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The membrane potentials of cortical neurons in vivo exhibit spontaneous fluctuations between a
depolarized UP state and a resting DOWN state during the slow-wave sleeps or in the resting states.
This oscillatory activity is believed to engage in memory consolidation although the underlying
mechanisms remain unknown. Recently, it has been shown that UP-DOWN state transitions exhibit
significantly different temporal profiles in different cortical regions, presumably reflecting differences
in the underlying network structure. Here, we studied in computational models whether and how the
connection configurations of cortical circuits determine the macroscopic network behavior during

the slow-wave oscillation. Inspired by cortical neurobiology, we modeled three types of synaptic
weight distributions, namely, log-normal, sparse log-normal and sparse Gaussian. Both analytic and
numerical results suggest that a larger variance of weight distribution results in a larger chance of
having significantly prolonged UP states. However, the different weight distributions only produce
similar macroscopic behavior. We further confirmed that prolonged UP states enrich the variety of cell
assemblies activated during these states. Our results suggest the role of persistent UP states for the
prolonged repetition of a selected set of cell assemblies during memory consolidation.

Various types of oscillations appear in neural systems depending on the state of the animal'. During
non-rapid-eye-movement (NREM) sleep?™ or in anesthetized states®, the electroencephalogram (EEG) signals
recorded from the neocortex exhibit slow-wave oscillation (1 Hz), in which cortical neurons show spontaneous
bistable fluctuations of the membrane potentials between UP state and DOWN state. Slow-wave oscillation is
widely believed to play a crucial role in memory consolidation® and its impairment is known to cause mental
disorders’.

Many attempts have been made to clarify the underlying mechanisms of the UP-DOWN transitions®. It is
thought that the transitions are regulated by thalamocortical input to the cortex®'°. However, while the removal
of thalamus significantly suppresses the occurrence of UP states, this manipulation does not completely eliminate
the bistable transitions, suggesting that local cortical networks have a capability for generating the UP state!!.
Therefore, the UP-DOWN transitions are generated and maintained by a state-dependent interplay between cor-
tical network dynamics and thalamocortical inputs.

There are numerous theoretical studies on the possible neural mechanisms of UP-DOWN transition, includ-
ing networks of rate neuron model and spiking neuron models. A biologically realistic thalamocortical network
model was proposed to describe slow-wave oscillation and transitions to a continuous UP state corresponding
to awake state of animals'2. A neural network model was constructed to replicate the behavior of single cells and
their network during slow-wave oscillation in control and under pharmacological manipulations!?. The roles of
intrinsic properties such as low-threshold bursting and spike-frequency adaptation in the generation of spontane-
ous cortical activities were also explored'. Sustained UP-DOWN transitions were shown to self-organize through
spike-time-dependent plasticity in a recurrent network model of excitatory and inhibitory neurons'. Clustered
synaptic connections were studied as a possible source of highly variable temporal patterns in the slow cortical
dynamics'®. The mechanisms of highly variable UP-DOWN transitions were experimentally and computationally
explored to reveal various dynamical regimes in a bistable network driven by fluctuating input'”.
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It has recently been shown that the temporal patterns of the UP-DOWN transition are qualitatively dif-
ferent between the layer 3 of the medial entorhinal cortex (MECIII) and the layer 3 of the medial entorhinal
cortex (LECIII) in an interesting way*. While the temporal patterns are synchronized in LECIII with those of
UP-DOWN transitions in neocortical areas, UP states often continue in MECIII during several cycles of neocor-
tical UP-DOWN transitions. Though differences in the underlying circuit structure were suggested to underlie
the distinct activity patterns between MECIII and LECII], the cause of persistent UP state remains unknown.
These findings motivated us to explore whether and how distinct network configurations modulate the temporal
patterns of the UP-DOWN transition. Furthermore, what do the various UP-DOWN transition patterns imply
for the role of slow-wave oscillation in memory processing?

We study these questions in networks of spiking neurons'® randomly connected with three distinct types of
synaptic weight distributions. In each network, the weights of connections between neurons are random numbers
drawn from pre-defined distributions with given mean and variance. We first conduct a mean-field analysis to
clarify the role of excitatory-inhibitory strength ratio (E-I ratio) in the occurrence and sustainability of UP states.
The results are further verified by numerical simulations. In all the network types, we found that the mean and
variance of connection weights are critical to determine the macroscopic network behavior. Then, we numerically
explore the statistical features of UP-DOWN state transitions in different parameter settings and compare the
results with the experimental observations reported in the literature*. Furthermore, to investigate the computa-
tional implications of slow oscillation for memory consolidation, we analyze the variability of neural ensemble
activity patterns during UP states in all the networks. We demonstrate that the variety of activated neuron ensem-
bles reduces rather than increases with time passage from the onset of an UP state, implying that the networks
repeat to activate a set of selective neuron ensembles during memory consolidation.

Model and Methods

We use randomly-connected-recurrent networks of spiking neurons. Our spiking neuron model is based on the
adaptive exponential integrate-and-fire model (AdEx)'8. For simplicity, excitatory neurons and inhibitory neu-
rons are modeled by identical spiking neuron models. Synaptic weights are drawn from the different distributions
described below, and all synaptic connections are randomly wired. Because the neuron model does not have
intrinsic bi-stability, the UP-DOWN transitions obtained in this study represent pure effects of network dynamics
with given network configuration.

Single Neuron Model. Dynamics of the membrane potential of each neuron is given by

- t— 17 )
CM = — gL(VX(t) — ‘/L) —+ gLATeXP M 1 — exp| _[g]
dt T 2 ms
* #
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where X € {E, I} labels excitatory or inhibitory neuron. C is the membrane capacitance and g is the conductance
of leaky current. The term labeled with asterisk is responsible for spike generation, while the term labeled with
sharp mark induces a refractory period of 2ms. Time #? is the time of the latest spike, V' the effective threshold
for spike generation, and Ay the width of the range of membrane potential for spike generation. Equation (1)
diverges during spike generation. The moment when the membrane potential reaches to Vy(f) =20mV is
regarded as the time of spiking. The moment of the i-th spike is denoted by £P. At t = t¥, Vy(¢) is reset to
—55mV. The variable uy(t) describes spike-frequency adaptation (SFA) according to'®

R )+ a0 V) + B3~ 7, o
where a,, is the parameter controlling the adaptation induced by depolarization and b,, is the adaptation current
induced by spikes. The parameters used in the present simulations are as follows: C=150 pF, g, =10.005nS,
Vi=-70mV, Ar=2mV, V;=—-55mV, 7,=200ms, a,=4.0nS and b, = 50.0 pA. ISXn(t) is the current evoked by
synaptic input from pre-synaptic neurons, and Iiﬁput(t) is an external input to the network, which is given by a
Poisson spike train. The details of the synaptic currents are given below.

Synaptic Couplings. The network consists of two groups of neurons: excitatory neurons and inhibitory
neurons. For simplicity, we model both neuron types by Eqs (1) and (2), with X =E referring to excitatory neu-
rons and X =1 to inhibitory neurons. Inhibitory neurons do not receive external input, i.e., IiIn « = 0. Neurons
from both groups are interconnected by multiple types of synapses, which are AMPA-, NMDA-, fast GABA-A-,
slow GABA-A- and post-synaptic GABA-B-receptor mediated synapses.

In this study, all synapses obey second-order kinetics, with s,; being the gating functions of synapse type 9,
where v denotes the type of synapses mentioned in the previous paragraph. The dynamics of synapses responding

to spikes of pre-synaptic neuron j are given by

B _ [;] S — = ) — L
T

dt T, up )P<t Y, up (3)
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Figure 1. Probability density functions used to generate random connection strengths between neurons.
(A) The probability density function for simple log-normal random numbers presented in Eq. (7). (B) The
probability density function for sparse-Gaussian random numbers presented in Eq. (8). (C) The probability
density function for sparse-log-normal random numbers presented in Eq. (9). Parameter: o =1.0.
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where 7,,,, = 1 ms is the axonal delay of pre-synaptic neuron. Rising time constants are set as Ty o = 0.5 ms"’,
— 20 _ 21 _ 23
TNMDAup = 2-8 MS™, TGaBA—A—fastup = 1-8MS™, TGABA—A—slowup = 1.8 ms?! and TGABA B—postup — 100 ms=*. Decay time
constants are 7ypa an = 4-0 M8, Ty an = 87.5 Mm%, Toapa—a—fastdn = 12-0MS?!, TaapA_A—slowdn = 47.0 ms?! and
— 2
TGABA—B—post,dn — 500 ms™.
For an excitatory neuron, the synaptic current, I sy is given by

I = Y350 (0 Vi — VRO + 110,80V — Vel®), “
0, . 5

and the synaptic current of inhibitory neurons, Islyn, is given by

L = e 8,50/ Vrs = Ve®) + 3D 1k, 50, 0V — Velt))- o
v v

Here, the reversal potentials Vy , are set as follows: Vg 4ppa =0mV?™, Vi \ypa =0mV?, Vi gapa 4 =—70mV?,
Virapa—p = —80mV?. The conductances g, are set as follows: gayps = 1.050S, gyyps = 1.051S, goapa—s =4.00S
and g;apa_p=2.0nS. For the conductance, only ratios between different kinds of receptors are important, because
effective magnitudes in simulations will be controlled by scaling factors. The ratios are chosen so that DOWN
state could be comparable to the DOWN-state membrane potentials shown in experiments®. The parameters g
and 7; in Eqs (5) and (6), termed excitatory or inhibitory weight scaling factor, are to be varied in simulations for
different scenarios. In real systems, neurons should be influenced by more classes of synapses. Here we consider
only four classes of synapses to represent fast-excitatory, slow-excitatory, fast-inhibitory and slow-inhibitory con-
nections. Also, one should note that v/, can be interpreted as the excitatory-inhibitory ratio for physical con-
nections, e.g. number of synapses and destiny of spines. It should not be confused with the postsynaptic current
ratio reported by Beed et al..

In this study, the strength of connections between neurons, J°F, ]f, J'E and J, obeys one of the following
statistical distributions: (1) log-normal distribution, (2) sparse-Gaussian distribution and (3) sparse-log-normal
distribution. A log-normal distribution has a long tail and can mathematically result from the product of inde-
pendent random numbers. In this study, we are interested in examining the dynamical properties of neural net-
work that depend (or do not depend) on the statistical details of random connection weights. There is evidence
that spine sizes or synaptic weights of excitatory synapses as well as other properties of cortical circuits are
log-normally distributed?”. Some report shows the strength of inhibitory synapses also obeys a long-tailed distri-
bution®. Thus, we use the log-normal probability density function given by

XX/ XX'\2
PLN(]'Lz(X/) = 7 1 T exp 7(111]1/) _ {J‘LN )
]fo O’LXI\?( ~2T ZUL)I(\IX
X% = In(e® + 1)
xx _ 1 2
BN = —Eln(a + 1), @

where X, X' € {E, I}, and parameters y "¢ XX and aLN "are determined by the variance 02 of the distribution with a
fixed mean 1.0. Figure 1(A) shows an example for > = 1.0. The probability density function of the sparse-Gaussian
distribution is a sum of a delta function and a truncated Gaussian function peaked at 0:
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where © is the Heaviside step function, a is the sparseness and oo the width of the truncated Gaussian function.
One example for the probability density function is shown in Fig. 1(B). Since the mean and the variance of the
truncated Gaussian distribution are coupled, the inclusion of the sparseness parameter a enabled us to control the
mean and the variance of those random numbers sampled from the distribution independently. The
sparse-log-normal is defined in a similar manner:

o o ()X — pgXy
PSLN(]z/; ) = (1 —a)0;") +ax ]XX/UXX,meXP - 202X2
W ISLN SLN
oX? — Infa(c? + 1)]
! 1 1
p = ln[;] - Eln(az +1)
a = EZ;,
20°+1 9)

where a is the sparseness, asﬁf{ and MS)L(X’ are parameters for the log-normal components. There is one example
shown in Fig. 1(C) with 02=1.0. These two distributions also have mean 1.0 and variance ¢°. The sparseness
parameter a has also been included in sparse-log-normal random number for comparison with sparse-Gaussian
random connection weights.

In order to make fair comparison, the means of all the probability density functions were fixed at 1.0. For
I-to-E and I-to-I connections (i.e., XX’ € {EL II}), the variances were fixed at 1.0, while E-to-E and E-to-I connec-
tions (XX’ € {EE, IE}) had variance O’EZ. In summary, the tunable parameters are g, ; and O'EZ, where g and y;
scale excitatory connections and inhibitory connections, and o controls the variance of excitatory connections.
With this setting, the inputs to excitatory neurons and inhibitory neurons will be statistically similar, which seems
to be unrealistic. However, the sustainable activity is mainly supported by E-E connections, while the adjustment
for contributions from inhibitory neurons can be done by controlling ;. Also, since the inhibitory connection has
a smaller variance (62 = 1.0), configuration detail of the excitatory input towards inhibitory neurons should not
make a significant difference to the inhibitory feedback. In addition, this setting enabled us to simplify the analy-
sis of the model using the mean-field analysis to search for condition for UP-state occurrence. The current setting
was chosen to make the model simple enough to analyze without lose of qualitative details.

Numerical Simulations. In most simulations, there are N = 1000 excitatory neurons and N; = Ny/4
inhibitory neurons. The radio between excitatory neurons and inhibitory neurons is chosen based on the data
in a report by Mizuseki et al.?’. In which, the ratio between excitatory neurons and inhibitory neurons in the
entorhinal cortex is 3.9 £ 0.7. The differential equations (1), (2), (3) and (4) were integrated using second-order
Runge-Kutta methods. In numerical simulations of neural population, all measurements were made after a
2-second transient period to initialize the dynamical variables. For further verifications of size effects, Ny =2000
was also used in some simulations. The results for N = 2000 are presented in online supplementary information.

Results

We constructed three neural network models with different distributions (log-normal, sparse-log-normal and
sparse Gaussian) of synaptic weights and investigated the statistical properties of UP-DOWN state transitions
generated by these models. Below, we show both analytical and numerical results. First, the basic properties of
single neurons are studied numerically and analytically. Then, we demonstrate the statistical properties of neural
networks with random connection weights obeying different distributions. Finally, we explore the ability of these
networks in generating synchronous activity patterns of cell assemblies during UP states.

Single Neuron Behvaior.  For a later use in the mean-field analysis of network dynamics, we derive the
response curve of our neuron model. In the following simulations, the synaptic input term Is);n was dropped from
Eq. (1), while X was fixed at a constant current 300 pA. A typical example of the membrane dynamics during
sustained firing is shown in Fig. 2(A) for a,=4.0nS and b, =50 pA. The instantaneous firing rate declines to a
steady value due to SFA.

The firing rate of a single neuron without SFA (a4, =0nS and b, =0mA) is plotted in Fig. 2(B) as a function of
input current, which shows a non-linear property. The firing rate increases continuously for a steady input current
larger than the input current threshold 6, 130 pA, implying that the neuron model has the type-I excitability as
in cortical pyramidal neurons®. The firing rate saturates as the input current increases. With SFA, the firing rate
is suppressed, as shown in Fig. 2(B), and increases approximately in proportion to the strength of input current.
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Figure 2. Response of a single neuron modeled by Eq. (1). (A) Traces of the membrane potential response
evoked by a steady input current are shown. Parameter values were set as a,=4.0nS, b,=50mA and
Il)é . = 300 mA. (B) Firing rate of a neuron versus input current [x s plotted Clrcles show results of

simulations without SEA and solid line shows a fit by the polynomlal glven in Eq. (10). Crosses show results of
simulations with SFA.

The nonlinear input-output curve of the neuron without SFA is fitted as F(I) = (I — ) by means of the following
polynomial:

f(I) = ©(D[AI + BI* + CI’ + DI'], (10)

where the coefficients 6~ 130 pA A=1.32Hz/pA, B=—1.47 x 107*Hz/(pA)* C=7.86 x 107" Hz/(pA)* and
D=-1.56 x 10" 1°Hz/ (pA)4 for IX Lipue — 6 < 1840pA. © is the Heaviside step function. For larger values of input
current, neuronal activity is almost saturated The response function will be used as the firing rate of a neuron
responding to input current I in the mean-field analysis of networks of the model neurons.

UP-DOWN Transitions in Network Simulations. Next, we explore the dynamics of recurrent networks
consisting of the neuron models receiving afferent input, which is described by a stationary Poisson spike train
of rate 10 Hz:

X input
Iinput(t) = ’Yinput] P Sinput(t) (11)
dx,, X;
put input

dt - Z 6( ~ Taxon 1nput) -

Tinputuup Jtb <t Tinput,up (12)
ds;, 5;
put input

d = xinput(l - Sinput) - >

t 7input,dn (13)

where 7, 15 a scaling factor, Yiupu = Y5, J™P™ is the weight of afferent synapse, which obeys the same distribution
as recurrent connections (log-normal, sparse-Gaussian or sparse-log-normal) with ¢; mput = 1.0, Sippui(?) is the
gating function with the raising time 7y, = 1 ms and 7y, 4n = 20 ms, and tmput is input spike time.

Figure 3(A,B) shows spike raster of excitatory and inhibitory neurons during synchronous UP-DOWN tran-
sitions in a recurrent network with log-normal connection weights, where parameter values are vz =7;=0.1 and
og = 10.0. The state transitions occur approximately coincidently in individual excitatory neurons, but they can
show largely deferent degrees of firing irregularity due to variations in the connection weights (Fig. 3(C,D)). Due
to the interconnection between excitatory neurons and inhibitory neurons, inhibitory neurons also show similar
bimodal activity patterns (Fig. 3(E)). However, these neurons tend to exhibit more regular membrane potential
traces presumably because I-to-I connections are less variable than E-to-E connections.

Networks with sparse-Gaussian (Fig. 4(A)) and sparse-log-normal connection weights (Fig. 4(B)) show sim-
ilar irregular UP-DOWN transitions, with somewhat less variable temporal activity patterns across neurons
compared with patterns for lognorml connection weights. Thus, the irregular temporal patterns of synchronous
UP-DOWN transitions represent a feature common to all the network models.

The observations mentioned above raise several questions: (1) What is the condition for UP-state to sustain?
(2) How does the duration of UP state or the duty cycle of UP-DOWN transitions vary with the weight config-
urations of neural networks? (3) How do other statistical features, such as spiking variability during UP states,
depend on the weight configurations? (4) What are the possible implications of irregular UP-DOWN transitions
in information processing by ensemble neural activity? We will address these questions below.

Mean-field Analysis. To begin with, we conduct the mean-field analysis of UP states. The purpose of the
mean-field analysis is to look for parameters enabling excitatory neurons to give a large enough output firing
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Figure 3. Network activity obtained for a log-normal weight distribution. (A) Spike trains of excitatory
neurons demonstrate synchronous activity of these neurons. (B) Spike trains of inhibitory neurons are shown.
(C,D) Membrane potentials of two excitatory neurons are displayed as examples. (E,F) Membrane potentials are
shown for two inhibitory neurons. Parameter values are set as y;=0.1 and o = 10.

rate such that excitatory-excitatory interaction is strong enough to support UP states. The central assumption of
the mean-field analysis is the homogeneity of the network (or the population). Although homogeneity may not
be true in reality, this assumption simplifies the system and allows us to analytically study its properties. In our
model, all neurons do not necessarily have exactly the same wiring patterns and connection weights, but con-
nections to different excitatory neurons are statistical the same such that a mean-field analysis is applicable to the
network system. Under this assumption, the average firing rates of individual neurons should be identical in the
steady state of the neural network although the firing rates of individual neurons fluctuate around the mean. This
also implies that the average pre-synaptic firing rate should be identical to the average post-synaptic firing rate
because every post-synaptic neuron is pre-synaptic to some other neurons. If this condition is not fulfilled, the
network model is unable to reach the corresponding steady state (i.e., the specific UP-DOWN transition state).

To study the condition to have UP states, we analyze the behavior of the gating function under the influences
of noisy background inputs. By averaging Eqs (3) and (4) over time, we have

Tp,dnf

(1) = ,
(54, 0()), —; (1)

where f; is the firing rate of the presynaptic neuron. We verified Eq. (14) by numerical simulations (Fig. 5(A)).
Equation (14) allows us to express the temporal average of synaptic current I:Y(n as

(L) ~ vﬁzgﬁg¢<sf’<t>)<%,w — (K + mgfkgw@;"(t))(vr{,w — (KO, 5
I s

where the averaging was taken under the assumption that the membrane potential is independent of the gating
functions. This assumption simplifies the mean-field calculations though it may not give a true averaging. Assume
that during UP states neurons fire at frequency f,, we obtain
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Figure 4. Network activity obtained for sparse-Gaussian and sparse-log-normal weight distributions. (A)
Membrane potentials of two excitatory neurons and two inhibitory neurons are shown for a sparse-Gaussian
weight distribution parameterized as v = 0.1 and o, = 10. (B) Membrane potentials of two excitatory and two
inhibitory neurons are displayed for a sparse-log-normal weight distribution with parameters ;= 0.1 and

og=10.
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Next, we calculate the effect of SFA defined in Eq. (2). By averaging uy(f) with given postsynaptic firing rate f;,
we have
(ux(0) = a,((K(®) = W) + b7 f;- (17)

As explained previously, in order for neurons to support UP-states, the pre-synaptic firing rate should equal the
post-synaptic firing rate, i.e., f, =f, (=f). Then, from Eqgs (10), (15) and (17), we conclude that the system has UP
states when the equation

f=F(f) = FI () — ux(P)] (18)

has a non-trivial solution to f. The existence of the solution to f implies that the system allows output from a
neuron to balance with its input. Intuitively, balance between the average output and average input of excitatory
neurons implies that these neurons support and stabilize mutual excitation among them in their population, as
all neurons are simultaneously pre-synaptic and post-synaptic to other neurons. Here F is the function defined
in Eq. (10). Equation (18) is illustrated in panels (B)-(D) in Fig. 5 for three values of 7 and the mean membrane
voltage (Vx) = —55mV during UP states.
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Figure 5. Mean-field analysis of UP-DOWN transition. (A) The frequency response of gating functions of
different synapses is calculated by numerical simulations of the network models (symbols). Curves represent
the predictions by Eq. (14). (B-D) Schematic illustrations of the mean-field analysis quoted in Eq. (18) with
parameters for different scenarios. Blue curves: function F’ defined in Eq. (18) as a function of f. Red curves:
self-consistent constraint. Shaded areas: regions for negative frequencies. (E) Comparisons of critical ~; for
sustainable UP states between predictions by mean-field analysis and simulations for given ~/’s at different SFA
levels.

The three diagrams shown in panels (B)-(D) in Fig. 5 were used for searching sustainable UP states iteratively.
In reality, the values of 4 and 7; are correlated in the neural network, but here we vary these quantities inde-
pendently for the illustration purpose. Note that negative frequency is included in the axes to illustrate how the
fixed-point solution to Eq. (18) is solved, which makes mathematical sense, but not biological. Same for the range
of the axes, it was the range to search for existence of the fixed-point solution only. It does not imply all values
showed in the axes are relevant.

In Fig. 5(B), both excitatory activity and inhibition activity are weak, and there is only a trivial fixed point and
UP states do not exist. In Fig. 5(C), excitatory activity is larger than that in Fig. 5(B) and there is an additional
fixed point, but this state is unstable. Therefore, the network can only sustain a transient UP state for a short
period of time. If we further increase excitatory activity, the mean-field analysis gives the diagram shown in
Fig. 5(D), which has a non-trivial fixed point corresponding to a self-sustainable UP state. Thus, we can determine
the conditions for 3 and ; to have transient UP states and self-sustainable UP states.
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Figure 6. Statistics of UP-DOWN cycle for sparse-log-normal weight configurations. (A) The average duration
of UP-states is shown for various values of 3 and ; at b, =50 pA in a sparse-log-normal network of size
Ng=1000. The upper dashed curve is the predicted boundary from the mean-field analysis for self-sustainable
UP states, while the lower dot-dashed curve is the predicted boundary for the presence of the slow oscillations.
Sparse-log-normal random connection weights have the fixed variance of o7 = 1. (B) The average duration of
UP states at b, =200 pA is shown for various values of connection weight factor v and excitatory variance oy in
a network of size Ny =1000. (C) An example of the membrane trace is shown, which showed a sequence of
transient UP states. Parameter values were set as N;= 1000, y=0.11 and oy =12.0. (D) Distributions of the UP-
state duration of transient UP states normalized by the average UP-state duration are shown for oy =12.0
(green) and o = 8.0 (blue). Black curve shows the experimental result reported in*. Reprinted by permission
from Macmillan Publishers Ltd: Springer Nature. Nature Neuroscience. Spontaneous persistent activity in
entorhinal cortex modulates cortico-hippocampal interaction in vivo, T. T. Hahn et al., copyright (2012).
Parameter values were set as a,=4.0nS, b,=50.0nS and y=~;=~,=0.1.

In Fig. 5(E), the critical value of 7 necessary for supporting a self-sustainable UP state was calculated analyt-
ically and numerically for given values of ; at different levels of SFA. The analytic results are well consistent with
the simulation results for relatively small b,’s. For larger b, the prediction cannot be so accurate due to the fixed
choice of (V). However, the mean-field analysis can still well predict the dependence of 43 on both 4, and b,.

Statistics of UP-DOWN Cycles. UP-DOWN transitions can show different characteristics in different cor-
tical areas, presumably reflecting certain differences in the underlying network structure?. We therefore compared
the stability of UP states and the average duration of repeated UP-states between recurrent networks with the
different types of random connection weights. Numerical simulations were conducted for either Ny = 1000 or
2000. In Fig. 6(A), we find that the average duration of UP states is primarily determined by a balance between the
average strength of excitatory and inhibitory connections (i.e., by the ratio between the connection weight factors
~g and ;). The UP states abruptly change from transient ones (deep blue area) to self-sustainable ones (red area)
around a boundary specified by a liner function of 4 and ~;. The boundary approximately coincides with the
boundary for self-sustainable (almost continuous) UP states predicted by the mean-field analysis. Transient UP
states correspond to the slow-oscillation state while self-sustainable UP states are thought to represent the resting
state of cortical neurons in awake animals®.

We investigated the conditions to have a self-sustainable UP state and found that such a state likely exists if
Y (=7 =77 2 0.12for N;=1000 or if (=~ = 7;) 2 0.06 for Ny =2000 in all the three connection types. For
instance, the former value is given as an intersection between the upper boundary curve and line ;= in
Fig. 6(A). On the other hand, the average UP-state duration was not very sensitive to weight variance oy
(Fig. 6(B)). We note that since the summations in Eq. (15) scales as N, the critical value of connection weight
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factor scales as 1/Ny, in our mean-field analysis (see the previous sub-section). A similar scaling rule applies to the
variance o7, which scales with m . In Fig. 6(B), the boundary of sustainable UP states (y 2 0.12) predicted by
the mean-field theory is valid for o < 12 when N = 1000, but the mean-field theory only works for o3 < 14 when
Ng=2000 (see Supplementary Fig. S3(C)). Other network models with log-normal random connection weights
(see Supplementary Fig. S1) and sparse-Gaussian random connection weights (see Supplementary Fig. S2) also
show similar phase diagrams. Thus, the detailed statistical properties of connection weights did not strongly
influence the macroscopic network dynamics studied here.

It has been shown that the layer 3 of the medial entorhinal cortex (MECIII) shows prolonged UP states that
can persist up to several cycles of slow-wave oscillations, whereas in the layer 3 of the lateral entorhinal cortex
(LECIII) UP states only persist within single oscillation cycles*. Thus, different cortical areas can exhibit signifi-
cantly different temporal profiles of UP states, presumably reflecting certain differences in the underlying network
structure. We therefore investigated how the temporal profiles of UP-DOWN transitions vary with the choice of
connection weights. When the connection weight variance o is sufficiently large, UP-DOWN transitions in our
models display highly irregular temporal profiles resembling persistent UP states in MECIII (Fig. 6(C)).
Accordingly, in all the weight distributions, the distribution of UP-DOWN-cycle duration exhibits multiple peaks
for relatively large values of o whereas the distribution only has a single peak, as in LECIII, for smaller values of
o (Fig. 6(D) and Supplementary Fig. S4). In these simulations, the durations of UP-DOWN-cycle were presented
in the unit of the average UP-DOWN cycle duration for given set of parameter values. The definition of
UP-DOWN cycle duration was the sum of durations of an UP state and a consecutive DOWN state. The proba-
bility density function is the derivative of the cumulative distribution of UP-DOWN cycle durations of all excita-
tory neurons in the network. We found that the connection weight factor did not significantly modulate variability
in the temporal profiles of UP-DOWN transitions. Thus, our results suggest that the variance in connection
weights, but not their average, influences the temporal variability of UP-DOWN transitions.

It is noticed that the UP-DOWN-cycle durations were clearly discretized in experiment, while such a ten-
dency was only poorly expressed in our simulations for all the connection weight configurations (Fig. 6(D) and
Supplementary Fig. S4). The reason for this discrepancy between the models and experiments remains unclear.
The discrepancy might be due to a slight difference in the definition of normalized UP-DOWN-cycle duration
between the models and experiment, in which the UP-DOWN-cycle duration was normalized by the average
duration of UP-DOWN cycles in the neocortex*. However, this is unlikely because the difference in the unit time
would not eliminate the discretized nature of the distribution. Rather, the discrepancy may reflect certain influ-
ences of external input to the local cortical circuits, which was simply modeled as Poisson spike trains in the pres-
ent study whereas the UP-DOWN transitions in MECIII were correlated with those in other cortical networks
(LECIII and neocortex). Alternatively, the discrepancy may be due to the complexity of local cortical circuits that
was also not modeled here. In this work, the causes of the discrepancy will not be further explored.

Statistics of Irregular Neuronal Firing.  Spike trains during UP States are highly variable in all the three
networks. To see this, we calculated Fano factors of spike trains during UP-states repeated in each network as a
function of v and oy, (Fig. 7(A)), where Fano factor is defined as the variance of spike counts over the repetition
divided by the average spike count. Fano factor was introduced by a physicist®!. Fano factor is now widely used
in Neuroscience as a measure for spike-timing variability. Here, the Fano factor is calculated on a set of spikes
in which inter-spike intervals overlapping with DOWN states are eliminated. We calculated Fano factors in the
region of parameter space in which UP states occur. The Fano factors presented are the average of all excitatory
neurons in the network.

In simulations, we found that Fano factor depends primarily on the connection weight factors and abruptly
becomes small as the value of 7y is increased. The critical value of y coincides with the boundary for sustainable UP
states predicted by the mean-field analysis. In contrast, Fano factor does not significantly depend on the weight
variance. Interestingly, the regions in the parameter space giving large Fano factors mostly exclude the regions
for larger UP-state durations (c.f. Fig. 6(B)). This implies that spike trains are more variable during repeated UP
states when these states have shorter average duration. We note that the different types of random connection
weights show similar results (see Supplementary Figs S5(A) and S6(A)). Below, we examined whether this result
has implications for cortical memory processing during the slow-wave sleep.

Repetition of Rate-Coding Neural Ensembles during UP states. We found that the recurrent net-
works activate a set of cell assemblies during UP states, where a cell assembly is defined as a group of neurons
that are synchronously active in a certain time window. As cell assemblies are thought to play a pivotal role in
memory processing, we analyzed the instantaneous patterns of simultaneously activate neurons. Sampling the
firing rates of neurons at 20 Hz, we calculated the time series of population rate vectors over non-overlapping
sliding time windows of 200 ms. The vectors of population firing rates throughout the simulation formed a data
matrix D of which columns are the instantaneous firing rates of all excitatory neurons at different times and rows
represent the time series of firing rates of single neurons. A data clustering technique namely non-negative matrix
factorization (NMF) is applied to search for best approximated matrix product to approximate the data matrix,
i.e. DA~ BC?. This technique is suggested to be a generalized k-means method™. The order of the factorization, i.e.
number of columns of matrix B, is determined by Akaike’s information criterion with second order adjustment
(AICc)*. The separation chosen by AICc is the result with least information loss. The orders of NMF for different
combinations of parameters are shown in Fig. 7(B) for sparse-log-normal random connection weights. Similar
results are shown for log-normal random connection weights and sparse-Gaussian random connection weights
in Supplementary Figs S5(B) and S6(B), respectively. Two examples of column vectors of matrix B are plotted
in Fig. 7(C), which can be interpreted as a co-activated firing pattern detected by NME The corresponding row
vectors in matrix C are shown in Fig. 7(D), which can be interpreted as the activation of the pattern.
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Figure 7. Cell-assembly structure of UP states in sparse-lognomal networks. (A) Fano factors measured at
different parameter values for sparse-log-normal connection weight distributions. Parameter: c. (B) Optimal
NMF order detected by AICc within the same parameter range used in (A). (C) Two examples of the ensemble
activity patterns during transient UP states detected by NMF are displayed. The firing rates are only shown

for 100 neurons selected randomly from the network. (D) Occurrence of the two patterns extracted by NMF

is shown during repeated UP states. Parameters for (C and D): Ny = 1000, 1= =0.1 and oy =5.0. (E) The
optimal number of patterns is plotted against the average transient-UP-state duration. (F) Correlations were
calculated between the original and normalized NMF orders and logarithms of the average transient-UP-

state duration. Asterisks: p-values for the significant levels of the negative correlation coeflicients. *p < 0.05.
#kp < 0,01, *¥%p < 0.001.

The NMF order is negatively correlated with the average UP-state duration in all the three networks (Fig. 7(E)
and Supplementary Fig. S7), as verified quantitatively in Fig. 7(F) together with the NMF order normalized by
the total UP-state duration during multiple UD cycles. Here the correlations are calculated base on the data point
shown in Figs 7(E), and S7 respectively. These results imply that neural population exhibits the repertoire of
activity patterns mostly in the initial phase of UP states (within a few hundred milliseconds from the onset of UP
states). In other words, a prolonged UP state repeatedly activates a similar set of cell assemblies without adding
novel activity patterns with the time passage. This result is reasonable because the repertoire of activity patterns
is primarily determined by the spatial configuration of synaptic connections, which remains unchanged during
the individual UP states. Further, the repetition of similar cell assemblies is likely to be necessary for long-term
memory consolidation, which is thought to occur during slow-wave oscillation.

We further analyzed whether different temporal profiels of UP-DOWN cycles have any implication for the
activation of multiple cell assemblies. In the sparse-lognormal network shown in Fig. 7(D), the activation traces
of two example cell-assembly patterns are highly correlated and their peak activation times within each UP state
are only slightly different. However, the magnitude of oy, can affect the coactivation patterns of multiple cell
assemblies as it extensively modulates the UP-DOWN cycle (see Fig. 6(D) and Supplementary Fig. S4). We there-
fore increased the value of o}, to obtain irregular UP-DOWN cycles with more-frequent prolonged UP states
(Fig. 8(A)). Interestingly, the activation traces of two NMF-extracted cell-assembly patterns are less correlated
compared to the previous case, especially during prolonged UP states (Fig. 8(B)). Results for different network
configurations are summarized in Fig. 8(C-E), in which the average temporal correlation across different pairs of
patterns is negatively correlated with . Since larger oy on average results in longer UP states (Fig. 6(D)), these
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Figure 8. Relation between pattern activation correlation and 0. (A) Membrane potential of an excitatory
neuron is shown in a sparse-log-normal network. The parameters were set as: Ny = 1000, y=0.12 and oy =12.0.
(B) Activation trace of two example NMF-extracted patterns are presented for the simulation shown in panel
(A). (C-E) Average correlations across NMF-extracted patterns are shown in random networks with log-
normal, sparse-Gaussian and sparse-lognormal connection weights. The network size Ny =1000.

results show a negative correlation between UP-state duraion and coherence among cell assemblies are during
prolonged UP states. Because the decreased temporal coherence resulted from the increased alteration of cell
assemblies, prolonged UP states imply an enhanced alteration among cell assemblies. This network behavior
predicted by our model may be of functonal importance for binding together the activities of neurons for cortical
memory processing.

Discussion

Model-independent Features of Macroscopic Network Behavior.  In this study, a family of networks
of spiking neurons were used to investigate the dependence of slow-oscillatory network behavior on the distribu-
tions of random connection weights. A neuronal model based on adaptive exponential integrate-and-fire model'
with a finite refractory period was employed. Compared to the well-known leaky-integrate-and-fire model, this
model is complex enough to generate temporal profiles of the membrane potentials comparable to those of corti-
cal neurons>**. Nevertheless, this model is less complicated than the Hodgkin- Huxley model®*, for which sim-
ulations of a large-scale network would consume too much computational power. In addition, the neuron model
used in this study does not have bi-stability, allowing us to focus on the properties of neural dynamics originating
from various network configurations.

In comparison with the previous studies on networks of neurons connected with sparse recurrent connec-
tions'®"3, this study considered a broader class of connectivity. Three classes of random connections were con-
sidered, that is, fully-connected log-normal random connection weights, sparse-Gaussian random connection
weights and sparse-log-normal random connection weights. Although the fully-connected neural network is
unrealistic, it was studied for comparison to sparse neural networks. For fair comparisons, we chose the param-
eter values of different distributions such that their means and variances took approximately the same values.

While the mean strength of connections is crucial for the occurrence of UP states and variability in spike trains
(Fano factor) during the UP states, the variance of weight distributions is influential on the existence and variety
of persistent UP states (Fig. 6(D)). In contrast, our results suggest in a wide range of parameter values that neither
the detailed profiles of weight distributions nor the higher moments of these distributions are important for any
macroscopic network behavior studied here (Fig. 6(B), and Supplementary Figs S1(B) and S2(B)). For example, in
Fig. 6(B) the critical connection strength -y takes similar values in a wide value range of the variance, which agrees
with the prediction of the mean-field analysis, as verified in Fig. 6(A) and illustrated in Fig. 5(B-D). This result
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suggests that the network configuration can modulate the temporal patterns of the UP-DOWN transition, but
only the average strength of connections is important for the emergence of UP-DOWN transition. Nevertheless,
the propagation of spatiotemporal spiking patterns during UP-state transitions is potentially model-dependent
due to different connection configurations. However, such an analysis was not attempted in this study because it
requires a methodology that offers a higher temporal resolution than the NMF method, which was applied to the
spatiotemporal patterns of firing rate.

Persistent UP States in Network Models and MECIII.  As shown in Figs 3 and 4, our model generates
the membrane potential traces comparable to those observed in experiments***. Driven by Poisson-spike trains,
the membrane potentials of model neurons oscillate at an average frequency of ~1 Hz, as in experiment. However,
there is some discrepancy between experiments and simulations in the statistics of UP-DOWN cycles (Fig. 6(D)).
Experimental results from MECIII shows a clear multimodal trend in the cumulative distribution of UP-DOWN
cycles, but such a tendency is less obvious in the results of our modeling study.

The actual cause of this discrepancy remains unclear. However, a possible cause is that the MECIII network
interacts with LECIII and neocortical areas to receive oscillatory driving inputs. This could be speculated from
correlations in slow oscillatory activity between MECIII and these areas®. In this case, the onsets of UP-DOWN
cycles are expected to be phase-locked among these areas. However, because our network models did not receive
such input and were merely driven by Poisson-spike trains, the cumulative curves would not show clear multi-
modal trends.

Our analysis based on NMF of neural population activity suggest that each UP state repeats an approximately
identical set of ensemble activity patterns without increasing the repertoire of patterns (Fig. 7(E)). This result is
interesting because it implies that MECIII may consolidate long-term memory more robustly than LECIII by
utilizing prolonged UP states. Especially, our results suggest that the activation of different cell-assembly patterns
is less temporally correlated and the dominant patterns switch more often in such networks as support longer UP
states (Fig. 8). This result implies that the cortical region MECIII, which shows prolonged UP states, may retrieve
cell-assembly patterns in a manner different from that of LECIII. In reality, however, ensemble activity patterns
may slowly vary through synaptic plasticity during the repetition of UP states, so the above prediction of the
models should be interpreted with some limitation. This result suggests that network configurations affects the
occurrence probability and behaviors of slow oscillations, which will further affect information processing during
slow oscillations. These functional implications of persistent UP states should be further clarified experimentally
and computationally.

Validity of Mean-field Approach. Mean-field analysis was developed as an approach in the statistical
mechanics to spin systems such as Ising models®”, and has been applied to various random neural network mod-
els*®*. A crucial assumption of the mean-field analysis is that the network structure should be homogeneous.
Because the connectivity used in the current models is random and uniform, a mean-field approach should be
sufficient for studying their steady states. So, the mean-field analysis enabled us to derive the stability conditions
for active network states in terms of the average firing rate of neurons (Fig. 5(B-D)). However, these results
are not necessarily valid for the stability of random neural networks of spiking neurons because such networks
generally have dynamical states for which a rate description is inaccurate (e.g., synchronously firing states). For
example, in Fig. 5(D), if the fluctuation of instantaneous firing rate is very large, the firing rate of neurons can
easily drop to a small value and the UP state cannot be sustained for a long time, implying that the UP state may
not be “self-sustainable”. Nevertheless, the actual discrepancy between the analytical and numerical results is not
significantly large in the present study (Fig. 5(E)).

One may query whether the mean-field analysis require all neurons in the brain to fire at the same firing rate.
In the calculation, the synaptic current is effectively a sample sum of neurons with different firing rate. Also,
the synaptic current used in Eq. (18) is also an average among all neurons. So the mean-field analysis looks for
conditions that average output firing rate matches average input firing rate to make UP-state transition possible.
Further, since neurons are mainly connected with its neighboring neurons in the same column, the condition we
obtained in this study is mostly a local condition rather than a global condition in the brain.

An interesting implication of our mean-field analysis is that the conditions for the neuronal network to sup-
port self-sustained UP states and transient UP states are mostly independent of the types of random connection
weights. In simulations, we found that the mean-field analysis well predicted the macroscopic network behavior
in a considerably large range of the variance of random connection weights. Not only the conditions for the
sustainability of UP-states, but also the UP-state duration (Fig. 6, and Supplementary Figs S1 and S2) and Fano
factors of spike trains during the UP states (Fig. 6(E), and Supplementary Figs S4(A) and S5(A)) are qualitatively
independent of the types of random connection weights. Although these results are yet to be confirmed in larger
neural networks, the results were qualitatively unchanged when the network size was doubled in the present
study.

Relations to previous modeling studies. A network model of spiking neurons was previously proposed
to address the biological mechanism of two-state membrane potential fluctuations'?. The authors used biologically
realistic conductance-based neuron models to study the neural mechanisms to maintain excitation-inhibition
balance during slow oscillation***! and the effects of pharmacological manipulations on collective network
behavior. For these purposes the choice of realistic neuron models is essential. In contrast, our model consists
of adaptive exponential leaky integrate-and-fire neurons'®, which are not realistic enough to study the effects of
pharmacological manipulations. However, this neuron model is simple enough for mathematically analyzing
the influences of the E-I ratio, strength of SFA, critical value of v and weight variance on the self-sustainability of
UP states. In biological systems, some of these parameters may change according to the brain state. For example,
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changes in extracellular chemical concentrations such as calcium*~* can change the firing patterns of neurons,

which may in turn changes the effective E-I ratio in cortical networks. The present results enrich our knowl-
edge on which network configurations may or may not affect the characteristics of UP states and UP-DOWN
transition.

A network model consisting of plastic synapses and spiking neurons was constructed to examine the
activity-dependent self-organization and maintenance of excitation-inhibition balance's. The model suggested
that some excitatory synapses are selectively strengthened but the remaining majority are down-scaled during
the repetition of UP states. Synaptic downscaling or synaptic homeostasis has been hypothesized as the role of
NREM sleep in learning®®. However, accumulating evidence suggests that NREM sleep promotes the selective
strengthening of synapses and the creation of new synapses in an experience-dependent manner**-*. Refinement
of synaptic connections and its effects on slow-wave oscillatory activity were also recently studied in a large-scale
model of visual thalamocortical circuits*’. Although the present model does not include modifiable synapses and
hence tells nothing about these issues, some of the predictions, in particular the recurrence of similar ensemble
activity patterns during each UP state, has implications for the understanding of effects of NREM sleep on mem-
ory consolidation.

Local cortical circuits are known to be highly non-random®*-**. A computational model suggested that clus-
tered synaptic connections make the temporal profile of slow oscillatory activity highly variable'. Our results
propose a simpler account for such a variability when the variance of synaptic weight distributions is sufficiently
large. In such a case, different levels of variability can be obtained for different levels of the variance of random
connection weights (Fig. 6(D)). However, the two mechanisms are not mutually exclusive, and both of them in
reality may contribute to the recurrence of highly variable temporal patterns during slow oscillatory activity. It is
intriguing to study the bistable network behavior when synaptic connections with a large weight variance have a
clustering structure®.

Biological implications of our findings. In this paper, we presented numerical and analytic results on the
dynamics of UP states and UP-DOWN transitions in randomly-connected recurrent neural networks with var-
ious distributions of connection weights. Conditions for generating transient UP states and self-sustainable UP
states were analytically derived and confirmed by numerical simulations. These results provided a comprehensive
picture of the dynamical phenomena regulated by excitatory connections, inhibitory connection, spike-frequency
adaptation and slow oscillatory activity. The emergence of UP states, at least in the current model, does not qual-
itatively depend on the higher-order statistical features of neuronal wiring. Our results suggest that UP-DOWN
transitions occur robustly for a wide range of weight configuration, as far as the mean and variance of connection
weight distributions are given in adequate ranges.

Some network configurations give highly irregular UP-DOWN transition cycles together with prolonged
UP-state durations. While the temporal profiles of UP-DOWN cycles are insensitive to variations in weight
distribuion, a large variance of connection weights may produce irregular UP-DOWN cycles similar to those
reported in Hahn et al.*. Our model suggests that the emergence of continous UP-states in MECIII, but not in
LECIIL, is due to different variances of connection weights in the two regions. Further, our model suggests that
cell assemblies are evoked differently during UP states in networks with different variances of connection weights.
Evoked cell-assembly patterns change more frequently in networks with larger variances of connection weights.
All together, our results suggest that cell-assembly dynamics of MECIII and LECIII are different during memory
consolidation.
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