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ABSTRACT
Background. Milk is a complicated chemical mixture often studied through macronu-
trient concentrations of fat, protein, and sugar. There is a long-standing natural history
tradition describing interspecific diversity in these concentrations. However, recent
work has shown little influence of ecological or life history variables on them, aside
from maternal diet effects, along with a strong phylogenetic signal.
Methods. I used multivariate phylogenetic comparative methods to revisit the ecologi-
cal and life history correlates of milk macronutrient composition and elaborate on the
nature of the phylogenetic signal using the phylogenetic mixed model. I also identified
clades with distinctive milks through nonparametric tests (KSI) and PhylogeneticEM
evolutionary modeling.
Results. In addition to the previously reported diet effects, I found increasingly
aquatic mammals have milk that this is lower in sugar and higher in fat. Phylogenteic
heritabilities for each concentration were high and phylogenetic correlations were
moderate to strong indicating coevolution among the concentrations. Primates and
pinnipeds had the most outstanding milks according to KSI and PhylogeneticEM,
with perissodactyls and marsupials as other noteworthy clades with distinct selection
regimes.
Discussion. Mammalian milks are diverse but often characteristic of certain higher
taxa. This complicates identifying the ecological and life history correlates of milk
composition using common phylogenetic comparativemethods because those traits are
also conservative and clade-specific. Novel methods, careful assessment of data quality
and hypotheses, and a ‘‘phylogenetic natural history’’ perspective provide alternatives
to these traditional tools.

Subjects Anthropology, Ecology, Evolutionary Studies, Zoology, Nutrition
Keywords Phylogenetic comparative methods, Maternal energetics, Nutrition, Multivariate
statistics, Parental care, Mammal, Life history

INTRODUCTION
Patterns of animal parental care reflect the diversity of their life histories and adaptive
solutions to ecological challenges (Clutton-Brock, 1991). Obligate provisioning of infants
by adult females with mammary milk secretions is an ancient and unique aspect of
all mammalian life histories. Milk is a complex mixture of chemicals with nutritional,
immunological, and hormonal signaling functions (Power & Schulkin, 2016), which can
change across different phases of maternal care (Langer, 2008).

Many hypotheses have been proposed to explain differences in milk composition
among mammals (Ben Shaul, 1963; Oftedal & Iverson, 1995), but they often have limited
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taxonomic scope or explanatory power. Recently, a comprehensive analysis of all available
high-quality milk macronutrient data (percentages of fat, protein, and sugar) identified
a strong phylogenetic signal in milk composition and limited ecological and life history
covariates (Skibiel et al., 2013). Additional details of the structure of this phylogenetic signal,
such as early burst diversification versus Brownianmotion,were not addressed (e.g.Harmon
et al., 2010). Moreover, as in nearly all previous research on milk composition, each
component was treated separately with univariate regression modeling. Both shortcomings
are understandable given the rapid, recent development of multivariate phylogenetic
comparative methods(Adams, 2014; Adams & Collyer, 2018) and techniques for describing
phylogenetic signal (Hardy & Pavoine, 2012; Cornwell et al., 2014; Keck et al., 2016; Bastide
et al., 2018).

Multivariate analysis of milk composition is desirable for several reasons. First,
multivariate statisticalmethods are generally of higher power and can accurately account for
correlations among the milk components with or without ecological predictors (Vargason
et al., 2017). Second, there are strong arguments for a physiological and biochemical basis
for coevolution among milk macronutrient concentrations. For example, the main milk
sugar lactose draws water from blood into the mammary lumen resulting in higher volume
but dilute milks (Shennan & Peaker, 2000). The fattiest milks, as seen seals, have little to
no sugar and much less water than terrestrial mammals (Eisert, Oftedal & Barrell, 2013).
Genetic correlations among macronutrient concentrations are also well described in dairy
animals. For example, the correlation between protein and fat concentration is strongly
positive (≈0.8; Analla et al., 1996; Othmane et al., 2002), mostly likely due to pleiotropic
effects of alleles for genes that influence each trait. Third, macronutrient concentrations
maybe be related through substitution to accomplish a similar nutritional goal. At least in
some taxa, intraspecific and within-individual variation often shows compensatory shifts
in fat versus sugar concentration such that the energy content remains stable (Power et al.,
2008;Whittier et al., 2011).

Finally, many authors have recognized macronutrient compositions covary, such as the
low-fat, high-sugar milks of most primates and perissodactyls versus the aforementioned
high-fat, low-sugar milks of seals (Ben Shaul, 1963; Martin, 1984; Oftedal & Iverson, 1995;
Hinde & Milligan, 2011). Moreover, the covariation and phylogenetic clustering were
self-evident in visualizations either when simply decorating the tips of a phylogeny or in
phylomorphospace plots (Sidlauskas, 2008) of the concentrations (Fig. 1). The later of
these can be particularly illustrative when components were constrained to sum to 100%
as in the right-angle mixture model of nutritional geometry (Raubenheimer, 2011).

There were twomajor goals of this paper. First, I further described the phylogenetic signal
in milk macronutrient concentrations through univariate and multivariate statistics and
visualizations. These were intended to describe the overall pattern of phylogenetic signal
(e.g. Brownian motion v. early burst) and identify clades with quantitatively distinctive
macronutrient concentrations. Second, I usedmultivariate phylogenetic regression to revisit
the results of Skibiel et al. (2013) and tested for ecological predictors of milk composition
while estimating the phylogenetic and residual covariance among macronutrients.
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Figure 1 Nutritional geometry of milk as phylomorphospace filling. (A) Raw percentages (g/100 g)
of protein and fat are plotted. (B) Percentages out of a sum of fat, protein, and sugar totaling to 100 are
shown on the right. Dotted isoclines of sugar concentration are given every 25% in the with the highest
percentage from sugar closest to the origin. Triangles are aquatic species in both panels.

Full-size DOI: 10.7717/peerj.8085/fig-1

MATERIALS & METHODS
All data were initially taken from the supplementary material provided by Skibiel et al.
(2013). I made a handful of alterations to the milk concentration database to ensure its
quality. A simple check for quality is regression of dry matter concentration against the
sum of fat and protein or fat, protein, and sugar (Oftedal & Iverson, 1995). Large outliers
from this regression were inspected and fixed with values from the original publications
(Myotis velifer dry matter, Arctocephalus gazella all measures) or removed altogether where
it was also inconsistent (Thylogale billardierii, Perameles gunnii, Notomys cervinus, and
N. mitchelli). For Leptonychotes weddellii, new data including a sensitive assay of sugar
were available (Eisert, Oftedal & Barrell, 2013). For the three Papio species with differing
ecological data but the same milk composition, I used only Papio anubis which is one of
the two species from which the milk data were derived (Roberts, Cole & Coward, 1985) and
is very similar ecologically to P. cynocephalus. Further augmentation of the database with
more recent publications was not necessary to meet the goals identified above. I used an
ordinal coding of aquatic adaptation to try and more sensitively capture this feature than
the binary coding of Skibiel et al. Three species (Neovison vison, Castor fiber, Alces alces)
were categorized as partly aquatic, three families as mostly aquatic (Ornithorhynchidae,
Phocidae, Otariidae), and cetaceans were the only group categorized as completely aquatic.

For phylogenetic analyses, I used a set of 1000 mammalian trees (Faurby & Svenning,
2015). I matched names by hand between the dataset where nomenclature differed using
GenBank’s taxonomy for preferred names. The trees were trimmed to the 124 species
or subspecies in the dataset with the drop.tip() function from the geiger package
(Pennell et al., 2014). After trimming only 209/1000 trees were unique indicating some
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phylogenetic uncertainty, but analysis was performed using a single consensus tree from
the set computed with TreeAnnotator (Drummond et al., 2012). Continuous predictors
were log10-transformed to reduce skew and centered by subtracting their means to ease
interpretation of intercepts in regression models. Milk macronutrient concentrations
were logit-transformed to accurately account for their [0-1] boundaries as proportions.
While macronutrient concentrations have traditionally been analyzed on a log scale
or untransformed (Ben Shaul, 1963; Martin, 1984), this approach is usually considered
inappropriate when proportions are outside the 0.2–0.8 range (Warton & Hui, 2011;
Schmid et al., 2013; Chen et al., 2017). All data manipulation and analysis were carried out
in R (R Core Team, 2018). Alternatives such as beta regression or logistic generalized linear
mixed models (GLMM) have not been adapted for the types of complex multivariate
phylogenetic analysis desired here.

I used the MCMCglmm R package to explore a trivariate (fat, protein, sugar
concentrations) phylogenetic mixed model (Hadfield, 2010). The suite of milk
concentrations is predicted by the ecological variables used by Skibiel et al., while
accounting for phylogenetic relatedness. This multivariate approach should be higher
power to detect associations and it provides a phylogenetic variance–covariance matrix
(VCV) that describes the coevolution of the concentrations under Brownian motion (BM).
The variables include the aquatic habitat (noted above) and others as used by Skibiel et
al.: arid habitat (binary), maternal body mass, adult diet coded categorically as carnivore,
omnivore, herbivore, relative duration of lactation as the ratio of lactation length to the
sum of gestation and lactation lengths, reproductive output as the ratio of litter mass and
female mass, and an ordinal code for developmental stage at birth (precociality).

To identify clades with quantitatively distinctive milk composition I used the univariate,
rank-based test introduced by Cornwell et al. (2014) and implemented in their R package
ksi. This is an inherently phylogenetic test for clade distinctiveness that works by comparing
the frequency distribution of a trait with and without a clade through a sample-sized scaled
Kolmogorov–Smirnov test. The iterative algorithm identifies a series of clades of declining
distinctiveness and reports ambiguity among neighboring nodes which may be the most
recent common ancestor of the distinctive clade. For the milk composition data, I also
adapted the package’s R code to allow for bivariate and trivariate versions of the test relying
on the Peacock.test R package (Xiao, 2017). This allows testing clade distinctiveness of trait
pairs (e.g., Fat-Protein) and the full set of all three concentrations (Fat-Protein-Sugar).

These rank-based tests were complemented with quantitative evolutionary modeling
implemented in the PhylogeneticEM R package (Bastide et al., 2018). This is a multivariate
phylogenetic method designed to detect instantaneous evolutionary shifts in sets of
correlated traits, which may correspond to the invasion of new habitats or evolution of
novel traits that characterize a clade. The method identifies clades that have different
stabilizing selection optima (θs) and quantifies strength of selection (a common α) for the
‘‘pull’’ of selection toward those optima. It is similar in scope to other packages such as
`1ou and mvSLOUCH, but it uses a more complex model allowing for trait correlations
(Bartoszek et al., 2012; Khabbazian et al., 2016). All R code for the analysis is provided as
an Supplemental Information 1.
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RESULTS
Graphical exploration
Correlations between concentrations of fat, protein, and sugar were clear in bivariate
plots (Fig. 1). The fat-protein relationship was simplest to display because there is less
missing data than sugar. There was also obvious phylogenetic clustering of species when
color-coded or when phylogenetic relationships were overlaid with inferred ancestral
states in a phylomorphospace plot. Constraining the three percentages to sum to 100
produces a right-angle mixture model of nutritional geometry, where sugar concentrations
are diagonal isoclines in the bivariate fat-protein plot. Unusual clades stood out in both
displays. Most notable were primates, perissodactlys, elephants, and some bats with low fat,
low protein, high sugar milks; pinnipeds with extraordinarily high fat, modest protein, and
low sugar content; cetaceans with high fat and protein and low sugar; and most marsupials
with modest fat, but high protein and sugar. Additional ecological variables also helped
interpret the scatter. Nearly all the species classified as aquatic by Skibiel et al. had high fat
and protein with low sugar concentrations.

Distinctive clades
Non-parametric statistical tests for the distinctiveness of these clades reinforced the
graphical patterns. The top 5 clades were tabulated but typically the importance statistic
drops off steeply from the highest-ranked clade (Table 1). In the univariate KSI tests,
pinnipeds and cetaceans were noted for high fat while perissodactyls and primates were
for low fat. The primate genus Eulemur was also identified for its further reduction in
milk fat. For protein, primates, perissodactyls and Pteropus stood out for their low values.
Ruminants or bovids + cervids were also flagged for protein which may reflect some
ambiguity in testing the cetacean node. Primates and pinnipeds were the most distinctive
clades for their opposing sugar concentrations, with a marsupial node, perissodactyls, and
Pteropus also flagged for high sugar concentrations. Bivariate and trivariate tests generally
corroborated these patterns.

Evolutionary modeling
Evolutionarymodelingwith PhylogeneticEM agreedwith the distinctiveness of these clades
and quantified the different selective optima for each. The best fitting number of selective
regimes was K = 6 with K = 7 another very good alternative by the package’s penalized
likelihood selection criterion (BGHml, Fig. 2). The regime shifts common to both solutions
were pinnipeds, primates, perissodactyls, otariids, and the phocid genus Mirounga. The
K = 6 and K = 7 solutions only differed in how they described selective regimes within
marsupials: with K = 6 marsupials were placed within a common regime, while with K = 7
diprotodonts and the diprotodont species Setonix were placed in separate regimes. For
either K = 6 or K = 7 multiple equivalent solutions were identified (degeneracy), but these
only differed in the order of shifts within pinnipeds (see Supplemental Information 1).

Selective optima (θs) were close to the average values seen within each clade (Fig. 3,
Table 2). The clade optima for primates, marsupials, perissodactyls and pinnipeds were all
deviations from the inferred root (12.01% fat, 7.62% protein, 3.56% sugar). Optima for
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Table 1 Distinctive clades from the Kolmogorov–Smirnov Importance (KSI) tests of Cornwell et al.
(2014).Well-known clades names are given with others left as number. See Fig. S1 for a phylogeny with
nodes labeled.

Node Rank KSI KSI/max Nodesets

Fat
Pinnipeds 1 3.268 1.000 Pinnipeds; nd12; arctoids; nd10; carnivores; phocids
Cetaceans 2 2.221 0.680 Cetaceans; whales
Perissodactyls 3 2.160 0.661 Perissodactyls
Primates 4 2.272 0.695 Primates; anthropoids; catarrhines
Eulemur 5 1.677 0.513 Eulemur

Protein
Primates 1 3.150 1.000 Primates; anthropoids; catarrhines; cercopithecoids
Perissodactyls 2 2.186 0.694 Perissodactyls; Equus; nd33
Pteropus 3 2.178 0.691 Pteropus; bats; nd71
Ruminants 4 1.906 0.605 Ruminants; bovids+cervids; bovids
Eulemur 5 1.565 0.497 Eulemur

Sugar
Primates 1 3.301 1.000 Primates; anthropoids
Pinnipeds 2 2.700 0.818 Pinnipeds; nd12; phocids
nd116 3 2.169 0.657 nd116; diprotodonts; nd114; nd113; marsupials; nd117
Perissodactyls 4 1.926 0.584 Perissodactyls; Equus
Pteropus 5 1.947 0.590 Pteropus; bats; nd71

Fat - Protein
Pinnipeds 1 3.396 1.000 Pinnipeds; nd12; arctoids; nd10
Primates 2 3.056 0.900 Primates; anthropoids; catarrhines; cercopithecoids
Perissodactyls 3 2.480 0.730 Perissodactyls
Cetaceans 4 2.237 0.659 Cetaceans
Pteropus 5 2.162 0.637 Pteropus; bats

Fat - Sugar
Primates 1 3.433 1.000 Primates; anthropoids
Pinnipeds 2 2.700 0.786 Pinnipeds; nd12
Perissodactyls 3 2.497 0.727 Perissodactyls
Bovids+cervids 4 2.390 0.696 Bovids+cervids
nd114 5 2.141 0.624 nd114; nd113; marsupials; diprotodonts; nd116

Protein - Sugar
Primates 1 3.653 1.000 Primates; anthropoids
Pinnipeds 2 2.700 0.739 Pinnipeds; nd12
Marsupials 3 2.395 0.656 Marsupials; nd113; nd114
Perissodactyls 4 2.276 0.623 Perissodactyls
Pteropus 5 2.147 0.588 Pteropus; nd71

Fat - Protein - Sugar
Primates 1 3.697 1.000 Primates; anthropoids
Bovids+cervids 2 2.846 0.770 Bovids+cervids
nd12 3 2.698 0.730 nd12; pinnipeds
Perissodactyls 4 2.447 0.662 Perissodactyls
Marsupials 5 2.292 0.620 Marsupials; nd113; nd114
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Figure 2 PhylogeneticEM number of selection regime (K) penalized likelihood criteria. K = 6 is the
best, though K = 7 is a good alternative.

Full-size DOI: 10.7717/peerj.8085/fig-2

Table 2 PhylogeneticEM selection regime optima forK = 6 clades. Values are back-transformed to raw
percentages (g/100 g).

Primates Marsupials Perissodactyls Pinnipeds Mirounga otariids

Fat 3.18224 6.83607 1.20587 59.78315 44.72456 43.04597
Protein 2.36287 7.95330 2.37018 7.97800 8.36046 10.83272
Sugar 7.18186 7.71032 6.06746 0.76505 0.00007 0.08824

otariids and Mirounga were additional deviations from the inferred pinniped optimum.
The overall strength of selection or ‘‘pull’’ to these optima is weak (α = 0.07) which
translates into a phylogenetic half-life of about 9.5 times the total height of the mammalian
phylogeny. Thus, the regime shifts can be thought of as instantaneous jumps to novel
values embedded in a process that is well approximated by Brownian motion.

Phylogenetic mixed model
Multivariate phylogeneticmixedmodel prediction ofmilk composition from ecological and
life history traits was largely consistent with results of Skibiel et al., despite removal of some
taxa from their dataset, recoding of aquatic habitat, and use of a multivariate technique to
incorporate correlations among the milk variables (Table 3). Increased carnivory resulted
in a large significant increase in fat concentration, a small non-significant increase in
protein concentration, and modest non-significant reduction in sugar concentration.
Increased lactation length also caused a large reduction in fat concentration. However,
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Figure 3 Clade shifts identified by PhylogeneticEMwithK = 6. Clades with different selection regimes
are marked with icons. Colored blocks for each concentration show departures from the root value for
each species on the logit scale. Missing data for sugar concentration were imputed from the Phylogenet-
icEM model for 15 species. See Table 2 for clade names and selection optima (θ).

Full-size DOI: 10.7717/peerj.8085/fig-3
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Table 3 Multivariate phylogenetic mixedmodel regression coefficients, credible interval andMCMC p-values. Regression coefficients are for
milk concentrations as logit-transformed proportions. Non-intercept P < 0.10 are in italics and P < 0.05 in bold.

Fat Protein Sugar

β CI P β CI P β CI P

Intercept −2.161 (−3.945,−0.317) 0.024 −2.347 (−3.448,−1.252) 0.000 −3.204 (−4.599,−1.805) 0.000
Arid (0/1) −0.190 (−0.507, 0.141) 0.255 −0.166 (−0.355, 0.022) 0.083 −0.019 (−0.345, 0.310) 0.925
Aquatic (ord.) 0.220 (−0.146, 0.621) 0.260 0.044 (−0.174, 0.268) 0.680 −0.376 (−0.734,−0.014) 0.049
Diet, omnivore 0.194 (−0.197, 0.570) 0.324 −0.029 (−0.248, 0.191) 0.797 0.089 (−0.277, 0.484) 0.648
Diet, carnivore 0.799 (0.226, 1.396) 0.007 0.162 (−0.173, 0.490) 0.326 −0.376 (−0.978, 0.289) 0.245
Female mass −0.049 (−0.262, 0.175) 0.652 −0.034 (−0.152, 0.090) 0.562 −0.103 (−0.298, 0.103) 0.313
Rep. output 0.150 (−0.178, 0.519) 0.372 0.167 (0.001, 0.344) 0.053 −0.246 (−0.624, 0.136) 0.199
Lactation length −0.901 (−1.621,−0.220) 0.013 0.105 (−0.269, 0.479) 0.595 0.398 (−0.443, 1.227) 0.338
Precociality (ord.) 0.066 (−0.127, 0.264) 0.500 −0.031 (−0.139, 0.088) 0.598 −0.039 (−0.234, 0.164) 0.703

Table 4 Multivariate phylogenetic mixedmodel phylogenetic (upper triangle) and residual (lower triangle) correlations with 95% credible in-
tervals. Phylogenetic heritabilities are on the diagonal. Correlations and heritabilities excluding zero from their credible interval are in bold.

Fat CI Protein CI Sugar CI

Fat 0.976 (0.934, 0.994) 0.675 (0.447, 0.815) −0.750 (−0.920,−0.464)
Protein 0.156 (−0.775, 0.688) 0.997 (0.980, 1.000) −0.473 (−0.70,−0.119)
Sugar 0.380 (−0.069, 0.994) 0.251 (−0.536, 0.898) 0.872 (0.680, 0.979)

novel patterns also emerged from the reanalysis. There was a nearly significant reduction
of protein concentration in arid-adapted mammals, and a nearly significant increase
with increasing reproductive output. Finally, increasing aquatic-adapted mammals had
significantly reduced milk sugar concentration. There was a non-significant trend for
increasing fat concentration with aquatic adaptation.

Phylogenetic heritabilities and correlations reaffirmed a strong phylogenetic signal
in milk composition (Table 4). All of the phylogenetic heritabilities were very high
(0.872, 0.976, 0.997). The phylogenetic correlations were all moderate to strong indicating
coevolution of concentrations. The fat-protein correlation was moderate and positive
(0.675), while fat-sugar was strongly negative (−0.750) and protein-sugar was moderately
negative (−0.473). Residual correlations were weaker and all included zero within their
credible intervals.

DISCUSSION
I used current comparative methods to describe the phylogenetic signal and ecological
correlates of milk macronutrient concentrations. The multivariate phylogenetic mixed
model results recover those from the previous analysis by Skibiel et al. (2013), especially
on the influence of diet and relative lactation length on milk fat and protein. However,
I also found statistical support for increasingly aquatic mammals having milk that this is
lower in sugar and higher in fat (cf. Oftedal & Iverson, 1995). Other non-significant trends
for reduction of protein concentration in arid-adapted mammals and increased protein
with higher reproductive output may be biologically meaningful. Finally, phylogenetic
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correlations indicate that all three concentrations have coevolved during mammalian
evolution history. Differences from the previous report could be due to different coding of
predictors (aquatic), more stringent data filtering, and the Bayesianmultivariate framework
adopted here.

In general, there were few ecological and life history correlates of milk macronutrient
composition with detectable statistical associations by these phylogenetic comparative
methods. This contrasts with long-standing characterizations of milks as finely attuned
to the reproductive ecology and maternal energetics of different mammalian clades
(Oftedal & Iverson, 1995; Ben Shaul, 1963). The other tools implemented here were more
consistent with these characterizations. Clades with distinctive milks (especially primates
and pinnipeds) were routinely identified with rank-based tests. This was corroborated with
statistical models that identified shifting selection regimes for each clade.

The disconnect between traditional phylogenetic comparative methods (PCMs)
as regressions that ‘‘control for phylogeny’’ (Freckleton, Harvey & Pagel, 2002) with
these distinctive clade and selection regime identification methods is striking. Because
mammalian life histories and ecology are fairly conservative, there are few independent
cases of mammals evolving similar ecological or life history traits that PCMs rely on
to identify associations. For example, true aquatic adaption is only found in cetaceans,
pinnipeds, and the platypus. PCMs are unlikely to identify statistical associations in this
case. In contrast, diet categories are more diverse within mammalian clades such that a
robust diet-milk fat association can be found by PCMs. While the success of traditional
PCMs capturing this association may be due to a strong causal biological mechanism,
failure to capture other hypothesized associations with precociality, or aquatic or arid
habitats should not be used as evidence against these ecological factors influencing milk
composition. Indeed, their authors advocate these newer methods as a ‘‘natural history
tool’’ that effectively complement graphical and other descriptive methods (Uyeda, Zenil-
Ferguson & Pennell, 2018). In particular, they are sensitive to clade-wide adaptations and
novel lineage-specific traits that traditional PCMs fail to capture.

The most dramatic of these contrasts in clades was between primates and pinnipeds.
These groups are well-known to have strikingly different strategies of infant provisioning
and growth rates (Power & Schulkin, 2016; Skibiel et al., 2013; Hinde & Milligan, 2011;
Langer, 2008;Oftedal & Iverson, 1995;Martin, 1984;Ben Shaul, 1963). Anthropoid primates
in particular have the lowest average growth rates among placental mammals and feed
infants ‘‘on demand’’ over a prolonged period of lactation where mother and infant
are in close proximity allowing for frequent nursing (Charnov & Berrigan, 1993; Case,
1978). Pinnipeds grow much more rapidly over shorter lactation periods. Rapid energy
transfer to infants is likely facilitated by maternal nutrient stores in blubber and, in some
habitats, strongly selected for by the thermoregulatory demands of cold ocean water.
Phocid mothers fast during very brief lactation periods while otarrid mothers forage and
nurse infants during rare visits over longer lactation periods that are short for their body
sizes (Sapriza, 2019; Schulz & Bowen, 2005). In both pinniped families, milk sugars other
than lactose predominate. This allows for their milk to have very little water because lactose
draws water into the mammary lumen (Shennan & Peaker, 2000).
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Perissodactyl milks are similar to those of anthropoid primates. While they share ‘‘on
demand’’ feeding with primates, the high lactose and thus water content of equid and rhino
milks are argued to be necessary for evaporative cooling of infants in hot environments
(Hinde & Milligan, 2011; Oftedal & Iverson, 1995). Traditional PCMs are ill-suited for
handling these convergent milk phenotypes for the different ecological and life history
correlates in these clades.

Marsupial milks are distinctive for high sugar concentrations coupled with moderate
protein and fat concentrations. Such high sugar concentrations are accomplished by having
very little lactose which allows marsupial milks to avoid becoming extremely dilute. In
general, marsupials grow at a slow average rate over a long period of lactation (g/day, Case,
1978), which may allow brain growth to be dissociated from metabolic rate in marsupials
(Weisbecker & Goswami, 2010). The clade shift identified here for marsupials is consistent
with many recent studies arguing marsupial development is derived compared to the last
common ancestor of marsupials and placentals (e.g.,Werneburg et al., 2016). Comparative
milk databases have used composition at pouch emergence (or teat detachment). The
comparability of this stage to mid-lactation in placentals is uncertain as another distinctive
feature of marsupial milks is their pronounced change in composition over the lactation
period (Oftedal & Iverson, 1995).

The comparative database of milk macronutrient composition, while the best resource
available, was inevitably limited. Standardization of data collected across taxa is not
always clear and intraspecific variation is not always documented. This will appear as
‘‘measurement error’’ in comparative analysis and will reduce both phylogenetic signal
and the strength of regression coefficients in PCMs or other analyses (Silvestro et al., 2015;
Hardy & Pavoine, 2012). For example, prior to eliminating some of the concerning data
points in the original database, these outlier species were often assigned there own selection
regime. This is likely for elephant seals (Mirounga) assignment to their own selection
regime. The milk sugar concentrations reported for these two species are very low and were
treated as inequalities below detectable levels in original publications. Moreover, while the
database is also adequate for many analyses its size will limit the power of recent statistical
models designed to measure phylogenetic signal or discriminate among different patterns
of selection (e.g., stabilizing, early burst) versus Brownian motion (Housworth, Martins &
Lynch, 2004; Boettiger, Coop & Ralph, 2012; Silvestro et al., 2015; Uyeda & Harmon, 2014).

CONCLUSIONS
Mammalian milks are diverse but often characteristic of certain higher taxa. This makes
the ecological and life history correlates of milk composition difficult to identify using
traditional phylogenetic comparative methods because those traits are often conservative
and clade-specific, too. Primates and pinnipeds have the most outstanding milks according
to multiple newly devised tests, with perissodactyls and marsupials as other interesting
clades.
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