Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(3E,5E)-1-Benzyl-3,5-dibenzylidenepiperidin-4-one

N. S. Karthikeyan,^a K. Sathiyanarayanan,^a P. G. Aravindan^b and R. S. Rathore^c*

^aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014. India. ^bPhysics Division. School of Science and Humanities. VIT University. Vellore 632 014, India, and ^cBioinformatics Infrastructure Facility, Department of Biotechnology, School of Life Science, University of Hyderabad, Hyderabad 500 046. India

Correspondence e-mail: ravindranath_rathore@yahoo.com

Received 9 September 2009; accepted 17 September 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.059; wR factor = 0.202; data-to-parameter ratio = 25.8.

In the title compound, $C_{26}H_{23}NO$, $C-H \cdot \cdot \cdot O$ hydrogen bonds generate a ribbon structure along the *a* axis. These ribbons further assemble into a one-dimensional sheet parallel to the ac plane via $C-H \cdots \pi$ interactions. The piperidin-4-one ring adopts a sofa conformation with the 1-benzyl group in the equatorial position, and the 3- and 5-phenyl substituents stretched out on either side. The benzylidene units adopt Econfigurations and the 1-benzyl group is disposed towards the 3- substituent of the piperidin-4-one ring.

Related literature

For literature related to the synthesis and pharmaceutical activity of 3,5-diarylidene-4-piperidone compounds, see Krapcho & Turk (1979); Sviridenkova et al. (2005); Das et al. (2007). The crystal structures of four analogous compounds have been reported (Suresh et al., 2007). For ring conformations, see Cremer & Pople (1975); Duax et al. (1976).

Experimental

Crystal data C26H23NO $M_r = 365.45$

Triclinic, $P\overline{1}$ a = 6.3354 (4) Å

b = 10.2365 (6) Å	
c = 15.7885 (9) Å	
$\alpha = 75.245 \ (2)^{\circ}$	
$\beta = 87.651 \ (3)^{\circ}$	
$\gamma = 88.699 \ (3)^{\circ}$	
$V = 989.24 (10) \text{ Å}^3$	

Data collection

Bruker APEXII CCD area-detector	25021 measured reflections
diffractometer	6540 independent reflections
Absorption correction: multi-scan	4181 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2004)	$R_{\rm int} = 0.035$
$T_{\min} = 0.896, \ T_{\max} = 0.964$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	253 parameters
$wR(F^2) = 0.202$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
6540 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C13−H13· · ·N1	0.93	2.57	2.885 (2)	100
C14-H14···O1	0.93	2.36	2.7560 (18)	106
C21-H21···O1	0.93	2.40	2.761 (2)	103
$C2-H2B\cdots O1^{i}$	0.97	2.44	3.3798 (17)	163
C16−H16···O1 ⁱⁱ	0.93	2.50	3.304 (2)	145
$C7-H7A\cdots Cg2^{iii}$	0.97	2.77	3.6957 (18)	159
$C19-H19\cdots Cg4^{iv}$	0.93	2.91	3.523 (2)	125

Symmetry codes: (i) x + 1, y, z; (ii) -x, -y, -z; (iii) -x + 1, -y, -z + 1; (iv) x + 1, y - 1, z. Cg2 is the centroid of the C8-C13 ring and Cg4 is the centroid of the C22-C27 ring.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

RSR thanks the Council for Scientific and Industrial Research, New Delhi, for funding via the scientists' pool scheme and the Bioinformatics Infrastructure Facility of the University of Hyderabad for computational resources.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2159).

References

Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Das, U., Alcorn, J., Shrivastav, A., Sharma, R. K., de Clercq, E., Balzarini, J. & Dimmock, J. R. (2007). Eur. J. Med. Chem. 42, 71-80.
- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271-383. New Jersey: John Wiley.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Krapcho, J. & Turk, C. F. (1979). J. Med. Chem. 22, 207-210.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suresh, J., Suresh Kumar, R., Perumal, S. & Natarajan, S. (2007). Acta Cryst. C63. 0315-0318.
- Sviridenkova, N. V., Vatsadze, S. Z., Manaenkova, M. A. & Zyk, N. V. (2005). Russ. Chem. Bull. 54, 2590-2593.

Z = 2

Mo $K\alpha$ radiation

 $0.22 \times 0.19 \times 0.18 \; \mathrm{mm}$

 $\mu = 0.07 \text{ mm}^-$

T = 295 K

Acta Cryst. (2009). E65, o2775 [doi:10.1107/S1600536809037659]

(3E,5E)-1-Benzyl-3,5-dibenzylidenepiperidin-4-one

N. S. Karthikeyan, K. Sathiyanarayanan, P. G. Aravindan and R. S. Rathore

Comment

Derivatives of 3,5-diarylidene-4-piperidones (D4P) are pharmaceutically important compounds (Krapcho & Turk, 1979; Sviridenkova *et al.*, 2005; Das *et al.*, 2007). During our investigations on D4P, a series of compounds were prepared. The title compound (3E,5E)-3,5-dibenzylidene-1-phenyl-piperidin-4-one, (I), is reported here.

The molecular structure of (I) with atom numbering scheme is shown in Fig 1. The C3, C5 diene moieties possess E configuration. The C3, C5 phenyl substituents of the piperidinone ring are stretched out on either side with following values of torsion angles: C4—C3—C14—C15 = 176.89 (14)°, C3—C14—C15—C16 = 169.52 (15)°, C4—C5—C21—C22 = -177.30 (14)° and C5—C21—C22—C23 = -138.13 (17)°. The dihedral angle of C3, C5-benzene rings is 41.2 (1)°. The dihedral angles between of benzene rings of C3 and C5-substitutens with respect to the corresponding ring of C1-benzyl substituent are 68.3 (1)° and 69.0 (1)°, respectively.

The sp^2 hybridized C3, C4 and C5 atoms give rise to a sofa conformation of the six-membered piperidinone ring as also observed in the structures of related compounds, namely, (*R*)-3,5-Bis[(*E*)-benzylidene]-1-(1-phenylethyl)piperidin-4-one, 3,5-bis[(*E*)-4-chlorobenzylidene]-1-[(*R*)-1-phenylethyl] piperidin-4-one, and 3,5-bis[(*E*)-2-chlorobenzylidene]-1-[(*R*)-1-phenylethyl] piperidin-4-one (Suresh *et al.*, 2007). In the sofa conformation, the N1 atom is -0.715 (1)Å shifted out of the base plane (C2/C3/C4/C5/C6). The deviation of the ring from ideal sofa conformation, ΔC_2 (Duax *et al.*, 1976) is 13.3°. The Cremer and Pople (Cremer & Pople, 1975) puckering parameters, corresponding to the ring conformation are as follows: q2 = 0.5420 (15) Å, q3 = 0.2419 (15) Å, $\varphi = 65.95 (14)^\circ$, $\theta = 348.13 (16)^\circ$, and the total puckering amplitude Q = 0.5934 (14) Å. The benzyl substituent is in equatorial position of piperidinone ring and its conformation is described by the following torsion angles: C2—N1—C7—C8 = -72.72 (16)°, N1—C7—C8—C9 = 157.64 (14)°. The C1-benzyl group is disposed towards C3-substituent of the piperidin-4-one ring, a feature that varies among related structures.

The observed inter- and intra-molecular interactions are listed in Table 1. The adjacent H14 and H21 atoms participate in an intra-molecular C14—H14…O1…H21—C21 interaction scheme. Additionally, proton H13 of C1-benzyl substituent participate in an intra-molecular C13—H13…N1 interaction.

The crystal packing is characterized by molecular ribbon along *a*-axis due to two C—H···O interactions. They are: C2—H2B···O1 and C16—H16···O1 interactions. These ribbons further assemble *via* C7—H7A···*Cg*2 of an inversion-related molecule leading to a sheet structure parallel to *ac*-plane. *Cg*2 is the centroid of (C8—C13) ring. Crystal packing is shown in Fig2. In addition, the structure also contains a short contact, C19—H19···*Cg*4, where *Cg*4 is the centroid of (C22—C27) ring.

Experimental

A mixture of 1-benzyl-4-piperidone (0.01 mol) and 2-fluorobenzaldehyde (0.02 mol) was added to a warm solution of ammonium acetate (0.01 mol) in absolute ethanol (15 ml). The mixture was gradually warmed on a water bath until the yellow color changed to orange. The mixture was kept aside overnight at room temperature. Reactions were monitored with

TLC for completeness. The solid obtained was separated and the crude compound were purified using silica gel column chromatography with hexane and ethyl acetate as elutant. Final yields: 84.50%; m.p. 427 (2)°K. Suitable single crystals for data collection were grown from ethanol and tetrahydrofurane in (1:1) ratio.

Refinement

Hydrogen atoms were placed in the geometrically expected positions and refined with the riding options. The distances with hydrogen atoms are: C(aromatic)—H = 0.93 Å, C(methylene)—H = 0.97 Å, and $U_{iso} = 1.2 U_{eq}$ (parent)

Figures

Fig. 1. A view of (I) with non-H atoms shown as probability ellipsoids at 30% levels (Farrugia, 2008).

Fig. 2. Molecular associations into one-dimensional sheet *via* C—H···O and C—H··· π interactions (see Table 1 for symmetry code). *Cg*2 is the centroid of (C8—C13) ring.

(3E,5E)-1-Benzyl-3,5-dibenzylidenepiperidin-4-one

Crystal data

C ₂₆ H ₂₃ NO	Z = 2
$M_r = 365.45$	$F_{000} = 388$
Triclinic, PT	$D_{\rm x} = 1.227 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Melting point: 427 K
a = 6.3354 (4) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 10.2365 (6) Å	Cell parameters from 1089 reflections
c = 15.7885 (9) Å	$\theta = 2.6 - 22.0^{\circ}$
$\alpha = 75.245 \ (2)^{\circ}$	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 87.651 \ (3)^{\circ}$	<i>T</i> = 295 K
$\gamma = 88.699 \ (3)^{\circ}$	Block, yellow
$V = 989.24 (10) \text{ Å}^3$	$0.22\times0.19\times0.18~mm$

Data collection

Bruker APEXII CCD area-detector diffractometer	6540 independent reflections
Radiation source: fine-focus sealed tube	4181 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.035$

<i>T</i> = 295 K	$\theta_{max} = 31.6^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$h = -9 \rightarrow 9$
$T_{\min} = 0.896, T_{\max} = 0.964$	$k = -14 \rightarrow 15$
25021 measured reflections	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.202$	$w = 1/[\sigma^2(F_o^2) + (0.1034P)^2 + 0.1348P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
6540 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
253 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ х v \boldsymbol{Z} N1 0.41574 (19) 0.06361 (11) 0.29573 (7) 0.0388 (3) 01 -0.03961 (17) 0.09433 (13) 0.13155 (9) 0.0607 (3) C2 0.4799 (2) 0.00037 (14) 0.22535 (9) 0.0388 (3) 0.047* H2A 0.5184 -0.09340.2504 H2B 0.6031 0.0458 0.1938 0.047* C3 0.3061 (2) 0.00704 (13) 0.16274 (9) 0.0365(3)C4 0.1269(2)0.10236(15) 0.16572 (10) 0.0409(3)C5 0.1623 (2) 0.21277 (14) 0.20919 (9) 0.0391 (3) C6 0.3625(2) 0.20500 (14) 0.25728 (10) 0.0419 (3) H6A 0.4758 0.2474 0.2172 0.050* 0.050* H6B 0.3445 0.2525 0.3030 C7 0.5831(3)0.05303 (15) 0.35758 (10) 0.0456(3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H7A	0.5509	0.1144	0.3943	0.055*
H7B	0.7145	0.0818	0.3252	0.055*
C8	0.6140 (2)	-0.08686 (15)	0.41541 (9)	0.0450 (3)
С9	0.8058 (3)	-0.1227 (2)	0.45420 (13)	0.0654 (5)
Н9	0.9173	-0.0625	0.4409	0.078*
C10	0.8331 (4)	-0.2468 (3)	0.51234 (15)	0.0876 (8)
H10	0.9619	-0.2687	0.5390	0.105*
C11	0.6736 (5)	-0.3375 (2)	0.53127 (14)	0.0902 (8)
H11	0.6938	-0.4215	0.5702	0.108*
C12	0.4837 (4)	-0.3047 (2)	0.49285 (13)	0.0769 (6)
H12	0.3746	-0.3668	0.5054	0.092*
C13	0.4529 (3)	-0.17936 (17)	0.43535 (11)	0.0561 (4)
H13	0.3226	-0.1574	0.4100	0.067*
C14	0.3014 (2)	-0.06137 (14)	0.10079 (9)	0.0390 (3)
H14	0.1813	-0.0452	0.0675	0.047*
C15	0.4524 (2)	-0.15682 (13)	0.07658 (9)	0.0388 (3)
C16	0.3853 (3)	-0.22865 (16)	0.01835 (10)	0.0474 (3)
H16	0.2505	-0.2127	-0.0036	0.057*
C17	0.5152 (3)	-0.32245 (17)	-0.00687 (12)	0.0589 (4)
H17	0.4671	-0.3696	-0.0453	0.071*
C18	0.7149 (3)	-0.34718 (17)	0.02409 (12)	0.0604 (5)
H18	0.8016	-0.4116	0.0075	0.073*
C19	0.7858 (3)	-0.27558 (18)	0.08004 (12)	0.0547 (4)
H19	0.9217	-0.2914	0.1009	0.066*
C20	0.6575 (2)	-0.18052 (15)	0.10546 (10)	0.0467 (3)
H20	0.7088	-0.1317	0.1423	0.056*
C21	0.0135 (2)	0.30848 (15)	0.20503 (10)	0.0454 (3)
H21	-0.1088	0.2984	0.1768	0.055*
C22	0.0221 (2)	0.42793 (15)	0.24022 (10)	0.0456 (3)
C23	-0.1555 (3)	0.46678 (18)	0.28275 (12)	0.0582 (4)
H23	-0.2784	0.4167	0.2888	0.070*
C24	-0.1519 (4)	0.5785 (2)	0.31605 (14)	0.0711 (6)
H24	-0.2713	0.6023	0.3453	0.085*
C25	0.0267 (4)	0.6549 (2)	0.30642 (14)	0.0715 (6)
H25	0.0285	0.7303	0.3290	0.086*
C26	0.2030 (3)	0.61958 (17)	0.26319 (13)	0.0631 (5)
H26	0.3238	0.6719	0.2559	0.076*
C27	0.2011 (3)	0.50666 (15)	0.23063 (11)	0.0520 (4)
H27	0.3215	0.4830	0.2019	0.062*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0467 (7)	0.0396 (6)	0.0315 (6)	0.0051 (5)	-0.0077 (5)	-0.0109 (4)
01	0.0388 (6)	0.0723 (8)	0.0803 (9)	0.0045 (5)	-0.0156 (6)	-0.0349 (7)
C2	0.0413 (7)	0.0429 (7)	0.0344 (7)	0.0036 (5)	-0.0053 (5)	-0.0138 (5)
C3	0.0367 (7)	0.0374 (6)	0.0342 (7)	-0.0019 (5)	-0.0018 (5)	-0.0071 (5)
C4	0.0345 (7)	0.0462 (7)	0.0420 (8)	-0.0016 (5)	-0.0016 (6)	-0.0112 (6)

C5	0.0396 (7)	0.0415 (7)	0.0350 (7)	0.0005 (5)	-0.0003 (5)	-0.0078 (5)
C6	0.0482 (8)	0.0384 (6)	0.0401 (7)	0.0028 (5)	-0.0077 (6)	-0.0108 (5)
C7	0.0523 (9)	0.0478 (7)	0.0398 (8)	0.0025 (6)	-0.0117 (6)	-0.0156 (6)
C8	0.0563 (9)	0.0497 (8)	0.0322 (7)	0.0127 (6)	-0.0089 (6)	-0.0162 (6)
C9	0.0654 (11)	0.0815 (12)	0.0521 (10)	0.0227 (9)	-0.0187 (8)	-0.0216 (9)
C10	0.1057 (19)	0.0971 (17)	0.0605 (13)	0.0531 (15)	-0.0312 (12)	-0.0211 (12)
C11	0.161 (3)	0.0623 (12)	0.0441 (10)	0.0447 (15)	-0.0169 (14)	-0.0096 (9)
C12	0.1278 (19)	0.0521 (10)	0.0483 (10)	0.0019 (11)	0.0043 (11)	-0.0094 (8)
C13	0.0736 (11)	0.0530 (9)	0.0420 (9)	0.0042 (8)	-0.0071 (8)	-0.0123 (7)
C14	0.0404 (7)	0.0416 (6)	0.0351 (7)	-0.0015 (5)	-0.0064 (5)	-0.0090 (5)
C15	0.0473 (8)	0.0387 (6)	0.0296 (6)	-0.0019 (5)	-0.0020 (5)	-0.0070 (5)
C16	0.0579 (9)	0.0483 (8)	0.0381 (8)	-0.0040 (6)	-0.0061 (6)	-0.0139 (6)
C17	0.0847 (13)	0.0495 (8)	0.0488 (9)	-0.0041 (8)	-0.0005 (9)	-0.0240 (7)
C18	0.0781 (13)	0.0487 (8)	0.0556 (10)	0.0084 (8)	0.0069 (9)	-0.0176 (7)
C19	0.0548 (10)	0.0577 (9)	0.0512 (9)	0.0107 (7)	-0.0018 (7)	-0.0141 (7)
C20	0.0489 (9)	0.0516 (8)	0.0422 (8)	0.0026 (6)	-0.0053 (6)	-0.0162 (6)
C21	0.0415 (8)	0.0483 (7)	0.0461 (8)	0.0039 (6)	-0.0028 (6)	-0.0117 (6)
C22	0.0500 (8)	0.0416 (7)	0.0418 (8)	0.0091 (6)	-0.0039 (6)	-0.0048 (6)
C23	0.0563 (10)	0.0592 (9)	0.0601 (11)	0.0085 (7)	0.0023 (8)	-0.0186 (8)
C24	0.0826 (14)	0.0709 (12)	0.0630 (12)	0.0188 (10)	0.0070 (10)	-0.0261 (10)
C25	0.1052 (17)	0.0520 (9)	0.0608 (12)	0.0106 (10)	-0.0095 (11)	-0.0208 (8)
C26	0.0816 (13)	0.0429 (8)	0.0612 (11)	-0.0042 (8)	-0.0094 (9)	-0.0049 (7)
C27	0.0568 (10)	0.0423 (7)	0.0519 (9)	0.0035 (6)	0.0001 (7)	-0.0033 (6)

Geometric parameters (Å, °)

N1—C7	1.4543 (18)	С13—Н13	0.9300
N1—C6	1.4575 (18)	C14—C15	1.4610 (19)
N1—C2	1.4617 (17)	C14—H14	0.9300
O1—C4	1.2183 (17)	C15—C20	1.390 (2)
C2—C3	1.4984 (19)	C15—C16	1.399 (2)
C2—H2A	0.9700	C16—C17	1.375 (2)
C2—H2B	0.9700	С16—Н16	0.9300
C3—C14	1.3417 (19)	C17—C18	1.370 (3)
C3—C4	1.4870 (19)	С17—Н17	0.9300
C4—C5	1.489 (2)	C18—C19	1.377 (3)
C5—C21	1.3354 (19)	C18—H18	0.9300
C5—C6	1.495 (2)	C19—C20	1.380 (2)
С6—Н6А	0.9700	С19—Н19	0.9300
С6—Н6В	0.9700	С20—Н20	0.9300
С7—С8	1.503 (2)	C21—C22	1.469 (2)
С7—Н7А	0.9700	C21—H21	0.9300
С7—Н7В	0.9700	C22—C27	1.387 (2)
C8—C13	1.380 (3)	C22—C23	1.389 (2)
C8—C9	1.383 (2)	C23—C24	1.376 (3)
C9—C10	1.376 (3)	С23—Н23	0.9300
С9—Н9	0.9300	C24—C25	1.371 (3)
C10—C11	1.360 (4)	C24—H24	0.9300
C10—H10	0.9300	C25—C26	1.374 (3)

C11—C12	1.366 (4)	C25—H25	0.9300
C11—H11	0.9300	C26—C27	1.380 (2)
C12—C13	1.385 (3)	C26—H26	0.9300
C12—H12	0.9300	C27—H27	0.9300
C7—N1—C6	110.28 (11)	C8—C13—C12	120.50 (19)
C7—N1—C2	111.05 (11)	C8—C13—H13	119.8
C6—N1—C2	108.77 (11)	С12—С13—Н13	119.8
N1—C2—C3	111.46 (11)	C3—C14—C15	131.10(13)
N1—C2—H2A	109.3	C3—C14—H14	114.4
C3—C2—H2A	109.3	C15—C14—H14	114.4
N1—C2—H2B	109.3	C20—C15—C16	117.51 (13)
C3—C2—H2B	109.3	C20-C15-C14	125.51 (13)
H2A—C2—H2B	108.0	C16—C15—C14	116.97 (13)
C14—C3—C4	116.30 (12)	C17—C16—C15	121.06 (16)
C14—C3—C2	125.73 (12)	С17—С16—Н16	119.5
C4—C3—C2	117.90 (11)	С15—С16—Н16	119.5
O1—C4—C3	121.95 (13)	C18—C17—C16	120.63 (16)
O1—C4—C5	120.88 (13)	С18—С17—Н17	119.7
C3—C4—C5	117.12 (12)	С16—С17—Н17	119.7
C21—C5—C4	118.78 (13)	C17—C18—C19	119.27 (15)
C21—C5—C6	124.66 (13)	С17—С18—Н18	120.4
C4—C5—C6	116.54 (11)	С19—С18—Н18	120.4
N1—C6—C5	109.06 (11)	C18—C19—C20	120.70 (17)
N1—C6—H6A	109.9	С18—С19—Н19	119.7
С5—С6—Н6А	109.9	С20—С19—Н19	119.7
N1—C6—H6B	109.9	C19—C20—C15	120.77 (15)
С5—С6—Н6В	109.9	C19—C20—H20	119.6
Н6А—С6—Н6В	108.3	C15—C20—H20	119.6
N1—C7—C8	113.90 (12)	C5-C21-C22	127.05 (14)
N1—C7—H7A	108.8	C_{5} C_{21} H_{21}	116.5
C8—C7—H7A	108.8	$C_{22} = C_{21} = H_{21}$	116.5
N1—C7—H7B	108.8	$C_{27} - C_{22} - C_{23}$	118.09(16)
C8—C7—H7B	108.8	$C_{27} - C_{22} - C_{21}$	122.26 (14)
H7A—C7—H7B	107.7	$C^{23} - C^{22} - C^{21}$	119 63 (15)
$C_{13} - C_{8} - C_{9}$	118 31 (16)	$C_{24} - C_{23} - C_{22}$	120 79 (18)
$C_{13} = C_{8} = C_{7}$	122.09(14)	C24—C23—H23	119.6
C9 - C8 - C7	119 49 (16)	$C_{22} = C_{23} = H_{23}$	119.6
C10-C9-C8	120.6.(2)	$C_{25} = C_{24} = C_{23}$	120 40 (18)
C10-C9-H9	119.7	$C_{25} = C_{24} = H_{24}$	119.8
С8—С9—Н9	119.7	$C_{23} - C_{24} - H_{24}$	119.8
$C_{11} - C_{10} - C_{9}$	120.7(2)	$C_{24} = C_{25} = C_{26}$	119.0
C11-C10-H10	119.7	$C_{24} = C_{25} = H_{25}$	120.1
C9—C10—H10	119.7	$C_{26} = C_{25} = H_{25}$	120.1
C_{10} C_{11} C_{12}	119.7 119.7(2)	$C_{25} = C_{26} = C_{27}$	120.11 (19)
C10-C11-H11	120.2	$C_{25} = C_{26} = H_{26}$	119.9
C12-C11-H11	120.2	C27—C26—H26	119.9
C_{11} $-C_{12}$ $-C_{13}$	120.3 (2)	C_{26} C_{27} C_{22}	120.86 (16)
C11—C12—H12	119.9	C26—C27—H27	119.6
C13—C12—H12	119.9	C22—C27—H27	119.6
0.0 012 1112	* * / • /		

C7—N1—C2—C3	178.28 (12)	C7—C8—C13—C12	-176.30 (15)
C6—N1—C2—C3	-60.18 (15)	C11—C12—C13—C8	0.8 (3)
N1—C2—C3—C14	-167.71 (13)	C4—C3—C14—C15	176.89 (14)
N1—C2—C3—C4	15.50 (17)	C2—C3—C14—C15	0.1 (2)
C14—C3—C4—O1	18.9 (2)	C3—C14—C15—C20	-11.5 (3)
C2—C3—C4—O1	-164.04 (14)	C3-C14-C15-C16	169.52 (15)
C14—C3—C4—C5	-158.55 (13)	C20-C15-C16-C17	2.2 (2)
C2—C3—C4—C5	18.54 (18)	C14—C15—C16—C17	-178.79 (14)
O1—C4—C5—C21	-4.5 (2)	C15-C16-C17-C18	-0.5 (3)
C3—C4—C5—C21	173.00 (13)	C16-C17-C18-C19	-0.9 (3)
O1—C4—C5—C6	173.68 (14)	C17—C18—C19—C20	0.5 (3)
C3—C4—C5—C6	-8.87 (19)	C18—C19—C20—C15	1.3 (3)
C7—N1—C6—C5	-168.16 (12)	C16—C15—C20—C19	-2.6 (2)
C2—N1—C6—C5	69.84 (14)	C14—C15—C20—C19	178.48 (15)
C21-C5-C6-N1	144.04 (14)	C4—C5—C21—C22	-177.30 (14)
C4-C5-C6-N1	-33.97 (17)	C6—C5—C21—C22	4.7 (3)
C6—N1—C7—C8	166.64 (12)	C5—C21—C22—C27	43.6 (2)
C2—N1—C7—C8	-72.72 (16)	C5—C21—C22—C23	-138.13 (17)
N1—C7—C8—C13	-26.1 (2)	C27—C22—C23—C24	-1.4 (3)
N1—C7—C8—C9	157.64 (14)	C21—C22—C23—C24	-179.78 (17)
C13—C8—C9—C10	-1.1 (3)	C22—C23—C24—C25	1.1 (3)
C7—C8—C9—C10	175.31 (17)	C23—C24—C25—C26	0.0 (3)
C8—C9—C10—C11	1.4 (3)	C24—C25—C26—C27	-0.9 (3)
C9—C10—C11—C12	-0.7 (3)	C25—C26—C27—C22	0.5 (3)
C10-C11-C12-C13	-0.4 (3)	C23—C22—C27—C26	0.6 (2)
C9—C8—C13—C12	0.0 (2)	C21—C22—C27—C26	178.91 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C13—H13…N1	0.93	2.57	2.885 (2)	100
C14—H14…O1	0.93	2.36	2.7560 (18)	106
C21—H21…O1	0.93	2.40	2.761 (2)	103
C2—H2B····O1 ⁱ	0.97	2.44	3.3798 (17)	163
C16—H16…O1 ⁱⁱ	0.93	2.50	3.304 (2)	145
C7—H7A····Cg2 ⁱⁱⁱ	0.97	2.77	3.6957 (18)	159
C19—H19····Cg4 ^{iv}	0.93	2.91	3.523 (2)	125
Summatry and as (i) while way (ii) where	-1 (iii) -1 1 -1 (iii)	··· · · · · · · · · · · · · · · · · ·		

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*, –*y*, –*z*; (iii) –*x*+1, –*y*, –*z*+1; (iv) *x*+1, *y*–1, *z*.

