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INTRODUCTION

Panax ginseng Meyer is a perennial herb that belongs 
to the family Araliceae. Ginseng root is a well-known 
oriental herb that has been widely used for health food 
and traditional medicine since ancient times. Various 
pharmacological effects of ginseng have been reported, 
such as improved immunity, stamina, health and en-
hanced resistance to stress [1-4]. Recent research has 
confirmed the medicinal properties and pharmacological 
potential of the ginseng root [5-8], thereby increasing 
global interest in its use. The primary pharmacologically 
active ingredients in ginseng are ginsenosides, which are 
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triterpene saponins [9]. Ginsenosides are a secondary 
metabolite of ginseng and are classified into two groups 
based on their aglycone structure, namely, the damma-
rane and oleanane types. The most common ginsenoside 
is the dammarane type, which can be divided into Rb 
(Rb1, Rb2, Rc, and Rd) and Rg (Re, Rf, and Rg1) groups 
by the difference in the 20(S)-protopanaxadiol and 20(S)-
protopanaxatriol structure, respectively [10-12]. The 
oleanane-type ginsenosides are the only R0 in which the 
fundamental skeletons are pentacyclic. More than 30 
kinds of ginsenosides, such as Rg2, Rf1 and Rh2, have 
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been isolated and studied [6,7].
Although ginseng has many beneficial pharmacologi-

cal properties, native ginseng takes a long time to reach 
maturity (4 to 6 years), cultivation is risky, and ginsen-
oside production is minimal. Therefore, mass production 
of ginseng is needed in order to meet demand. As a result 
of these challenges, many reports have been published 
concerning ginsenoside production using transformed 
roots, adding biotic or abiotic elicitors in cell cultures, 
and producing large-scale cultures with bioreactors 
[13-16]. Tissue culture is particularly important for the 
mass production of ginseng, and the quality of culture 
is highly dependent on the culture media and hormone 
composition. In numerous other studies, ginseng culture 
techniques, such as callus induction, cell suspension, 
adventitious and hairy root induction, and optical culture 
conditions, such as the addition of elicitors and hormones 
for mass production, have been evaluated [17-20]. 

The term ‘somaclonal variation’ characterizes the 
process of induced genetic variation by in vitro culture. 
Somaclonal variations are attributable to point mutation, 
chromosomal rearrangements, and DNA methylation 
[21,22]. Somaclonal mutants have provided valuable 
genetic resources for plant breeding. However, although 
it is possible to select mutants by somaclonal variation, 
mutant frequencies are often low compared with artificial 
mutagenesis employing such methods as ionizing radia-
tion and chemical treatments [23]. 

Ionizing radiation can affect plants in several ways, 
such as by damaging DNA, altering bases and sugars, 
forming DNA-DNA and DNA-protein crosslinks, and 
by causing single strand breaks and double-strand breaks 
[24,25]. Numerous researchers have recently performed 
mutation breeding by ionizing radiation. Kim et al. [26] 
reported that high levels of amino acids were obtained 
from mutant rice lines. The transcript levels of the pu-
tative OASA2 mutant gene in these mutant lines were 
higher than in the control. Also, according to Lee et al. 
[27], the radiation-induced gene mutations within the an-
thocyanin pathway are associated with variations in the 
color of chrysanthemum flowers. In addition, new and 
improved varieties of many crops, such as cocoa, potato, 
banana, and sugarcane, have been developed [28-31].

In this study, we induced adventitious roots from the 
cotyledon of ginseng that had been mutagenized with 
gamma rays. Next, we selected mutant lines showing 
high-growth performance. We analyzed the expression 
patterns of genes related to triterpene biosynthesis in the 
mutated adventitious root (MAR) lines compared with 
the native ginseng (NG) and non-irradiated adventitious 

root (NAR) lines. In addition, we profiled and qualified 
ginsenosides using TLC and HPLC systems. 

MATERIALS AND METHODS

Plant materials
Callus cell cultures were induced on a Murashige 

and Skoog (MS) medium (pH 5.8); the cultures were 
subsequently supplemented with 1 mg/L of 2,4-dichlo-
rophenoxyacetic acid (2,4-D) and 0.1 mg/L of kinetin at 
25°C in a dark environment. The calli of P. ginseng were 
irradiated with 50 Gy of a cobalt-60 gamma-irradiator 
(150 TBq of capacity; ACEL, Ottawa, ON, Canada) at 
the Korea Atomic Energy Research Institute. 

Adventitious roots were formed on a solid NH4NO3-
free MS medium and supplemented with 3 mg/L of 
inodole-3-butyric acid (IBA) at 23°C in a dark environ-
ment [32]. The fresh mass of adventitious roots was mea-
sured after 4 wk. The liquid culture was maintained in 
an NH4NO3-free MS medium supplemented with 3 mg/
L of IBA on a gyratory shaker (100 rpm) under the same 
conditions.

Reverse transcription polymerase chain reaction 
analysis

After 4 wk of culture, the total RNA from 0.1 g of 
P. ginseng hairy roots was isolated using an easy-spin 
Plant RNA Extraction Kit (Intron Biotechnology, Seoul, 
Korea). For reverse transcription, 1 μg of RNA was sub-
jected to cDNA synthesis in 10 μL of reaction mixture. 
Reverse transcription (RT) reactions were performed us-
ing 0.25 U of avian myeloblastosis virus (AMV) reverse 
transcriptase in 1 U of RNase inhibitor, 1 mM dNTP, 5 
mM MgCl2, 1×RT buffer, and oligo (dT) 15 primers at 
42°C for 60 min. The reaction was terminated by heating 
the mixture at 70°C for 10 min followed by cooling at 
4°C. The resulting cDNA served as a template for sub-
sequent polymerase chain reaction (PCR) amplification 
using primers for the ginsenoside synthesis genes (Table 
1). The PCR amplification conditions involved 3 mM at 
94°C for the initial denaturation followed by 25 cycles 
of the following: 30 s at 94°C, 30 s each at 58°C, and 30 
s at 72°C followed by 5 min at 72°C for the final exten-
sion. The sizes of the PCR products were determined us-
ing electrophoresis in an agarose gel (1.2%). 

Extraction of ginsenosides
The extraction of ginsenosides was performed using 

the methods described in Woo et al. [15]. Milled powder 
(0.5 g) from freeze-dried adventitious roots was soaked 
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in 80% MeOH at 40°C. After the liquid evaporated, the 
residue was dissolved in H2O and washed with (C2H5)2O. 
Then, the residue was extracted with H2O-saturated n-
butanol and washed twice with H2O. The n-butanol layer 
was subsequently evaporated to produce the ginsenoside 
fraction. Next, each sample was dissolved in MeOH 
(HPLC-grade) and filtered once through a 0.2-μm nylon 
filter. 

TLC identification of individual ginsenosides
The ginsenoside fraction was analyzed using a TLC 

system. The TLC analysis was conducted using automat-
ed multiple development (AMD; Camag, Muttenz, Swit-
zerland). The ginseng extracts (25 mg) in methanol were 
sprayed onto a TLC plate (silica gel, 10 cm×20 cm). The 
mobile phase was conducted using a solvent system (ch
loroform:methanol:water=65:35:10) and a migration 
distance of 80 mm. The ginsenosides were subsequently 
imaged with brown bands by applying 10% H2SO4 and 
heating at 120°C. 

HPLC analysis 
The HPLC conditions were based on those described 

in Court et al. [33], which provided satisfactory resolu-
tion of the seven major ginsenosides, Rb1, Rb2, Rc, 
Rd, Re, Rf, and Rg1. The ginsenoside separation was 
conducted on a Zorbax 300SB-C18 analytical fractions 
column (particle size 5 μm, 4.6 mm×150 mm; Agilent, 
Santa Clara, CA, USA) using the following gradient 
system: 0 to 10 min, 10% acetonitrile and 90% distilled 
water (DW); 10 to 45 min, 50% acetonitrile and 50% 
DW; 45 to 55 min, and 90% acetonitrile and 10% DW. 

The flow rate was 1 mL/min, and the ginsenosides were 
monitored at 203 nm. The sample injection quantity was 
15 μL, and the temperature of the column was sustained 
at 30°C. The ginsenoside peaks were monitored, with the 
peak areas corresponding to samples matching authentic 
ginsenoside standards (Rb1, Rb2, Rc, Rd, Re, Rf, and 
Rg1) purchased from ChromaDex (Santa Anna, CA, 
USA). The data were compared with an external standard 
calibration curve.

RESULTS AND DISCUSSION

Selection of mutated adventitious root lines
To obtain the MAR lines, the ginseng seed was germi-

nated on a MS media supplemented with 1 mg/L 2,4-D 
and 0.1 mg/L Kinetin. An amorphous embryogenic callus 
was induced from ginseng cotyledons and was subcul-
tured on the same medium (Fig. 1A, B). The embryogen-
ic callus was irradiated with 50 Gy of gamma rays (from 
a 60Co source). After irradiation, the embryogenic callus 
was transferred to an adventitious root induction solid 
from an NH4NO3-free medium supplemented with IBA 3 
mg/L; next, mutated adventitious root lines showing high 
growth performance were selected (Fig. 1C, D). 

In our previous report, the highest frequency of adven-
turous root formation was observed on the NH4NO3-free 
MS medium with IBA 3 mg/L when compared with the 
medium from hormones 2,4-D and naphthalene acetic 
acid [34,35]. The fresh mass was confirmed to be greater 
from a 50 Gy treatment compared with the fresh mass 
resulting from the non-irradiated callus [32]. We selected 
2 MAR lines (MAR 5-2 and MAR 5-9) from the calli 

Table 1. The primers of ginsenoside synthetic genes for the reverse transcription polymerase chain reaction analysis

Oligo name Sequence Size (bp)

PgSE (1)
F: ATGGGAAGTTTGGGGGCAATTCT

1,252
R: GTTCTCACTGTTTGTTCAGTAGTAGGTT

PgSE (2)
F: AGCAGCAGTTGACAAAGG

506
R: GCCACATTCGTTTTGGTGAAGG

PNX (3)
F: TCATCAGATGGCTCATGGTACG

361
R: TCTCCTCCTGTGGGAAATCACC

PNY (4)
F: TATCCTGGACACCGAAAGAAGG

445
R: CTCCACTTATTTCCTGTTGGGG

PNY2 (5)
F: TGGATTTTCTAATAAAATCGCAACGCAG

425
R: TTTCATTTGAGTATTGGCAGGCCG

PgDDS (6)
F: ATGTGGAAGCTGAAGGTTGCTCAAGGA

2,310
R: TTAAATTTTGAGCTGCTGGTGCTTAGGC

PgSE, squalene epoxidase; F, forward; R, reverse; PNX, cycloartenol synthase; PNY, oxidosqualene cyclase; PNY2, oxidosqualene cyclase 2; 
PgDDS, dammarenediol synthase.
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treated with 50 Gy of gamma rays. These lines were 
propagated on the NH4NO3-free MS medium with IBA 3 
mg/L (Fig. 1E). The fresh mass of the 2 MAR lines (MAR 
5-2 and MAR 5-9) was compared with the NAR line af-
ter the liquid and solid cultures were incubated for 4 wk. 
The fresh weight of the MAR 5-9 line was similar to that 
of the NAR line, whereas the MAR 5-2 line was greater 
than the NAR line in the solid culture. In contrast, the 
growth of the 2 MAR lines was much greater than that of 
the NAR line in the liquid culture (Fig. 2). 

Tissue culture techniques influence the growth of plant 

mass production. Also, there can be various outcomes 
from mutation breeding by irradiation. Each spectrum of 
γ-irradiation has a different effect on plant growth [29,32].

Expression of ginsenoside biosynthesis
Ginsenosides, which are glycosylated triterpenes and 

triterpenes, are biosynthesized by the mevalonate path-
way in the cytosol (Fig. 3). The expression of genes re-
lated to ginsenoside biosynthesis (Table 1) was examined 
by RT-PCR analysis with RNA prepared from a 6-year-
old native ginseng plant (naturally grown ginseng, NG) 
and from an NAR and 2 MAR lines (Figs. 3 and 4). 
The transcription levels of PgSE and PgSE genes were 
increased in the NAR and 2 MAR lines compared with 
the NG line. The PgSE gene was highly expressive in the 
MAR 5-9 line, whereas the PgSE gene was highly ex-
pressive in the MAR 5-2 line. The PgSE and PgSE genes 
catalyzed the first step at creating ginsenoside biosynthe-
sis pathways that regulate the production of phytosterols 
and triterpenoids in ginseng [36,37]. Three types of 
ginsenosides were synthesized from oxidosqualene, by 
cylization of oxidosqualene cyclases (OSC) genes: dam-
marenediol synthase (DDS), phytosterol synthase (PNX), 
and oleanane-type synthase (PNY1, PNY2). The expres-
sion of OSC genes, except for PNY1, was increased, 

Fig. 2. The fresh mass of adventitious roots of the non-irradiated 
adventitious root (NAR) and 2 mutated adventitious root (MAR) lines 
after 4 wk.

Fig. 1. Adventitious root production from gamma irradiated mutant lines: (A) ginseng seed was germinated by in vitro culture, (B) amorphous 
embryogenic calli were induced from ginseng cotyledons, (C) embryogenic callus formation on the callus induction medium, (D) selected high 
frequency of adventitious root formation, (E) proliferation of the adventitious root in the liquid adventitious root induction medium. NAR, non-
irradiated adventitious root; MAR, mutated adventitious root (5-line).
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whereas the expression of PNY1 was decreased slightly 
compared with the NG. The PNX and DDS genes were 
the most highly expressive in the MAR 5-9 line. The 
OSC genes are involved in the biosynthesis of phytos-
terol synthase, oleanane-type synthase, and dammarene-
diol synthase [38,39]. The DDS gene was involved in the 
synthesis of ginsenoside, indicating that the DDS gene 
was highly expressive in the MAR 5-9 line [37]. These 
results indicate that the ginsenosides are more expressive 
in the MAR 5-9 line than the other samples.

Ginsenoside analysis by TLC and HPLC
Quantitative and qualitative variation of the seven 

major ginsenosides of the Rb1, Rb2, Rc, Rd, Re, Rf, and 
Rg types have been compared with the NG, NAR, and 
2 MAR lines. To analyze the ginsenoside pattern, the 
extract of the NG, NAR, and 2 MAR lines were loaded 
on preparative silica gel TLC plates (Fig. 5A). The TLC 

Fig. 3. The biosynthetic pathway of ginsenoside in Panax ginseng. FPP, farnesyl diphosphate, SS, squalene synthase; SE, squalene epoxi-
dase; PNX, cycloartenol synthase; PNY1, oxidosqualene cyclase 1; PNY2, oxidosqualene cyclase 2; DDS, dammarenediol synthase; NAR, non-
irradiated adventitious root; MAR, mutated adventitious root.

Fig. 4. The expression of genes related to ginsenoside biosynthesis 
in the mutated adventitious root (MAR). NG, native ginseng; NAR, 
non-irradiated adventitious root; SS, squalene synthase; SE, squa-
lene epoxidase; PNX, cycloartenol synthase; PNY1, oxidosqualene 
cyclase 1; PNY2, oxidosqualene cyclase 2; DDS, dammarenediol 
synthase. 
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revealed that the ginsenoside pattern was similar in the 
NG, NAR, and 2 MAR lines, although the bands of the 
NAR line and the MAR 5-2 line were smears. In con-
trast, the MAR 5-9 line was strongly represented in most 
of the bands compared with the NG. Also, the MAR 5-9 
showed a new band under the Rd (Fig. 5A). 

The ginsenoside content was determined from the 
roots of the NG, NAR, and 2 MAR lines. Compared with 
the NG, the amount of 7 ginsenosides of the MAR 5-9 
line was 1.7-fold greater (Fig. 5B). The peaks were de-
termined based on the retention times of the primary gin-
senoside standard (Fig. 6). Among the 2 MAR lines, the 
MAR 5-9 line showed 4 times the ginsenoside content. 
The HPLC chromatogram revealed that the pattern of 
HPLC peaks was similar in the NG, NAR, and 2 MAR 
lines, although there were remarkable quantitative differ-
ences in each sample. The MAR 5-9 line showed greater 
quantities overall compared with the other samples. More 
ginsenosides were detected form the NG than form the 
NAR and MAR -5-2 lines.; however, the Rd ginsenoside 
from the NG line and the Rb2, Rc and Rd ginsenosides 
from the NAR line were undetectable in the HPLC. The 

MAR 5-9 line and the NG line were compared: relative 
to the NG, the Rb1 and Rc ginsenosides of the proto-
panxadiol group decreased in 2-fold, whereas Re, Rf, and 
Rg1 ginsenosides of the protopanaxatirol group increased 
in 2.5-fold, respectively (Table 2). Furthermore, all of 
the ginsenoside content detected in the NAR and MAR 
5-2 lines was low. In the previous report, the amount 
of 7 ginsenosides was higher in the NG callus culture 
[40,41]. In this paper, the ginsenoside content in the NG 
appeared to be greater than that of all of the samples, 
except for the MAR 5-2 lines. The enhanced accumula-
tion of the ginsenoside content in the MAR 5-9 line sug-
gests a significant effect of γ-irradiation on ginsenoside 
biosynthesis. The ginsenoside analysis of the NAR and 
2 MAR lines showed different ginsenoside profiles com-
pared to the NG. Also, the 2 MAR lines showed different 
ginsenoside patterns with those of the NAR (Fig. 6). We 
suggested that the differentiation of ginsenoside content 
among NAR and 2 MAR lines was caused by differential 
expression of genes related to the ginsenoside biosynthe-
sis. The synthetic genes of dammarane-type ginsenosides 
in 2 MAR lines showed higher expression level than 

Fig. 5. A ginsenoside analysis using TLC and HPLC. (A) TLC analysis of ginsenosides. The star indicates a new type of ginsenoside. (B) Gin-
senoside contents in the native ginseng (NG), non-irradiated adventitious root (NAR) and 2 mutated adventitious root (MAR) lines. Black arrow 
was a new band. 

Table 2. Contents of ginsenosides in the NG, NAR, and 2 MAR lines

Line
Protopanaxadiol Protopanaxatriol

Sum
Rb1 Rb2 Rc Rd Re Rf Rg1

NG 8.81±0.04 14.01±0.06 4.15±0.01 - 59.11±0.05 54.14±0.01 59.29±0.01 49.50±0.02

NAR 0.77±0.02 - - - 51.71±0.00 50.80±0.03 52.20±0.01 55.48±0.06

MAR 5-2 0.92±0.03 54.74±0.01 1.80±0.62 0.59±0.44 55.49±0.03 53.55±0.01 52.37±0.01 19.46±0.58

MAR 5-9 4.05±0.02 15.64±0.05 2.79±0.03 1.74±1.31 26.08±0.13 16.48±0.05 15.43±0.05 82.22±1.12

NG, native ginseng; NAR, non-irradiated adventitious root; MAR, mutated adventitious root.
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NAR line, expect PgSE in MAR 5-9 (Fig. 3). Kim et al. 
[42] reported that the change of tryptophan synthesis key 
enzyme in mutant rice caused the change of tryptophan 
content. We seemed that the ginsenoside content in MAR 
5-9 line was the highest than MAR 5-2 and NAR be-
cause of the highest level of PgDDS (Table 2 and Fig. 3).

The pattern and content of ginsenosides appeared dif-
ferently in each γ-irradiated sample, suggesting that there 
was different enzyme activity involved in the ginsenoside 
pathways and culture conditions of each sample [10,34].
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