong

negative correlation of interferon activation with the pseudotime

in the composition-based data, normalization during recovery,

and weak association in the global data indicate that interferon

activation is indeed impaired in severe patients (Figure 5E). In

addition, we observed strong negative correlations based on

the global data, with recovery pseudotime for four genes of the

mammalian NF-kB family: NFKB1, NFKB2, REL, and RELA,

which was not explained by cell composition (Figure 5F), sug-

gesting that there is a change in balance between the interferon

and NF-kB responses during the course of severe COVID-19,

characterized by impaired interferon responses but enhanced

NF-kB responses early on, which reverses during the recovery

process.

Finally, we intended to define novel whole-blood gene

markers that relate to different disease outcomes. Therefore,

we compared the correlations within the global data with the

pseudotime of the recovery model or the disrupted model,

respectively (model 3; Figure 4D; see STAR Methods). We de-

tected 48 genes that were associated with the recovery but not

the disrupted pseudotime. These were associated with innate

immunity and especially TNF and interferon response pathways,

including PTPRE, CEBPB, ZEP36, BCL3, CFLAR, MXD1, LITAF,

FOSL2, IFITM2, IL-4R, and TRIM25 (Figures 5F and S5G;

Table S4). In addition, we identified genes associated with the

regulation of T cell activation and differentiation, such as

THEMIS2,38 ARBB2,39 SEMA4A,40 and IL-4,41 emphasizing

again the importance of this mechanism for the recovery process

(Figure 5F; Table S4). Conversely, we identified 12 gene markers
(GPI, LAIR1, RFLNB, ABCA13, CEBPE, LCN2, BPI, LTF, POLE,

ITGA9, CEACAM8, and CEACAM6), which presented strong

negative correlations with the disrupted, but not the recovery,

pseudotime (Figures 5F and S5G; Table S4). CEACAM8 and

CEACAM6 were previously pointed out as susceptibility and

mortality markers of COVID-19 and linked to affecting the cross-

talk between neutrophils and pneumocytes in patients’ lungs.42

These 12 gene markers may serve as blood-based severity

markers for COVID-19, and are associated with patients’

outcomes.

Collectively, we identified molecular mechanisms that govern

COVID-19 recovery over time, such as T cell activation which

was, decoupled from changes in T cell composition, directly

related with patients’ outcomes. At the same time, recovery

was accompanied by reduction in neutrophils, changes in the

regulation of catabolic processes, and apoptosis, as well as reg-

ulatory processes within the interferon and NF-kB response

pathways.

DISCUSSION

The systematic identification of overarching molecular programs

and cellular changes during the recovery from heterogeneous

diseases is a major challenge in medicine and has been promi-

nently exemplified by the difficulty to understand recovery

processes in COVID-19. By focusing on the recovery phase in

patients with severe acute COVID-19 admitted to the ICU,

assuming that patients released from the ICU present a recovery

trajectory, we provide strong evidence that whole-blood tran-

scriptomes combined with pseudotime modeling, utilized by

the TimeAxmethod, cell-type deconvolution, molecular pathway

prediction, and validation in additional cohorts, is well suited to

identify global principles of recovery kinetics compared with

non-recovery despite the fact that individual disease trajectories

differ dramatically over time. Specifically for severe COVID-19,

we present a gradual decrease in mature neutrophils during

recovery as the major cellular determinant, which was also re-

flected in superior outcome prediction. Furthermore, we identi-

fied numerous molecular changes ranging from normalization

of catabolic processes to changes in the balance between

NF-kB-mediated and interferon-driven gene programs during

the recovery process.

We also assessed whether TimeAx-based pseudotime

models could reveal molecular and cellular changes accounting

for unfavorable outcomes rather than recovery. To do so, we

generated a second model, the worsening model based on

TimeAx. Here, we reversed the order of sampling time points

for each patient within our longitudinal cohort (cohort 1). We

defined patients as recovering or worsening, providing a clear

association between a patient’s temporal change in pseudotime

and the clinical outcome of the disease. Specifically, increases in

pseudotime values were directly associated with recovery, while

reduced or low pseudotime values observed at later real time

points correlated with fatal outcomes as well as with long-term

outcomes in surviving patients, who reported to be more frail

and experienced a lower quality of life. Importantly, our findings

that the dynamics of changes between the two first measure-

ments after ICU admission seem to be predictive for a recovering
Cell Reports Medicine 3, 100652, June 21, 2022 9
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or worsening phenotype opens a window for future outcome

prediction tools relying on patient pseudotime patterns. Further-

more, monitoring of pseudotime values in a later stage of admis-

sion could have predictive value for long-term outcomes and

facilitate earlier and/or more aggressive interventions, such as

rehabilitation programs.

Combining the TimeAx-based pseudotime model with cellular

deconvolution of cell types within whole-blood transcriptomes

allowed us to define the general cellular changes occurring dur-

ing recovery, but also those related to unfavorable outcomes.

Low pseudotime was characterized by depletion of lympho-

cytes, as well as an increase in the neutrophil/lymphocyte ratio,

which has been previously shown to be associated with severe

acute COVID-19 when using other methods (e.g., flow

cytometry).29 These findings clearly indicate that blood tran-

scriptomes combined with the TimeAx model and cellular de-

convolution analysis reveal such findings without any additional

measurements. However, in addition to these findings in the

early and acute phase of the disease, our longitudinal study

allowed us to generalize the major changes from the early severe

disease stages toward the recovery trajectory. Here, we

observed a continuous normalization in predicted frequencies

of the cell types associatedwith severe acute COVID-19, discov-

ering associations between the dynamics of cell compositions

across the pseudotime and patient outcomes. Specifically, while

gradual decrease in mature neutrophils was strongly related to

recovery, higher mature neutrophil abundances at late time

points were a good indicator for unfavorable disease outcomes,

presenting higher predictive power compared with both lympho-

cyte counts and the neutrophil/lymphocyte ratio. Overall, our

model strongly suggests that the course of mature neutrophils

is more predictive for outcome than currently used parameters,

in particular the neutrophil/lymphocyte ratio.29

Finally, we studied the molecular mechanisms that govern

COVID-19 recovery over time. Importantly, by comparing the ef-

fects coming from cell composition changes only to the effects

being independent of cell composition changes (global data),

we identified molecular mechanisms changed irrespective of

cellular changes. Specifically, we discovered a regulatory

change in gene programs across the pseudotime that was asso-

ciated with restoration of cell homeostasis. In addition, while

T cell abundance increased over the pseudotime, we discovered

initially elevated T cell activation in severe patients, which

normalized as patients advanced in their pseudotime. This effect

was disrupted by adding deceased patients into the model, sug-

gesting the importance of this mechanism on determining pa-

tients’ outcomes. Still, further experimental validation is required

to fully support this new computationally derived disease pro-

gression mechanism. Our analysis also revealed a normalization

of the balance between the NF-kBand the interferon systemdur-

ing the recovery process, which started out as impairment of the

interferon system and enhanced NF-kB activity in acute severe

COVID-19, which may signify a maladaptive hyperinflammatory

but poor antiviral state.43–45

By combining longitudinally sampled blood transcriptomes,

TimeAx-based computational modeling generating pseudotime

trajectories, overlaid cell deconvolution analysis, and molecular

pathway prediction, we provide a unique framework for the
10 Cell Reports Medicine 3, 100652, June 21, 2022
description of the recovery process, including cellular and

molecular changes, here exemplified for patients with severe

COVID-19. Furthermore, the pseudotime findings can be linked

to clinical metadata and both short- and long-term outcomes.

As more data for other patient cohorts become available, it will

be interesting to determine whether patients with other disease

courses are characterized by similar cellular and molecular

changes or whether additional recovery trajectories exist.

Furthermore, it will be interesting to study whether patients

who develop persistent symptoms following mild acute

COVID-19 are also distinct when applying our analytical frame-

work. Similarly, larger clinical validation trials for the genes

and/or signatures, identified as related to the recovery process,

as well as to unfavorable outcomes, are still required. Finally,

because many diseases are characterized by heterogeneous

and patient-specific recovery trajectories, our model might

also uncover a unifying recovery trajectory for these diseases.

Limitations of the study
As we have clear indications for general recovery mechanisms in

COVID-19, experimental validation studies of these mechanisms

will be needed to further support generalization of these

processes. While we already included several cohorts, to better

understand the trajectory toward fetal outcome, cohorts with a

larger number of patients who died from the disease might

uncover further mechanisms and biomarkers for this group of

patients. The model underlying TimeAx currently presumes a uni-

fying disease recovery dynamics. If there would bemore complex

trajectorieswith patient subsets, including branching into different

cellular and molecular trajectories, we would have to extend our

current model to reflect such complexity. However, as for now,

we have no indication for multiple trajectories of recovery.
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17. Sabaka, P., Ko�s�cálová, A., Straka, I., Hodosy, J., Lipták, R., Kmotorková,
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Materials availability
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Data and code availability
d Whole blood RNA-seq data for cohort one are available at European Genome-phenome Archive (EGA, ID:EGAS00001005735).

d All original code has been deposited (https://github.com/amitfrish/COVIDRecoveryCode) and is publicly available as of the

date of publication.

d Additional supplemental items are available from Mendeley Data at https://doi.org/10.17632/jsn2kpnmpg.1.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient cohorts
Radboud University Medical Center (Nijmegen, the Netherlands) cohort (Cohort 1): COVID-19 was diagnosed by a positive SARS-

CoV-2 RT-PCR test in nasopharyngeal and throat swabs and/or by typical chest CT-scan findings. Patients with a pre-existing im-

munosuppressed status or other comorbidities that strongly influence prognosis were excluded. All blood samples were obtained

from an arterial cannula already in place, so no venipunctures were required. Data were collected from the electronic patient files

(EPIC, EPIC Systems Corporation, Verona, Wisconsin, USA) and recorded in the good clinical practice (GCP)-compliant data man-

agement systemCastor (Castor EDC, Amsterdam, the Netherlands). The study was carried out in the Netherlands in accordancewith

the applicable rules concerning the review of research ethics committees and informed consent. All patients or legal representatives

were informed about the study details and could decline to participate.

For 24 patients of cohort 1, self-reported outcome data at three months post-ICU admission were available. These data were

collected in the MONITOR-IC study, an exploratory multicenter prospective cohort study in ICU survivors. The study protocol has

been previously described46 and approved by the local research ethics committee (CMO region Arnhem-Nijmegen, the Netherlands,

No. 2016-2724). For the purpose of the current study, frailty and quality of life (QoL) outcomes were used. Frailty wasmeasured using

the Clinical Frailty Scale (CFS),47,48 consisting of one item with a score ranging from 1 (very fit) to 9 (terminally ill). Patients were clas-
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sified as ‘‘non-frail’’ (score of 1–4) or ‘‘frail’’ (5–9).49 QoL was assessed using the 12-Item Short Form Survey (SF-12),50 where scores

were aggregated into two summary measures: a Physical Component Summary (PCS) and a Mental Component Summary (MCS).

Scores of the PCS and MCS range from 0 to 100 and higher scores indicating a better QoL.

Cohort 2: public data of 39 severe COVID-19 patients admitted to the ICUs of the University Hospital RWTH in Aachen, Germany,

Kiel University and University Medical Center, Germany, Saarland University Medical Center in Saarbr€ucken, Germany, and the Na-

tional and Kapodistrian University of Athens, Greece, which were sampled once for whole blood transcriptome. Further information

about this cohort can be found in11 (Dataset E).

Cohort 3: public data of 45 severe COVID-19 patients admitted to the ICU of either the Addenbrooke’s or the Royal Papworth hos-

pitals in Cambridge, UK, which were sampled once or twice for whole blood transcriptome, during their stay in the ICU. For some of

the samples, also paired flow cytometry data and plasma cytokines were measured. Further information about this cohort can be

found in.12

METHOD DETAILS

RNA isolation, library construction, pre-processing, and read alignment
Patient blood from cohort one was sampled into PAXgene Blood RNA Tubes (Qiagen) and RNA extraction was performed following

manufacturer’s instructions using either the PAXgene Blood RNA Kit or the QIAsymphony PAXgene Blood RNA Kit on a QIAsym-

phony SP automated liquid handling system (Qiagen). In both cases RNA integrity and quantity was determined via RNA assay on

a Tapestation 4200 system (Agilent). 750ng total RNA were subsequently used as an input for NGS library prep according to the

TruSeq Stranded Total RNA with Ribo-Zero Globin kit (Illumina) protocol using IDT for Illumina TruSeq UDI adapters (Illumina). Li-

braries were quantified using the Qubit HS dsDNA assay (Thermofisher) and library fragment size distribution was determined using

the D1000 assay on a tapestation 4200 system (Agilent). Libraries were equimolarly pooled into pools of 96 samples and clustered

lane wise at 200p.m. concentration on NovaSeq6000 S2 flow cells. Raw sequencing data was demultiplexed and processed into

fastq files using bcl2fastq2 v2.20 and subsequently aligned to human genome build GRCh38 using STAR aligner. Reads were

sequenced paired-ended for 50 bp each with an average depth of 2.43107 reads per sample, with a mean alignment rate (unique

and multiple mappings) of 89.4%.

Plasma cytokine concentration measurements
In cohort 1, Ethylenediaminetetraacetic acid (EDTA)-anticoagulated blood was centrifuged (2000g, 10 min, 4�C), after which plasma

was stored at �80�C until analysis. Concentrations of interleukin (IL)-6, and Granulocyte colony-stimulating factor (GCSF) were

determined in one batch using a Luminex assay (Milliplex, Millipore, Billerica, USA). The lower detection limit was 3.2 pg/mL for

both cytokines. In cohort 3, concentration of interleukin (IL)-6 was determined as well (see information in12).

Flow cytometry
Whole blood cell counts in cohort 1 were obtained using a Coulter Ac-T Diff cell counter (Beckman Coulter, Inc., Brea, CA, USA) that

was calibrated daily. 1–1.5 mL of whole blood was incubated in lysis buffer to lyse red blood cells. Remaining white blood cells were

washed twice with PBS and resuspended in PBS +0.2% bovine serum albumin (BSA; Sigma-Aldrich, St. Louis, MO, USA) to achieve

a final concentration of 5 x106/mL. 200 mL of cell suspension was transferred for cell surface staining using two fluorochrome con-

jugated monoclonal antibodies (mAbs) panels. Panel 1 consisted of CD16-FITC (3G8), HLA DR-PE (immu-357), CD14-ECD (RM052),

CD4-Pe-Cy5.5 (13B8.2), CD56-APC (N901), CD8-APC-AF700 (B9.11), CD19-APC-AF750 (J3-119), CD3-PB (UCHT1), CD45-KO

(J33) (Beckman Coulter, Inc., Brea, CA, USA) and CD25-Pe-Cy7 (M-A251) (BD Biosciences, Inc, Franklin Lakes, NJ, USA). Panel

2 consisted of IgD-FITC (IADB6) (Southern Biotech, Inc, Birmingham, AL, USA), IgM-PE (SA-DA4), CD3-ECD (UCHT1), CD27-PE-

Cy5.5 (1A4CD27), CD38-PE-Cy7 (LS198-4-3), CD24-APC (ALB9), CD5-APC-AF700 (BL1a), CD19-APC-AF750 (J3-119), CD20-PB

(B9E9) and CD45-KO (J33) (Beckman Coulter, Inc., Brea, CA, USA). All reagents were titrated and tested before they were used

in the current study. Stained cells weremeasured on a 10-color Navios flow cytometer (Beckman Coulter, Inc., Brea, CA, USA) equip-

ped with three solid-state lasers (488 nm, 638 nm, and 405 nm). Flow cytometry data were analyzed using Kaluza Analysis Software

version 2.1 (Beckman Coulter, Inc., Brea, CA, USA). More information can be found in.51

QUANTIFICATION AND STATISTICAL ANALYSIS

Calculating recovery pseudotime using the TimeAx algorithm
TimeAx10 is a computational method that was introduced to align patient trajectories during disease progression. TimeAx relies on

the order (or rank) of all samples of a dataset, following the similarities within the data over time and not the chronological time itself.

Based on shared patterns within the complete data space across time and patients, and utilizing a feature selection pipeline to deter-

mine a seed of genes (here, using TimeAx default settings of 50 genes), it creates a longitudinal model consisting of a set of

consensus trajectories, representing numerical measures of all possible disease states. TimeAx then allows the matching of new pa-

tient samples with the consensus trajectories, discovering their exact progression state (denoted as ‘pseudotime’). Thus, pseudo-

time is a numerical continuous axis representing the biological dynamics across time, considering the molecular and physiological
e3 Cell Reports Medicine 3, 100652, June 21, 2022
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heterogeneity across patients. To make sure that the inferred pseudotime is indeed capturing patients’ continuous dynamics over

time, TimeAx produces a robustness score, measuring an additional pseudotime-like axis (robustness pseudotime), assuming

that pseudotime can only be the same or higher for consecutive samples within the same individual. The robustness score is then

calculated as the similarity between the pseudotime and the robustness pseudotime. Here, TimeAx and all its support functions

were applied using the TimeAx R package.

Recoverymodel (model 1):We used our longitudinal cohort (cohort 1), a time series RNA-seq data, to predict a specific pseudotime

state for each single RNA-seq profile across multiple sampling time points in each patient. Based on the TimeAx’s model, we were

able to also predict the pseudotime states of additional RNA-seq samples from two validation cohorts (cohort 2 and 3). Based on the

assumption that non-deceased patients, which eventually were released from the ICU, presented a general trajectory of recovery, we

trained this model using all non-deceased patients with 5 or more samples each (total of 20 patients). Based on this model, we also

predicted the pseudotime of samples from deceased patients. We show that pseudotime states based on this model, presented only

a minor association with the patients’ time from disease onset (Figure S2C), and thus allowed us to discover many novel findings that

could not be detected otherwise.

Worsening model (model 2): In this model, we trained TimeAx using the exact same patient selection as in the recovery model. By

assuming that non-deceased patients in cohort 1 present recovery trajectories, we reversed the order of samples for each patient,

resulting in a model for patient worsening instead of recovery. Therefore, the increase in pseudotime states within this model repre-

sents a worse disease state. This allowed us the calculation of an optimized fit score for each patient to either of the recovery or wors-

eningmodels. For that purpose, we assumed that as patients advance in time, they can only go forward in pseudotime, thus, can only

advance or stay at the same state. Therefore, patients that had a recovery phenotype, advanced their pseudotime mostly in the re-

covery model, but not in the worsening model. On the other hand, patients that had a worsening phenotype, advanced based on the

worsening model but not the recovery model. We calculated a recovery and worsening scores as the standard deviation across the

predicted pseudotime states in each of the models. To maximize the ratio between patients in the recovery and worsening groups to

the number of out-group patients (Figure S3B), we set the cutoff for high recovery/worsening to be above 0.1 and divided the patients

into 3 groups: patients with a high recovery score and a low worsening score (denoted as ‘‘recovering’’), patients with a high wors-

ening score and a low recovery score (denoted as ‘‘worsening’’) and patients with low recovery and worsening scores (denoted as

‘‘stability’’). To validate our findings using patients from cohort 3, which only included 2 time points per patient, we had to calculate an

alternative score. In this analysis, we defined patients as ‘advancing’ or ‘returning’ if the pseudotime of their second time point was

higher or lower compared to the pseudotime of the first time point, respectively.

Disruption model (model 3): In this model, we trained TimeAx using patients with 4 or more samples, including both recovered and

deceased patients (20 and 7 patients, respectively). By adding the deceased patients into the model, we disrupted the recovery

assumption, resulting in pseudotime that does not represent the normal recovery process. We used this model to discover standard

recovery mechanisms that are altered in deceased patients.

Comparing longitudinal modeling tools
TimeAx pseudotime was validated using MEFISTO,52 a recently reported method for factor analysis, using real-time as a covariate,

for extracting time-smoothed biological factors. The values of the factors across patients are then aligned based on a selected pa-

tient as the backbone, to reduce the effect of patient heterogeneity. MEFISTO was applied using 2000most highly variable genes for

prediction of a single factor. This was shown superior over choosing a higher number of factors, each with a weaker association with

time and less molecular interoperability.

Gene enrichment calculation
Gene set enrichment scores were calculated based on the correlations of genes with the pseudotime. Gene sets were collected from

GO, MSigDB Hallmark gene sets, Reactom, and KEGG. For each gene set, we compared the correlations of genes from the set and

genes which are not part of the set, using a Kolmogorov-Smirnov test (ks-test). Finally, we accounted for multiple testing by applying

a Benjamini–Hochberg false discovery rate (FDR) correction. To provide better comparability between gene set enrichment scores,

the corrected p values were then –log10 transformed.

Cell type deconvolution
We used the Cellular population mapping (CPM) deconvolution algorithm30 (‘scBio’ R package, version 0.1.6) to cell composition

abundances across in both the longitudinal and the validation cohorts. For the creation of a reference data, we used whole blood

single cell RNA-seq data collected fromCOVID-19 patients and containing 31 different cell subsets from all major immune cell types,

including Neutrophils, Monocytes, Dendritic cells, Eosinophils, T cells and B cells, as well as blood circulating cells, such as Eryth-

rocytes and platelets.2 In brief, we used thewhole blood data from cohort 2 fromSchulte-Schrepping et al. and re-annotated the cells

in a two-step approach. First, we log-normalized the gene expression with a scaling factor of 10.000, selected the top 2000 variable

genes using the vst algorithm and scaled the top variable genes regressing out ‘‘nCount_RNA’’ (number of transcripts per cell). After a

principal component analysis based on the scaled variable genes, we selected the first 20 components for a UMAP dimensionality

reduction. Cells were then clustered using louvain clustering at a resolution of 0.7. The granulocyte space was annotated into eosin-

ophils, pro-neutrophils, pre-neutrophils, CXCL8+ neutrophils, MME + neutrophils and IFIT + neutrophils based on the top marker
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genes. The remaining cells were used to annotate them using the azimuth algorithm53 according to the tutorial to increase resolution

of the cell annotation in the lymphoid space. Overall, we created our reference data based on 1463 cells, evenly distributed across the

different subsets (�50 cells for each subset). To capture the variation across all cell subsets, we created the cell space for each cell

subset as the first two principal components (PCs), obtained by applying a PCA analysis, using only genes with high expression

compared to cells from other cell subsets (Fold change >2). Cell spaces for all cell subsets were then combined into one big cell

space. To robustly capture changes across this combined cell space, we used amodel size of 31, selecting one cell from each subset

in each CPM iteration. We calculate the associations between the pseudotime and the deconvolved cell compositions using a ‘Pear-

son’ correlation across all samples.

Studying gene effects by comparing global data with composition-based data
To observe molecular mechanisms in COVID-19 recovery which are not introduced by changes in cell compositions, we calculated

bulk gene expression profiles corresponding to the contribution of cell composition and compared it to the measured gene expres-

sion levels.We calculated the cellular contributions for each sample by, first, weighting the gene expression profile of each cell subset

(determined from single cell RNA-seq data; See cell type deconvolution in STAR Methods), by its composition, inferred by cell de-

convolution, and then inferring the sample’s compositional-based profile by summing all these weighted cell subset profiles. To

determine significant gene associations with recovery, for both global and composition-based data, we defined a significance score

by comparing gene values between low pseudotime samples (pseudotime <0.5) and high pseudotime samples (pseudotime >0.5)

using Student’s t test. To account for multiple testing, we selected genes with significant p values after applying a Benjamini–

Hochberg false discovery rate (FDR) correction.
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