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Abstract Rimed hydrometeors (graupel or hail) are added to a stratiform cloud scheme for global
models and tested in a variety of configurations. Off-line tests compare well to other cloud microphysics
schemes with rimed ice used in mesoscale models. Tests in single column and climate mode show expected
production of small amounts of rimed ice in the middle troposphere and at high latitudes. The overall
climate impacts of rimed ice (hail or graupel) at 100-km horizontal grid spacing are small. There are some
changes to partitioning between cloud ice and snow that affect upper troposphere water budgets and
clouds. High-resolution simulations are conducted with a global but regionally refined grid at 14 km over
the Contiguous United States. High-resolution simulations show local production of graupel with realistic
size and number concentrations. The maximum graupel frequency at high resolution is over Western U.S.
mountain ranges. Differences in total precipitation with the addition of rimed ice in 8-year simulations are
statistically significant only for orographic precipitation over the Cascade and Rocky mountains, reducing
model biases when rimed ice is included. Rimed ice slightly improves summer precipitation intensity
relative to observations. Thus, while the global climate impact of rimed ice in stratiform clouds may be
negligible, there are potentially important and systematic regional effects, particularly for orographic
precipitation. Rimed ice in cumulus clouds is not yet treated but is an important next step.

Plain Language Summary Rimed ice, known commonly as graupel or hail, forms with
higher velocity updrafts in clouds, often convective clouds. These updrafts are usually not present for
low-resolution global models used for climate. But graupel and hail are important for simulating the
evolution of precipitation correctly. This work describes implementation of graupel and hail into a global
climate model, with tests using a suite of models from idealized updrafts up to regional climate experiments
with 14-km resolution. The new cloud physics scheme produces reasonable amounts of graupel especially
at regional climate scales. There are few impacts on the simulations, but some shifts in precipitation result.
This paper is an important foundation for higher-resolution global models.

1. Introduction
Significant production of rimed hydrometeors (graupel and/or hail) at the grid scale requires vertical veloci-
ties much higher than would be expected or reasonable at scales of 100 km typical of global climate models.
That is why global climate models typically forego the representation of rimed ice. However, increases in
computational power have allowed global models to simulate features at higher resolution, and new meth-
ods for variable mesh simulations have enabled regional climate modeling at resolutions more typical of
mesoscale models (10–25 km; e.g., Gettelman et al., 2018; Huang et al., 2016; Rauscher et al., 2012; Zarzycki
& Jablonowski, 2014). There are also ongoing efforts at unification of weather and climate models (Brown
et al., 2012). The overall requirement of these efforts is physical parameterizations which can appropriately
represent the state of the atmosphere across a wide range of scales (often called “scale-insensitive” parame-
terizations). The goal is to develop a parameterization that responds appropriately to the forcing at any grid
resolution without modification or tuning.

Representing rimed ice is important as resolution increases in models. Smaller scales with larger updraft
velocities are resolved, and these can produce rimed ice. Representation of rimed ice has been shown to
be important for mesoscale modeling of several different regimes, including frontal rainbands (Rutledge &
Hobbs, 1984) and deep convective systems (Adams-Selin et al., 2013; Bryan & Morrison, 2012; McCumber
et al., 1991; van den Heever & Cotton, 2004; Van Weverberg et al., 2012; Wu et al., 2013). Rimed ice is
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important for simulating some cases of winter orographic precipitation (Colle et al., 2005, 2008; Lin et al.,
2011; Morrison et al., 2015).

For cloud microphysics schemes used for large-scale (stratiform) clouds, there has been a convergence of
methods. Advanced two-moment microphysics schemes that predict mass and number of cloud drops exist
for both mesoscale models (Ferrier, 1994; Lim & Hong, 2010; Milbrandt & Yau, 2005; Morrison et al., 2009;
Seifert & Beheng, 2006; Thompson et al., 2008) and for climate models (Gettelman et al., 2015; Lohmann
et al., 1999). A key difference remaining between these schemes is the representation of rimed hydrometeors
(hail or graupel). Because of the lack of strong resolved scale updrafts, large-scale climate models typically do
not explicitly treat rimed hydrometeors. However, high-resolution global models are able to generate these
motions, and so representation of rimed ice may be important for global applications. Lin and Colle (2011)
parameterized ice fall speeds in a General Circulation Model (GCM) to account for the effects of riming and
found 20–30% increases in upper tropospheric ice, with ∼1 Wm−2 change in the global radiative balance,
indicating the potential for significant climate impacts.

The purpose of this paper is to document the extension of a stratiform cloud microphysics scheme for global
models of climate and weather events to include an explicit treatment of rimed ice. We do this using a model
hierarchy that tests the scheme over a wide range of conditions from weak grid scale forcing at 100 km, to
explicit mesoscale forcing at 14 km, to stronger forcing representing deep convective updrafts. The scheme is
run first in an off-line model and compared to typical schemes for mesoscale and cloud models with a cloud
scale deep convective updraft. Next we examine key processes in a single column framework with large-scale
forcing representative of 100-km scales. Finally, the new scheme is run for global climate (100-km scales)
and regionally refined high-resolution simulations (14 km, partially resolved convective scales). Large-scale
differences in climate are not expected, but regional impacts may result at higher resolution. We discuss
extensions of such an approach to convective clouds in the conclusions (section 7).

This manuscript is organized as follows. Section 2 describes the adjustments to the scheme to represent
rimed ice. Section 3 presents off-line tests with a Kinematic Driver (KiD; Shipway & Hill, 2012). Section
4 illustrates process rates from single column tests. Section 5 presents global results from 1◦ simulations
with the Community Atmosphere Model version 6 (CAM6), and section 6 presents results from CAM6
refined mesh simulations over the Contiguous United States (CONUS). Conclusions and future work are in
section 7.

2. Scheme Description
We have developed a third version of the scheme originally described by Morrison and Gettelman (2008),
termed “MG.” A version with prognostic rain and snow and performance improvements was developed by
Gettelman and Morrison (2015), called “MG2.” Here we describe the implementation of rimed hydromete-
ors in the scheme, hereafter “MG3.” We will focus on the differences between MG2 and MG3 and between
MG3 and other microphysics schemes that treat rimed hydrometeors.

The addition of rimed ice in MG3 follows the treatment in the Morrison et al. (2009) mesoscale microphysics
scheme. A schematic of the MG3 scheme is shown in Figure 1. MG3 starts with MG2 (Gettelman & Morrison,
2015) and adds a series of processes (in red). One rimed hydrometeor category is added. Both mass and
number are prognosed. Rimed ice has the “character” of hail or graupel by preselecting density and fall
speed parameters as described below.

The conservation equation for the mass mixing ratio of rimed ice is given as

dQG

dt
=QGsed + QGadv + QGdif+

(PRACG + PGRACS + PRDG + PSACR + MNUCCR)𝑓p+
(PSACWG + PGSACW)𝑓c, (1)

where G refers to the rimed ice category (graupel or hail), and then QG is the graupel/hail mass mixing ratio.
QG tendencies due to sedimentation (QGsed), advection (QGadv) and diffusion (QGdif) are also included. fp is
the precipitation fraction, fc is the cloud fraction, and the various process rates are defined in Table 1. Note
that precipitation fraction is always equal to or greater than cloud fraction at a given level. MNUCCR is the
freezing of rain to rimed ice (see Appendix A).
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Figure 1. Schematic of the stratiform cloud microphysics scheme. New rimed ice processes are shown in red.

The equation for rimed ice number mixing ratio is

dNG

dt
= NGsed + NGadv + NGdif + (NSCNG)𝑓c + (NGRACS + NNUCCR)𝑓p, (2)

where NG is the rimed ice number mixing ratio. N tendencies due to sedimentation (NGsed), advection
(NGadv), and diffusion (NGdif) are also included. The different process rates are defined in Table 1. NNUCCR
is the freezing of rain to rimed ice (Appendix A).

Inclusion of rimed ice also requires changes to the existing equations for the evolution of vapor (Qv),
cloud droplets (Qc,Nc), cloud ice (Qi,Ni), rain (Qr,Nr), and snow (Qs,Ns). These changes are detailed in
Appendix A.

Rimed ice particles are assumed to follow an inverse exponential distribution, as defined in Morrison and
Gettelman (2008, Equations 1–4). The overall treatment in Morrison et al. (2009) follows Reisner et al. (1998),
Murakami (1990), and Ikawa and Saito (1990). Deposition or sublimation of rimed ice (PRDG) is treated
similarly to evaporation of rain or snow (Morrison et al., 2005, eqs. 3 and 8). Collection of snow by rain to
form rimed ice (PSACR) follows Reisner et al. (1998), Equation A.47, and is defined as

PSACR = 𝜋2𝜌s𝜖(((1.2U Rm − 0.95USm)2 + 0.08U SmURm)0.5𝜌N0rN0s∕𝜆3
s ∗ (5∕(𝜆3

s𝜆r)+2∕(𝜆2
s𝜆

2
r )+0.5∕(𝜆s𝜆

3
r ))),
(3)

Table 1
New Microphysical Processes for Rimed Ice

Q Process N Process Description
PSACR Collection of snow by rain
PRACG NPRACG Collection of rain by graupel/hail
PSACWG NPSACWG Collection cloud water by graupel/hail
PGSACW NSCNG Conversion of rimed cloud water to graupel/hail
PGRACS NGRACS Conversion of rain rimed onto snow to graupel/hail
PRDG Graupel deposition/sublimation
QMULTG NMULTG Rime splintering (ice multiplication) from cloud water
QMULTRG NMULTRG Rime splintering of accreted rain
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where 𝜌s is the density of snow, 𝜖 = 1 is the collection efficiency, URm and USm are the mass weighted rain
and snow mass fall speeds, respectively, N0r and N0s are the intercept parameters for rain and snow, and 𝜆r
and 𝜆s are the slope parameters for rain and snow (see Morrison & Gettelman, 2008). 𝜌 is the air density.

Collection of rain by rimed ice (PRACG,NPRACG) follows a similar form (Reisner et al., 1998,
equation A.48):

PRACG = 𝜋2𝜌w𝜖r(((1.2U Rm − 0.95UGm)2 + 0.08U GmURm)0.5𝜌N0rN0g∕𝜆3
r (5∕(𝜆

3
r𝜆g)+2∕(𝜆2

g𝜆
2
r )+0.5∕(𝜆s𝜆

3
g))),
(4)

NPRACG = 𝜋∕2𝜌w𝜖r(1.7(URn − UGn)2 + 0.3U GnURn)0.5N0rN0g(1∕(𝜆3
r𝜆g) + 1∕(𝜆2

r𝜆
2
g) + 1∕(𝜆3

g𝜆r)), (5)

where 𝜖r = 1 is the rain collection efficiency. UGm is the mass weighted fall speed for graupel mass (see
equation (10)). Mass weighted fall speeds for number are URn for rain, USn for snow, and UGn for graupel
(equation (11)).

Collection of cloud water by rimed ice (PSACWG,NPSACWG) is defined as (equation A.61, Reisner
et al., 1998):

PSACWG = Γ(b + 3)(𝜋∕4)𝜖idaqc𝜌N0g∕𝜆(b+3)
g , (6)

NPSACWG = Γ(b + 3)(𝜋∕4)𝜖idaNc𝜌N0g∕𝜆(b+3)
g , (7)

where a and b are shape parameters for fall speed set differently for hail and graupel (see below). 𝜖id is the
ice-droplet collision efficiency. N0g and 𝜆g are the intercept and slope parameters for rimed ice.

Conversion of rimed cloud water to rimed ice (PGSACW,NSCNG) follows Reisner et al. (1998, equation
A.43; originally Ikawa & Saito, 1990) and only occurs when qs > 0.1 g/kg and qc > 0.5 g/kg, where qs is the
in-cloud snow mixing ratio and qc is the in-cloud liquid mixing ratio, following Rutledge and Hobbs (1984).

Conversion of rain collected by snow into rimed ice (PGRACS,NGRACS) follows Reisner et al. (1998,
equations A.50 and A.51) and uses the threshold values for the conversion of qs > 0.1 g/kg and qr > 0.1 g/kg,
where qs is the in-cloud snow mixing ratio and qr is the in-cloud rain mixing ratio, following Rutledge and
Hobbs (1984). This modifies snow as well (PRACS,PSACR; see appendix A).

Rime splintering or ice multiplication from cloud water (QMULTG,NMULTG) and riming and splintering
from accreted raindrops (QMULTRG,QMULTRG) occur from −8 to −3 ◦C, following

NMULTG = 𝑓3.5 × 108PSACWG, (8)

where f is a triangular function ramped from 0 at −3 ◦C to f = 1 at −5 ◦C and then back to 0 at −8 ◦C.
QMULTG = NMULTG * Mg0, where Mg0 is the mass of an ice splinter (ice, 10 microns diameter). QMULTG
is constrained so that transfer of mass from rimed ice to cloud ice cannot be more mass than was rimed
(QMULTG < PSACWG), and PSACWG is reduced as a result. Finally, splintering associated with accreted
raindrops (QMULTRG, NMULTRG) is calculated similarly:

NMULTRG = 𝑓3.5x108PRACG, (9)

and QMULTRG = NMULTRG * Mg0, constrained by the mass transfer from rain to graupel.

Following Morrison and Gettelman (2008), the fall speeds (UG) for rimed hydrometeors are specified by a
diameter-fall speed relationship U = aDb for a particle with diameter D. The mass weighted fall speed (m/s)
is found by integrating over the size distribution:

UGm = min(aΓ(4 + b)∕(6𝜆b
g), 20)(𝜌0∕𝜌)0.54. (10)

Similarly, the number weighted fall speed (m/s) is

UGn = min(aΓ(1 + b)∕(𝜆b
g), 20)(𝜌0∕𝜌)0.54, (11)

where 𝜆g is the rimed ice shape parameter. 𝜌0 is a reference air density at 850 hPa, and 𝜌 is the air density.
The last term is an air speed correction factor (units of m/s) from Heymsfield et al. (2007). UGm and UGn
are used to derive the sedimentation tendencies (QGsed,NGsed) in equations (1) and (2) using a first-order
upwind flux difference (Gettelman & Morrison, 2015).
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Figure 2. Time average of a Kinematic Driver transient deep convective simulation with several different microphysics schemes: MG3 with hail-cyan, MG3
with graupel-blue, M2009-red, T2008-black, and MG2-green.

There is a switch in the code to change between graupel and hail, with the only difference being the bulk
density and the fall speed-size relationship. For graupel, 𝜌g = 500kgm−3, and for hail, 𝜌h = 900kgm−3. For
graupel, a = 19.3 m1− bs−1 and b = 0.37 (unitless; Locatelli & Hobbs, 1974). For hail, a = 114.5 and b = 0.5
(Matson & Huggins, 1980).

We designed the MG3 scheme with the goal to develop a parameterization that can work across scales. In
the case of the KiD 1-D and single column model tests, hail parameters might be appropriate for the updraft
speeds, and so we test with hail and graupel parameters there. In the GCM tests down to 14 km in this
work, updraft speeds are more appropriate for graupel (see below), so we have just shown simulations with
graupel parameters. The goal is to provide options, even if most current global model applications will use
parameters associated with graupel.

3. KiD Tests
For testing, MG3 is implemented in the KiD (Shipway & Hill, 2012). Also available in the KiD model for
comparison are the base MG2 scheme, (Gettelman & Morrison, 2015), the Morrison et al. (2009) scheme
based on Morrison et al. (2005; hereafter M2009), and the Thompson et al. (2008) scheme (hereafter T2008).
Note that KiD has a cloud fraction of either 0 or 1. The MG scheme (all versions) has a switch to assume
uniform grid box properties that is used in the KiD tests. All the microphysics schemes in KiD are running
with essentially the same forcing, binary (0 or 1) cloud fraction, and uniform grid box properties.

Here we analyze the transient deep convective KiD case (Case 11 in Shipway & Hill, 2011) with an updraft
that decays in time and height applied to hydrometeors and vapor. The maximum updraft strength is 16 m/s.
This updraft strength is typical of moderate deep convection and would represent a small scale (Large Eddy
Simulation or Cloud Resolving Model type) model of deep convection. The simulation is 2 hr (7,200 s) long.
The profiles of temperature and moisture are those described by Shipway and Abel (2010). Temperature is
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Table 2
Kinematic Driver Simulation Precipitation

Simulation Mean LWP Avg Precip
(kg/m2) (kg·m−2·s−1)

T2008 0.735 23.61
M2009 0.594 23.77
MG3-Graupel 1.042 21.52
MG3-Hail 0.989 21.89
MG2 1.057 21.95

kept fixed to minimize microphysical feedback. A source term for vapor is applied, and the updraft decays
over time. Details are described in Shipway and Hill (2011).

Figure 2 illustrates a KiD simulation with MG3 for the deep convective case. The figures are time averages
of the cloud over the whole simulation, with the evolution of precipitation shown in Figure 2d. The key
aspects of this case are to compare the MG3 implementation to MG2 and to other similar microphysical
schemes with a rimed ice hydrometeor category. Figure 2 illustrates MG3 simulations with graupel (dark
blue, dotted) and hail (cyan, dot dash) as well as MG2 (the same scheme without graupel and hail, green
solid), M2009 (purple solid), and T2008 (black solid) microphysics schemes. All the schemes have fixed drop
number of 100 cm−3 and ice nucleation following Cooper (1986).

MG3 gives results comparable to the other schemes, with a similar vertical rain structure (Figure 2e) and
temporal evolution (Figure 2d). There is more liquid water in the MG2 and MG3 schemes than in the other
schemes, particularly lower in the cloud (Figure 2b). This is illustrated in Table 2, where there is ∼30–40%
higher Liquid Water Path (LWP) in MG2 and MG3 than in M2009 and ∼25% more than T2008. Note that
MG2 and MG3 have nearly the same cloud liquid below the melting level. The MG3 scheme with hail gives
a slightly delayed timing of precipitation compared to T2008 and M2009 (Figure 2d). The M2009 simulation
specifies rimed ice properties as hail. When using graupel properties instead in MG3, it produces more mass
and number of rimed ice (Figures 2g and 2h) and a larger delay in the timing of precipitation. Average
precipitation is ∼10% higher with T2008 and M2009 than with MG3 (Table 2). MG3 produces an order of
magnitude more graupel mass than T2008 and a factor of 3 larger than M2009 (Figure 2g), largely due to
the large snow mass in MG2.

The main difference between MG2 (no graupel/hail) and MG3 with either graupel or hail is a large reduction
in snow above the melting level at 5 km in the simulations, which is associated with generation and growth
of rimed ice in MG3. This transformation also significantly impacts the timing of precipitation, as snow has
a much slower mass-weighted mean fall speed (1–2 ms−1) than hail or graupel (up to 5–10 ms−1 in these
simulations). Consequently, MG2 has substantially delayed precipitation relative to all of the schemes that
explicitly treat rimed ice (MG3, T2008, and M2009).

Figure 3. Average graupel tendency profiles for the ARM summer 1995 deep convective case. (a) Simulation with
graupel. (b) Simulation with hail. (c) Difference hail-graupel. Tendencies are as in Table 1.
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Figure 4. Rimed ice mass weighted mean fall speed (UMG) in meter per second for the ARM summer 1995 case using parameters for (a) graupel and (b) hail
(bottom). (c) shows the time mean (graupel solid, hail dashed).

4. Single Column Results
To perform single column and global simulations, the MG3 scheme is implemented in the CAM6, the atmo-
spheric component of the Community Earth System Model version 2. MG3 is set up to simulate either
graupel or hail by selecting a density of the rimed hydrometeors and different fall speed parameters as
described above.

CAM6 features a two-moment stratiform cloud microphysics scheme (MG2), that is coupled to a unified
moist turbulence scheme, Cloud Layers Unified by Binormals (CLUBB), developed by Golaz et al. (2002)
and Larson et al. (2002) and implemented in CAM by Bogenschutz et al. (2013). CLUBB handles stratiform
clouds, boundary layer moist turbulence, and shallow convective motions. The two-moment cloud micro-
physics for MG2 and MG3 is implemented in this version, and all of the CLUBB-simulated cloud types
are potential sources for rimed ice. CAM6 also has an ensemble plume mass flux deep convection scheme
described by Zhang and McFarlane (1995), which has very simple microphysics. Thus, we are not treating
rimed ice associated with parameterized deep convection in the global model. Note that a deep convective
case was tested in section 3 using an off-line KiD.

First, we use the Single Column Atmosphere Model (SCAM) in CAM6 (Gettelman et al., 2019) to simulate
single column cases. These cases run the full suite of CAM6 physics parameterizations but with constrained
meteorology. We relax horizontal wind and temperature to a specified forcing. We have explored stratiform
mixed phase cases such as the Mixed Phase Arctic Cloud Experiment as well as continental cases over the

Figure 5. Zonal mean FREQG from a global simulation. (a) JJA and (b) DJF. FREQG = frequency of occurrence of
graupel; JJA = June–August; DJF = December–February.
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Figure 6. FREQG from a global simulation at 524 hPa. (a) JJA and (b) DJF. FREQG = frequency of occurrence of
graupel; JJA = June–August; DJF = December–February.

Atmospheric Radiation Measurement (ARM) Southern Great Plains site (see below) and oceanic convective
cases such as the Tropical Ocean Global Atmosphere case. Averages of water path and top of atmosphere
fluxes for MG2 and MG3 vary slightly but not systematically between cases (not shown), though LWP is
a few percent lower in the convective cases with MG3 than MG2, consistent with KiD results in Table 2.
In the convective cases, a small mass of graupel and hail is present above the melting level. Note that in
SCAM, there is a diagnostic deep convective scheme active, with no rimed ice, and MG3 treats rimed ice in
stratiform updrafts that are a maximum of 2–10 cm−1. Rimed ice in MG3 in SCAM is more typical to that in
a global simulation at 100-km resolution.

Figure 3 illustrates the average tendencies for a continental case at the DOE ARM Southern Great Plains
Site from 18 July to 4 August 1995. The dominant graupel production process is collection of snow by rain
(PSACR, Table 1). This is slightly larger at higher altitudes when rimed ice is graupel (Figure 3a) compared
to hail (Figure 3b). There is a small source term for the collection of rain by graupel/hail (PRACG), and
for graupel, there is an additional small source due to collection of cloud liquid by graupel (PSACWG).
Sedimentation is an important sink for graupel and hail, as is melting (not shown).

Figure 4 shows the difference in mass weighted mean fall speed (UMG) between graupel (top) and hail
(bottom). Hail fall speeds are up to 5 ms−1, with a time mean that is double that of graupel (2 vs. 1 ms−1). In
general, the mass of graupel is larger than the mass of hail, but it falls slower.

5. Global Results
Next we present results using MG3 with settings for graupel implemented in CAM6. Simulations are run at
1◦ (∼100 km) horizontal resolution with climatological Sea Surface Temperatures (SSTs) representing the
1990–2000 time period. The first year of simulations are not analyzed, and the next 9 years are averaged to
develop a climatology.

At 100-km horizontal resolution, there is very little graupel in the simulations (generally just a few parts per
million by mass). Figure 5 illustrates the zonal mean climatological FREQG for June–August (JJA, Figure 5a)

Figure 7. FREQG from a global simulation at 859 hPa. (a) JJA and (b) DJF. Areas below ground level at 859 hPa
masked white. FREQG = frequency of occurrence of graupel; JJA = June–August; DJF = December–February.
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Figure 8. January 1985 900-hPa Graupel 14-km simulation mean (a) frequency, (b) effective radius (Re),
(c) mass-weighted fall speed.

and December–February (Figure 5b). Graupel occurrence frequency is calculated as the fractional coverage
of precipitation when the mass mixing ratio is larger than 10−7 kg/kg (0.1 ppmm) at each time step and
averaged across time steps. If there is less graupel mass than this, the frequency in a time step is zero. The
peak occurrence is about 550 hPa in the tropics at just over 10%. There are secondary peaks in the midlatitude
storm tracks at lower altitude.
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Figure 9. January 1985 lower troposphere (990–850 hPa) normalized probability distributions for Contiguous United
States of (a) mean mass weighted graupel fall speed (UMG, m/s), (b) graupel effective radius (LS_REFFGRAU, mm),
(c) graupel mass mixing ratio (GRAUQM, g/kg) and (d) graupel number mixing ratio (NUMGRAU, # per kilogram).

The distribution of graupel is different in the tropics (Figure 6) and midlatitudes (Figure 7). In the tropics
(Figure 6), graupel is found in regions with deep convection and peaks at about 550 hPa in the summer hemi-
sphere tropics and subtropics. Note that rimed ice is not being produced within the deep convective scheme
itself but is a product of large-scale grid-resolved motion and indirectly from the evolution of convectively
detrained hydometeors (convection only detrains cloud liquid and cloud ice).

In midlatitudes (Figure 7), the frequency of occurrence is lower (note that the scale is half that of Figure 6)
and closer to the surface, peaking at ∼850 hPa. In the North Hemisphere, it peaks in winter in the oceanic
storm tracks, while in the South Hemisphere, features are more constant throughout the year, with a slight
peak in winter. The peak is over the ocean, where more stratiform liquid water occurs.

The small graupel mass limits any “climate” impact. Globally, there is a small (0.3 gm−2 or 2%) increase in
ice water path (IWP: suspended ice only, not including snow) in the simulation with graupel compared to
the MG2 control, mostly confined to tropical convective regions. The IWP change is associated with slightly
higher upper-tropospheric cloud cover. There is no significant radiative effect of this small IWP change. In
addition, there is a small decrease in snow. These effects are consistent with the formation of rimed ice,
growth by riming, as well as faster fall speeds of graupel than snow. They are also consistent with the single
column simulations in Figure 3 that showed the dominant graupel production process is collection of snow
by rain (and faster fall speeds than snow), hence explaining the reduction in snow mass.

These results show smaller impacts than Lin and Colle (2011), who reported a 10–20% increase in ice mass by
parameterizing rimed ice fall speeds. Lin and Colle (2011) used rimed ice fall speeds that were faster than ice
fall speeds used in their GCM but slower fall speeds than the typical empirical parameterization (Heymsfield
& Donner, 1990). The mechanism is quite different than the GCM studies here, however, as this work treats
rimed ice with multiple processes and interactions with hydrometeors, not just modifications to the fall
speed. Thus, we do not expect comparable results, and the lack of a large signal indicates microphysical
processes other than sedimentation are important for rimed ice effects.

Overall, as expected, there is little climate significance to the addition of rimed ice in these 1◦ horizontal
resolution simulations.
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Figure 10. July 1983 600-hPa graupel 14-km simulation (a) frequency, (b) effective radius (Re), and (c) fall speed.

6. Refined Mesh Simulations
To examine the performance of MG3 at higher horizontal resolution, where rimed ice is expected
to be more important than in a ∼10-km model, we also perform simulations with CAM6 using a
variable-resolution mesh. The atmosphere model uses the Spectral Element dynamical core (Taylor, 2011),
with the variable-resolution configuration described in Zarzycki et al. (2014). A refined mesh down to 14-km
horizontal resolution is generated with SQuadGen (Guba et al., 2014), focused over the CONUS. The approx-
imate region of high resolution is shown in Figure 8. The background global resolution is approximately 111
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Figure 11. Difference between MG2 and PRISM precipitation data set based on daily 12-km data for (a) DJF and
(b) JJA. DJF = December–February; JJA = June–August; PRISM = Parameter-elevation Relationships on Independent
Slopes Model.

km, with two intermediate transition regions between the highest and lowest resolutions. All elements use
the same time step, regardless of resolution. The global physics time step is set to 600 s. Explicit diffusion
in the Spectral Element dynamical core is scaled as in Guba et al. (2014), with local diffusion coefficients
matching CAM defaults for the corresponding uniform resolution configurations. The refined mesh runs at
6% of the cost of a globally uniform 14-km mesh due to the reduced number of global elements.

Simulations are run for 8 years with observed SSTs for 1985–1992 (inclusive). One simulation was run with
MG3 and rimed ice parameters corresponding to graupel, and one simulation was run with MG2 and no
rimed ice hydrometeors. All other parameters were the same in the simulations.

Figures 8 and 10 illustrate a single month mean from the simulations, indicating the mean frequency, size
(effective radius, Re), and mass-weighted fall speed. Figure 8 at 900 hPa is “near surface” in the terrain fol-
lowing hybrid coordinate. Because MG3 uses a fixed density and a fixed size distribution shape, increases
in effective radius are always associated with increases in mean fall speed—they are both inversely propor-
tional to lambda. So from instantaneous data, the effective radius must increase with lambda (verified using
the data in Figure 9), but this does not have to be true for monthly averaged data. In winter (Figure 8) grau-
pel occurs close to the ground similar to the global uniform run (Figure 5b), with a peak near 900 hPa, while
in summer (Figure 10), the peak is higher at around 600 hPa, similar to the global uniform simulations
(Figure 5a) between 40◦ and 50◦ N.

At higher resolution, several additional features stand out compared to the low-resolution simulations.
Figure 8 indicates peak graupel occurrence in January in regions of orographic precipitation in the Western
United States. Mean sizes are on the order of 1-mm (1,000 microns) radius, and mean mass-weighted fall
speeds can reach 1.5–2 ms−1. Note that these are monthly averages.

Figure 9 shows probability distribution functions of instantaneous values over the high-resolution CONUS
mesh during January 1985 between 990 and 850 hPa. Values may differ from Figure 8 due to removal of
no graupel points in space and time. Figure 9 is constrained for Ng > 2 kg−1, to remove a small fraction
of cases when Ng = 1 kg−1. Fall speeds are distributed around a mode of ∼2.5 m/s, with maxima up to
4 m/s (Figure 9a). The peak instantaneous mean sizes can reach up to 5–7.5 mm in radius in the simu-
lations (Figure 9b). The graupel mass is small, with occasional masses up to 5–10 g/kg (Figure 9c). The
low-resolution (100 km) simulations are consistent with these distributions: At 100-km resolution, no grau-
pel mass larger than 2 g/kg is produced, and fall speeds are less than 2 m/s. These values are outliers, with
more typical values of graupel mass in the lowest bin of Figure 9c, with a mass less than 0.3 g/kg. This
is consistent with KiD simulations indicating a larger graupel mass than other schemes (Figure 2g) and
occurs because of large snow mass converted to graupel. Number concentrations of graupel are up to 10 L−1

(Figure 9d). Statistics for just the Western United States are similar.

In summer (Figure 10), the patterns are significantly different, reflecting the different seasonal character of
precipitation and temperature regimes. Graupel occurs at higher altitudes and rarely reaches the surface:
There is virtually no graupel at 900 hPa. Graupel occurrence peaks at ∼600 hPa over a broad region of
CONUS (Figure 10). There are high frequencies over the higher elevations of the Colorado plateau. Average
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Figure 12. Difference in total (stratiform + convective) precipitation rate between MG3 and MG2 simulations. Only
significant differences (see text) are shown. (a) ANN, (b) DJF, and (c) JJA. ANN = annual; DJF = December–February;
JJA = June–August.

graupel sizes are larger than in winter (average radius up to 2.4 mm), with higher average fall speeds (up
to 2 m/s). The seasonal shift still places maximum frequency of occurrence over mountain ranges, where
resolved scale updrafts are the largest.

To further analyze differences between MG3 and MG2 simulations, daily averaged precipitation rate has
been compared to the Parameter-elevation Relationships on Independent Slopes Model (PRISM) data set
from the PRISM Climate Group, Oregon State University. The PRISM daily precipitation data set for the
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Figure 13. Seasonal precipitation rate averaged meridionally along a longitude strip from 38–48◦ N for PRISM
observations (black-solid), MG2 (blue-dash), and MG3 (red-dotted). (a) ANN, (b) DJF, and (c) JJA. Blue shading is one
standard deviation of 8 years of annual or seasonal means for the MG2 simulation. ANN = annual; DJF =
December–February; JJA = June–August; PRISM = Parameter-elevation Relationships on Independent Slopes Model.

United States is available at 4-km resolution (Daly et al., 2008). Here it has been regridded to 12 km for better
comparison to the 14-km high-resolution simulations. Figure 11 illustrates biases in MG2 against the PRISM
precipitation data set, showing significantly lower precipitation in the coastal ranges in winter (Figure 11a),
with excess precipitation in the Northeast United States. In summer (Figure 11b), the largest biases are over
the Rocky Mountains.

Next we examine the impact of rimed ice (graupel) on precipitation. There is a small impact of graupel
seen in climatologies over CONUS, even at high resolution (Figures 8 and 10). Coherent impacts show up
only in surface precipitation field. Figure 12a illustrates the difference between annual total (stratiform and
convective) precipitation in MG3 and MG2 based on two 8-year simulations. Total precipitation is analyzed
to facilitate comparison to observations (see below). The picture for stratiform precipitation looks very sim-
ilar. Only shown are differences which are statistically different than zero based on a 5–95% confidence
interval of a bootstrap sampling with 1,000 samples. Bootstrap sampling was chosen to provide the best
measure of significance for small samples with an unknown distribution of differences. In the Cascade
range of the N.W. United States, there is a significant change in precipitation between the two simulations
in the annual mean (Figure 12a) which occurs mostly during summer (JJA, Figure 12c). This represents
an improvement of a low precipitation bias in this region (Figure 11a) although the changes occur during
summer and most bias is in winter. The significant summer decrease over Colorado (Figure 12c) is also an
improvement over MG2 (Figure 11b), though most biases are north and south of this region (Figure 11b).

Figure 14. (a) Winter (DJF), (b) summer (JJA), and (c) ANN frequency of precipitation intensity over the United States
for the simulations (red = MG3; green = MG2) and the PRISM data at 12 km (blue). Shaded area shows the monthly
standard deviation from the PRISM data (log space). ANN = annual; DJF = December–February; JJA = June–August;
PRISM = Parameter-elevation Relationships on Independent Slopes Model.
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Figure 15. (a) Winter (DJF), (b) summer (JJA), and (c) ANN frequency of precipitation intensity over the Western
United States (25–50◦ N, 105–130◦ W) for the simulations (red = MG3; green = MG2) and the PRISM data at 12 km
(blue). Shaded area shows the monthly standard deviation from the PRISM data (calculated in log space). ANN =
annual; DJF = December–February; JJA = June–August; PRISM = Parameter-elevation Relationships on Independent
Slopes Model.

Figure 13 illustrates the average total precipitation over latitudes 38–48◦ N (from Colorado to Canada)
along longitudes from the Pacific to Atlantic coast. Total precipitation (stratiform + convective) is ana-
lyzed because we are comparing to observations of total precipitation. The shading indicates one standard
deviation 𝜎 from the MG2 simulation, indicating that a 2𝜎 confidence interval is larger than most of the
differences. Note also that the scale on each panel of Figure 13 is different, with more precipitation in win-
ter (December–February, Figure 13b) than summer (JJA, Figure 13c). The comparison to PRISM indicates
a slight increase in annual average precipitation in MG3 versus MG2 over the Western mountains. There
is a seasonal shift in precipitation between MG3 and MG2 with decreases in MG3 (relative to MG2) during
winter (Figure 13c) and increases in MG3 relative to MG2 during summer (Figure 13c). Half of the summer
precipitation in the simulations is convective precipitation. Reductions in anomalous precipitation over the
Rockies (105◦ W) are seen in MG3 relative to MG2 during summer (Figure 13c). On balance, the simula-
tions show very little difference in precipitation between MG3 and MG2 (consistent with Figure 12), but a
small improvement in MG3 for orographic precipitation regions of the Western United States (reducing a
high bias in precipitation when averaged over 38–48◦ N).

Figure 14 illustrates seasonal and annual frequencies of precipitation intensity for the simulations and the
PRISM data (at 12 km) using 5 years of PRISM data and 5 years from the simulations. PRISM data at 4
km have essentially the same frequency distribution. Simulations agree well with the PRISM data and are
well within the variability of monthly frequency over the 5-year record in each bin. Winter (Figure 14a)
precipitation intensities are very similar to PRISM observations. Summer precipitation intensities are lower
in MG3 than MG2 and better in line with PRISM observations (Figure 14b). Annual frequency distributions
for precipitation greater than 200 mm/day is higher in both MG3 and MG2 than PRISM data.

Figure 15 illustrates the precipitation intensity over the Western United States where some of the largest
changes in precipitation occur (Figure 12). Consistent with the CONUS results in Figure 14, there is lower
MG3 intensity than MG2 in JJA (Figure 15b) which carries through to annual results (Figure 15c), indicating
slightly reduced intensities of precipitation with graupel. However, both model simulations do a good job of
simulating precipitation intensity at 14 km and are well within the spread of observed variability.

Note that the mean precipitation (Figures 12 and 13) and precipitation intensity (Figures 14 and 15) are
not directly comparable, since the mean is dominated by the higher frequency of more moderate or low
precipitation events, which appear similar on the log scale of Figures 14 and 15.

7. Discussion/Conclusions
This work describes the implementation of rimed ice hydrometeors in a two-moment microphysics scheme
(MG3) in a GCM used for climate studies (CAM6). Hail or graupel are selected based on density and fall
speed parameters. MG3 is capable of producing reasonable solutions across a wide range of scales, which
we have illustrated with a model hierarchy. We show MG3 forced with deep convective updraft strengths
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(KiD), grid-scale forcing at 14 km, and weak stratiform grid-scale forcing at 100-km scale in both single
column and global tests. The scheme produces regional climate simulations with acceptable graupel sizes
and reasonable distributions, mostly related to strong orographic forcing of stratiform clouds.

Idealized simulations (KiD) indicate that MG3 is similar to other microphysical schemes commonly used in
mesoscale models when forced with resolved scale updrafts (up to 16 m/s). The addition of rimed ice in MG3
causes a significant decrease in snow at altitudes above the melting level compared to the original scheme
(MG2). This transformation impacts the timing of precipitation, as snow has a slower fall speed than rimed
ice, and consequently, the inclusion of rimed ice increases the fall speed and the flux of precipitation and
causes it to fall significantly earlier in MG3 over MG2. MG3 in this respect looks like other schemes with
rimed hydrometeors.

We have performed global simulations to understand the impact of rimed ice with MG3. At 100-km (1◦)
resolutions typical of standard climate models, the addition of rimed ice results in small amounts of rimed
ice in expected regions near the freezing level. But the mass is small, and rimed ice has a limited global
impact on climate when run at 100-km horizontal resolution. There are impacts on the structure of snow
and small impacts on high-level cloudiness due to rimed ice (graupel).

We also performed simulations with MG2 and MG3 using a refined mesh down to 14 km, which is more
typical of regional climate models. When run at the higher horizontal resolution (14 km), MG3 produces
realistic sizes and fall speeds for graupel and reasonable seasonal shifts in rimed hydrometeor production
regions from winter orographic precipitation in the Western United States to episodic systems in the East and
Southeast United States. Differences in total precipitation between MG3 and MG2 are generally not statisti-
cally significant at 14 km. The addition of rimed ice in MG3 at high resolution slightly increases orographic
precipitation in the Cascade mountains of the Western United States where MG3 indicates significant near
surface graupel and decreases total precipitation over the Rockies. This reduces MG2 model biases in precip-
itation relative to the PRISM data set. The changes from MG2 to MG3 are consistent with the idealized KiD
simulations that show MG3 has an earlier onset of precipitation and slight increases. Previous work using
mesoscale models also indicates orographic precipitation in the Western United States is sensitive to rimed
ice (Morrison et al., 2015). Daily precipitation intensity for both MG2 and MG3 (the latter with graupel) is
similar to PRISM observations. MG3 has reduced precipitation intensity for extreme events in summer, in
better agreement with PRISM observations than MG2.

As expected, overall, there is little climate impact of rimed ice at typical (100 km) resolutions for global mod-
els, but important regional effects appear at higher resolution (14 km). Thus, regional climate simulations,
particularly where there is orographic forcing, may see smaller-scale climate effects from rimed ice.

Note that these simulations include rimed ice only in the large-scale or stratiform microphysics, which in
CAM6 is used for large-scale and shallow cumulus clouds that are created by the unified moist turbulence
scheme (CLUBB). There is only a very simple parameterization of microphysics (a simple autoconversion
scheme) in the deep convection scheme in CAM6 (Zhang & McFarlane, 1995). This is typical of most GCMs.
Recent work (Song & Zhang, 2011; Song et al., 2012) has explored the use of a more detailed microphysics
scheme driven by deep convective updrafts based on the original Morrison and Gettelman (2008) scheme.
Future work will explore the addition of rimed hydrometeors in deep convection, where they would be
expected to have larger and more significant impacts. This could be accomplished by a similar method to
Song and Zhang (2011), extracting vertical velocities to drive the scheme, or it could be done with a more
unified scheme by extending CLUBB to handle all types of clouds, following Thayer-Calder et al. (2015)
and simply turning off the deep convective scheme. It is hypothesized that turning off the deep convec-
tive scheme will show even larger graupel effects on regional climate, particularly in regions dominated by
continental convection.

The long-term goal is to unify microphysics and convection/turbulence treatments in models to be able to
use models across multiple scales. Simulations here are conducted with idealized small scale updrafts that
necessitate inclusion of rimed ice that could be either graupel or hail and with regional climate tests at 14 km,
where rimed ice is likely mostly graupel. However, with the growing sophistication of variable-resolution
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global models, we anticipate reaching nonhydrostatic storm scale resolutions (e.g., 1 km) in the near future,
where hail parameters may be more appropriate. This work is a step in that direction, with some important
implications for regional climate.

Appendix A: Budget Equations
Equations for all the prognostic variables in MG3 are given here for completeness. Equations (1) and (2) are
for rimed ice (graupel or hail) and mass and number mixing ratios. The other vapor (Qv), temperature (T),
and cloud hydrometeor mass (Q) and number (N) mixing ratios are shown here. The fraction of the grid box
(f ) covered by precipitation (fp), ice (fi), and liquid condensate (fc) also appears in the equations. xls is the
latent heat of sublimation, xlf the latent heat of freezing, and xlv the laten heat of vaporization.

dQv

dt
= (PRE + PRDS) × 𝑓p − VAPDEP − ISUBLIM − MNUCCD − MNUDEP × 𝑓c

− (PRDG + EPRDG) × 𝑓p.

(A1)

dT
dt

= [(PRE × 𝑓c) × xlv

+ (PRDS + PRDG) × 𝑓c + VAPDEP + ISUBLIM + MNUCCD + MNUDEP𝑓c] × xls
+ [(BERGS+PSACWS+MNUCCC +MNUCCT +MSACWI +PSACWG+QMULTG+PGSACW) ×𝑓c

+ (MNUCCR + PRACS + MNUCCRI + PRACG + PGRACS + QMULTRG)𝑓p + BERG] × xl𝑓.
(A2)

dQc

dt
= (−PRA − PRC − MNUCCC − MNUCCT − MSCAWI − PSACWS

− BERGS − QMULTG − PSACWG − PGSACW) × 𝑓c − BERG.

(A3)

dQi

dt
= (MNUCCC + MNUCCT + MNUDEP + MSACWI) × 𝑓c

+ (−PRCI − PRAI)𝑓i + VAPDEP + BERG + ISUBLIM
+ QMULTG × 𝑓c + QMULTRG × 𝑓p + MNUCCD + MNUCCRI × 𝑓p.

(A4)

dQr

dt
= (PRA + PRC) × 𝑓c + (PRE − PRACS − MNUCCR − MNUCCRI

− QMULTRG − PRACG − PGRACS) × 𝑓p.

(A5)

dQs

dt
= (PRAI + PRCI)𝑓i + (PSACWS + BERGS) × 𝑓c

+ (PRDS + PRACS + MNUCCR − PSACR) × 𝑓p.

(A6)

dNc

dt
= (−NNUCCC − NNUCCT − NPSACWS+

− NPRA − NPRC − NPSACWG) × 𝑓c.

(A7)

dNi

dt
= NNUCCD + (NNUCCT + NNUCCC + NNUDEP + NSACWI + NMULTG) × 𝑓c

+ (NSUBI − NPRCI − NPRAI) × 𝑓i + (NMULTRG + NNUCCRI) × 𝑓p.

(A8)

dNr

dt
= NPRC × 𝑓c + (NSUBR − NPRACS − NNUCCR

− NNUCCRI + NRAGG − NPRACG − NGRACS) × 𝑓p.

(A9)
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Table A1
MG3 Microphysical Processes

Q Process N Process Description Fraction
PRA NPRA Accretion of liquid to rain Cloud
PRC NPRC Liquid autoconversion Cloud
PRCI NPRCI Accretion of ice to snow Cloud
PRAI NPRAI Ice autoconversion Cloud
PRE NSUBR Rain evaporation Precip
PRDS NSUBS Snow evaporation Precip
VAPDEP Vapor deposition to ice
ISUBLIM NSUBI Sublimation from ice to vapor
MNUCCD NNUCCD Ice nucleation from deposition/condensation freezing
MNUDEP NNUDEP Deposition nucleation (mixed phase clouds) Cloud
BERGS Bergeron process (drops) onto snow Cloud
PSACWS NPSACWS Collection of drops by snow Cloud
MNUCCC NNUCCC Homogeneous freezing of drops Cloud
MNUCCT NNUCCT Contact freezing of drops Cloud
MSACWI NSACWI Ice multiplication Cloud
MNUCCR NNUCCR Rain freezing Precip
PRACS NPRACS Collection of rain by snow Precip
MNUCCRI NNUCCRI Freezing of rain to ice Precip

NSAGG Snow aggreagation process Precip
BERG Bergeron process (drops) onto ice
*PSACR Collection snow → rain Precip
*PRACG NPRACG Rain collection → graupel Precip
*PSACWG NPSACWG Drop collection → graupel Cloud
*PGSACW NSCNG Drop → graupel due to droplet collection on snow Cloud
*PGRACS NGRACS Rain → graupel to rain collection on snow Precip
*PRDG Graupel deposition Precip
*EPRDG Graupel sublimation Precip
*QMULTG NMULTG Ice multiplication drops → graupel Cloud
*QMULTRG NMULTRG Ice multiplication rain → graupel Precip

Note. New processes are identified with an asterisk.

dNs

dt
= (NSUBS + NSAGG + NNUCCR − NGRACS) × 𝑓p

+ (NPRCI − NSCNG) × 𝑓i.

(A10)

Table A1 presents a list of process rates in the equations above. A detailed description of the rates is contained
in Morrison and Gettelman (2008) and Gettelman and Morrison (2015). Those marked with asterisks (∗) are
described in Table 1.
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