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In-silico experiments of zebrafish 
behaviour: modeling swimming  
in three dimensions
Violet Mwaffo1, Sachit Butail2 & Maurizio Porfiri1

Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional 
and dysfunctional processes coupled with their genetic and pharmacological modulation. As with 
mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the 
exploration of alternative testing methods to reduce the number of subjects, refine experimental 
designs, and replace live animals. Inspired by the demonstrated advantages of computational studies 
in other life science domains, we establish an authentic data-driven modelling framework to simulate 
zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, 
speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish 
behaviour. Through computational studies, we demonstrate the ability of the model to replicate 
common ethological observables such as speed and spatial preference, and anticipate experimental 
observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other 
experimental paradigms, our framework is expected to contribute to a reduction in animal use and 
suffering.

Experimental studies with animal subjects face ethical issues that demand the exploration of alternative 
approaches to reduce the number of subjects, refine experimental designs, and replace the use of live animals 
(3Rs)1. While animal studies are the ultimate cornerstone against which new hypotheses should be tested, com-
puter simulations, or in-silico experiments, constitute a powerful tool in preclinical research. In-silico experiments 
could be used to: (i) gather preliminary evidence in favour or against a specific hypothesis through systematic 
pilot trials on the computer2; (ii) achieve statistical power in an animal study via careful selection of the number 
of trials, independent and dependent variables, and frequency of measurement3; and (iii) reinforce the scientific 
merit of existing observations through comparison against synthetic data and statistical analysis informed by 
modelling insight4–7.

In recent years, we have witnessed a surge in the number of in-silico experiments, including molecular biol-
ogy8, genetic assays9, tumour growth10, dermatology11, bone remodelling12, organ failure13, and toxicology14. 
These studies have helped build thrust in the potential of in-silico experiments and develop a strong link between 
simulations and experiments, which are more often coupled in new preclinical studies. However, the use of com-
puter simulations in behavioural neuroscience has been limited, partly due to the complexity of animal behaviour 
and partly because of the unavailability of refined three-dimensional (3D) data needed to calibrate and validate 
mathematical models underlying such simulations15–20.

Although animal research has mainly focused on rodents21 and primates22, zebrafish (Danio rerio) are attain-
ing popularity for both technical and economic reasons. Zebrafish are genetically similar to humans, especially 
with respect to diseases23,24, where a strong genetic similarity is found25. Zebrafish embryos and larvae are trans-
parent, which afford the possibility of monitoring inflammatory processes and indicators of disease without 
surgery24. Further, unlike mammalian animal models, zebrafish can be bred in large numbers26, have a short 
inter-generation time27, and can be stocked at high densities24. These factors are fuelling intensive research in 
zebrafish behavioural phenotyping, whereby locomotory patterns are continuously being identified and catego-
rized to create a comprehensive catalogue to aid in measuring zebrafish behaviour28, for use in neurobehavioural 
research.
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A large number of experimental protocols have been proposed to investigate zebrafish behaviour, often bor-
rowing from murine models. For example, classical choice29, place preference30, open field31, and light/dark pref-
erence tests32 have been successfully used to investigate the neurobiological basis of social behaviour, study fear 
and anxiety, and explore the effect of psychoactive compounds and genetic manipulations33–36. In these exper-
iments, zebrafish behaviour is measured in terms of locomotory patterns that are typically scored from labour 
intensive manual observations and seldom using automated computer tracking. Only recently, technical break-
throughs in automated tracking have enabled the complete reconstruction of zebrafish swimming in 3D17,37–40. 
In-silico experiments may significantly contribute to the design of new test batteries, by enabling the systematic 
analysis of dependent and independent variables while isolating key experimental factors that may act as con-
founds during testing. Further, in-silico experiments may be used to identify false positives and negatives, by 
providing an empirically-based ground truth on which to contextualize new experimental observations41,42.

The first computational model of zebrafish swimming has been proposed by our group in refs 43, 44, 45 and 
46. In this series of studies, we have proposed a data-driven modelling framework to predict the turn rate dynam-
ics and speed modulation of zebrafish swimming in a shallow water tank. To capture the burst-and-coast swim-
ming style of zebrafish, where sporadic bursts of the tail are followed by coasting phases without tail beating47,48, 
we have proposed the use of jump processes, often employed in financial engineering to model extreme events in 
the time evolution of assets prices49,50. Specifically, in refs 43, 44, the turn rate dynamics of zebrafish is described 
through a mean reverting stochastic process that incorporates jumps. The jump persistent turning walker (JPTW) 
accounts for the sudden and fast turns observed in the yaw rate of zebrafish swimming. In ref. 46, we have con-
templated the possibility of speed modulation during in-plane manoeuvring, where fish slow down their motion 
when turning. This modelling framework has been recently extended to study social behaviour in ref. 45 by 
demonstrating the role of speed modulation in regulating collective dynamics of a shoal of zebrafish. Using a 
similar approach based on stochastic processes, a recent study51 has simulated zebrafish orientation within a 
kinematic model, by sampling from a probability density function that accounts for a spherical visual perception 
field. These models, built and calibrated on 2D datasets, are expected to suffer from the same limitations that 
are attributed to 2D behavioural analysis, including unrealistic representation of swimming activity and novelty 
seeking behaviour17; incomplete characterization of stress-related behaviours, such as thigmotaxis and geotaxis28; 
and limited comparability of different experimental assays due to unmeasured variations in depth17.

Here, we present a new 3D model for zebrafish swimming, extending our previous work to three dimensions 
and encapsulating wall interaction and speed modulation. We model both yaw and pitch rates as JPTW, and we 
treat speed as a mean reverting square process52. Wall avoidance is modelled as a decaying function of time to 
collision53,54, and is further adapted to include collision avoidance at high speeds. Model parameters are cali-
brated with 3D trajectory data of adult zebrafish swimming in a parallelepipedal tank with a rectangular base for 
10 minutes38. Model validation is performed by conducting a simulation study and comparing speed and indirect 
behavioural measures, such as positional preference along the horizontal and vertical directions, with experi-
mental observations. To further evaluate if our model can be used to contribute to replacement and reduction, we 
conduct a second simulation study, investigating the effect of tank dimensions on zebrafish behaviour. We system-
atically vary the tank dimensions for 60 combinations of length, width, and height, and compare our results with 
data collated from the literature. We demonstrate the use of in-silico experiments in a prospective study, which 
would require thousands of subjects and months of experiments to explore the parameter space utilized in our 
numerical simulations.

Results
First in-silico experiment for model calibration. Position distribution from the top view over all of 10 
trials show that fish explore all sections of the tank with a marked preference for the corners and side walls of 
the tank (Fig. 1(a)). The lack of symmetry in the density along the tank width is related to the fact that the front 
portion of the tank is not covered with contact paper to enable tracking using the front camera. The front view 
indicates a similar exploratory behaviour along the depth of the tank (Fig. 1(c)) with more time spent near the 
side walls. Model predictions yield a response that is qualitatively similar to experimental observations, with 
larger density toward the walls (Fig. 1(b)).

However, the model does not anticipate the wall preference observed in the experimental data. Different from 
experiments, where fish tend to prefer the clear side of the tank to the side covered with contact paper, simulation 
results show no such preference for a particular side (Fig. 1(d)). This is because the model implements the same 
interaction rule on each side. Along the front view simulation results do not reproduce preference to the smaller 
sides or to the water surface which is different from tank bottom (Fig. 1(d)).

Experimental results show that speed distribution within the tank is asymmetric along the tank plane 
(Fig. 2(a)) with fish swimming at a higher speed near the side walls and the front wall, which is open for the 
camera to record. An asymmetry in experimental data is also visible along tank depth with higher speeds near the 
water surface (Fig. 2(c)). Simulation results (Fig. 2(b) and (d)) are in agreement with experimental observations, 
whereby they predict larger speeds in the vicinity of the walls. Different from experiments, simulation results do 
not differ along the front wall, as the model implements the same interaction rule on each wall. In terms of indi-
vidual motion characteristics, Fig. 3 compares a sample trajectory of a live fish with a simulated fish, offering evi-
dence for the model ability to replicate the sharp turn associated with avoidance manoeuvres and the fragmented 
tracks within the bulk of the tank.

Figures 4, 5 and 6 compare the behavioural response between live and simulated fish using a non-parametric 
Kruskal-Wallis test to examine the null hypothesis that the values are sampled from different distributions with 
different median. Figure 4 displays experimental observations and model predictions on fish activity, measured 
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through the average speed. Specifically, we find that model predictions are not significantly different from exper-
imental data (χ2(1) =  0.8229, p =  0.3643).

Figure 5 presents a detailed comparison between experimental data and model predictions on fish spatial pref-
erence along the water tank. The model is successful in anticipating the time budgeting along the water column, 
whereby simulation data and experiments are similar (time spent in the top third: χ2(1) =  0.0229, p =  0.8798 
and time spent in the bottom third: χ2(1) =  0.0229, p =  0.8798). The number of entries predicted by the model 
is also statistically equivalent to experimental observations (number of entries in the top third: χ2(1) =  0.1169, 
p =  0.7324 and number of entries in the bottom third: χ2(1) =  0.1450, p =  0.7033).

Figure 1. Position distribution of nine experimental (a and c) and 10 simulated (b and d) fish, along the length 
(a and b) and the water column (c and d). The bin size is 0.28 ×  0.15 cm for the top view and 0.28 ×  0.13 cm for 
the front view. The density is saturated at 0.02 to ease the visualization of the data, although the maximum value 
is 0.07. Arrows indicate the tank sides not covered with white contact paper.

Figure 2. Speed distribution of nine experimental (a and c) and a 10 simulated (b and d) fish, along the length 
(a and b) and the water column (c and d). The bin size is 0.28 ×  0.15 cm for the top view and 0.28 ×  0.13 cm for 
the front view. The speed is saturated at 4.5 cm s−1 corresponding also to the maximum averaged speed value. 
Arrows indicate the tank sides not covered with white contact paper.
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Finally, Fig. 6 offers validation for the model capability to anticipate fish positional preference along the length 
of the tank. In line with all the previous comparisons, model predictions are found to be statistically indistin-
guishable from experimental data (time spent in the lateral sides: χ2(1) =  1.12, p =  0.2899 and number of entries 
in the lateral sides: χ2(1) =  0.2808, p =  0.5961).

Second in-silico experiment for model evaluation. Our simulation results presented in Fig. 7 
suggest that fish speed is an increasing function of the tank planar dimensions across different depths. 
Specifically, using a GLM analysis, fish speed is correlated to tank width for all the tested aspect ratios, 
namely, 0.25 (Dispersion =  0.160, F1,13 =  15.8, p <  0.01), 0.5 (Dispersion =  0.247, F1,13 =  6.49, p =  0.0243), 0.75 
(Dispersion =  0.222, F1,13 =  19.8, p <  0.01), and 1 (Dispersion =  0.145, F1,13 =  41.6, p <  0.01). By aggregating the 
simulation data with respect to the total surface area (Fig. 8), we find a strong correlation between the logarithm 
of the total surface area and the average speed (Dispersion =  0.168, F1,58 =  94.4, p <  0.01). By performing the same 
analysis on experimental data from Table 1, we uncover a similar, albeit weaker, trend between the average speed 
and the total surface area (Dispersion  =  2.01, F1,30 =  27.4, p <  0.01). Although the GLM analysis shows a higher 
dispersion in experimental data compared to simulation results, the slope is also steeper. Thus, experimental data 
indicate the presence of a stronger effect than computational predictions.

Discussion
In cellular and molecular biology, mathematical models of regulatory networks, supported by high-throughput 
data collection, have enabled the seamless integration of computer simulations and experimental research8,11–14. 
Benefits of an in-silico approach include: the possibility of setting up advanced starting points for testing novel 
hypotheses; speeding up the validation of challenging propositions; and putting forward a direct, tangible oppor-
tunity to reduce the extent of animal use. A necessary step toward bringing such benefits to the field of animal 
behaviour is the formulation of mathematical models that can faithfully reconstruct animal locomotion of indi-
viduals53, which in turn better informs collective motion models55–57. In the case of zebrafish, a model organism 
for preclinical studies, a comprehensive catalogue of observed behaviours28 and high-volume datasets from the 
literature17,37–40 make a compelling case for the development of a framework to support in-silico experiments.

Figure 3. Sample trajectories of experimental (a) and simulated fish (b) in 3D for two minutes.

Figure 4. Comparison of average speed between live and simulated fish. Experimental data refer to Table 1 
in ref. 38. The bottom and top of each box are the first and third quartiles, the band inside the box is the median, 
and whiskers identify one standard deviation above and below the mean.
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An accurate model that is able to robustly reproduce the full catalogue of zebrafish behaviours is far from 
accomplished. Instead, we describe here a model that conforms to basic zebrafish locomotory patterns in 3D, 
laying the foundations for in-silico zebrafish experiments. We extend our previous approach43,44 of using jump 
diffusion stochastic processes to reproduce segments of zebrafish turning motion in 2D to a more realistic sce-
nario, where fish swim in 3D adjusting their speed and interacting with the tank walls throughout an entire 
experiment. Comparison with experimental data demonstrates that our model is successful in qualitatively repro-
ducing zebrafish swimming behaviour, and quantitatively predicting activity and positional preference, in terms 
of average speed, time budgeting, and number of entries in longitudinal and transversal sections of the tank. 
Visual differences in positional preference and activity are likely due to complex interactions with clear tank 
walls, water surface, and tank bottom, as well as difference in interactions due to wall size. The model consists 

Figure 5. Comparison of fish positional preference along the water column between live and simulated fish: 
time spent in the top third (a); time spent in the bottom third (b); number of entries in the top third (c); and 
number of entries in the bottom third. Experimental data refer to Fig. 7 of ref. 38. The bottom and top of each 
box are the first and third quartiles, the band inside the box is the median, and whiskers identify one standard 
deviation above and below the mean.

Figure 6. Comparison of fish positional preference along the length of the tank between live and simulated fish: 
time spent in the lateral sides of the tank (a) and number of entries in the lateral sides (b). Experimental data 
refer to Figs 6 and 7 of ref. 38. The bottom and top of the each are the first and third quartiles, the band inside 
the box is the median, and whiskers identify one standard deviation above and below the mean.
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Figure 7. Simulated fish speed by varying tank depth and width with aspect ratio 0.25 (a), 0.5 (b), 0.75 (c), and 
1. The symbols star, dot, and square represent tank depths of 10, 20 and 30 cm, respectively. The function log(• ) 
refer to the natural logarithm and the width is divided by the width of the experimental tank in ref. 38, which is 
taken to be the reference width.

Figure 8. Effect of the total tank surface on fish speed obtained from (a) data compilation from literature, and 
(b) in-silico experiments of zebrafish swimming in an open field tank. The function log(• ) refer to the natural 
logarithm, the total surface area is divided by the surface area of the experimental tank in ref. 38, which is taken 
to be the reference area. For reference, we display in red the point corresponding to the experimental data in  
ref. 38 used to calibrate the model.
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of 16 parameters, which are calibrated from complete experimental trajectories of zebrafish swimming in 3D. 
Although the parameter space is large, the identification procedure is relatively robust, as evidenced by the lim-
ited variability in model parameters across the nine subjects considered in the experiment. Also, by automatically 
isolating instances when fish interact with the wall, the procedure is effectively partitioned in two consequent 
steps, reducing the number of parameters to be determined at once. Model parameters indicate that yaw and pitch 
rate parameters, such as the relaxation rate and variability have similar values. This is because the fish orientation 
is defined in the tank inertial frame, and turning up towards the water surface sideways may be interpreted as 
pitching in the inertial frame. On the other hand, jump intensity in the pitching direction is higher than that in 
the yaw direction, which is likely caused by stress-related behaviour in experimental subjects17,35,58,59. In a novel 
environment, zebrafish have been shown to repeatedly change their swimming depth40,60,61, which in our model 
is associated with the jump process in the pitch direction.

The potential of the model to complement empirical research is demonstrated through in-silico experiments 
that seek to understand the effect of tank dimensions on zebrafish activity–a study which would otherwise require 
thousands of animals and multiple experimental setups. These computational experiments reveal that the aver-
age speed of zebrafish should increase with all of the tank dimensions. By aggregating data with respect to the 
overall tank surface, we find a strong correlation with the average speed. A correlation between the tank surface 
and average speed is also evidenced from experimental data collated from the literature, even though the slope of 
the correlation is different from the simulation data. While it is likely that fish activity is influenced by a number 
of factors that are not constant across the collated dataset, such as illumination62 and habituation time63,64, we 
could explain the observed correlation between speed and surface area through two different reasons. First, fish 
speed may increase due to fewer instances of boundary avoidance as the tank size increases. Second, speed may 
increase due to thigmotaxis61, produced by thrashing or escape behaviours along the tank walls and corners28. 
This stress-related behaviour may be accompanied by high accelerations28, which would, in turn, result into a 
larger average speed.

In its present incarnation, our model appears to weight the second possibility more than the first. This is also 
evident from the speed distribution plots of simulated data, which suggest increasing speeds in the vicinity of the 
side walls, bottom wall, and free surface. Indeed, our model explicitly captures fish positional preference for walls 
and corners in the wall interaction function. However, our model does not directly encode for the first possibility, 
namely increased speed due to fewer encounters. This behaviour could be directly related to increased exploratory 
tendency in real fish, leading to higher average speeds59 for larger tanks size, and thus the steeper slope observed 
in the experimental data. Encoding such behaviours within our model may likely be accomplished by setting 
model parameters such as relaxation rate or wall avoidance as a function of tank dimensions. The nature of this 
dependence, however, will require detailed experiments that allow an accurate and reliable calibration of the 
model. Future work will focus on further validating this claim through new experiments with a wider range of 
tank sizes, and investigating the dependency of the model on other experimental factors, such as varying illumi-
nation62 and habituation time63,64, which could influence the observed correlation.

An approach similar to modelling wall interaction could be utilized to describe response to external stimuli, 
such as drawing towards novel objects or light, avoidance of predators, alarm reactions to sudden threats, and 
shoaling toward conspecifics. For example, with respect to shoaling behavior, the present model would be used to 
represent the individual dynamics of each zebrafish, interacting as a networked dynamical system. The network 
of interactions would then be based on relative orientation and position, with weights associated with each cue 
that can be calibrated using experimental data building on existing models for fish interactions in 2D53,65. The 
model could also be expanded to encapsulate innate behaviours, such as home-base behaviour and habituation64. 
Home-base behaviour may be integrated into the model by including preference for the initial region of the envi-
ronment that decays as a function of time, with the rate of decay calibrated on the basis of actual experiments. 
Habituation, which manifests as a time effect in fish behaviour as it enters a new environment63,64, could entail 
creating a virtual, tighter boundary within the environment that expands to the full tank size as time progresses.

The model may also be expanded to describe the effect of psychoactive compounds, through a controlled 
dependence of model parameters on pharmacological treatment. For example, in the context of the 2D JPTW, 
we have demonstrated in ref. 44 that alcohol treatment controls both relaxation rate and jump intensity. In the 
proposed 3D model, the effect of ethanol should also manifest in the speed modulation and wall interaction. As 
ethanol concentration is varied, zebrafish should modify their swimming style, since both the tail-beat amplitude 
and the tail-beat frequency have been shown to robustly decrease for high ethanol concentrations66. As a result, 
the parameters describing the instantaneous change in fish speed and the coupling with the turn rate dynamics 
should be adjusted as a function of ethanol concentration. The parameters related to the interaction with the wall 
should depend on ethanol concentration, whereby exposure to intermediate concentrations have been shown to 
reduce wall interaction, while higher concentration could influence the extent of the interaction67.

Creating the scientific and technical knowledge for affording comprehensive in-silico experiments on zebrafish 
will require a systems-level approach68. This entails not only identifying and modelling individual behaviours, but 
also understanding how one behaviour may lead to another. For example, habituation may lead to reduced activ-
ity and exploration, and interaction may lead to increased sociality. The proposed model should be considered 
as a first necessary step toward in-silico research. Among the several directions that will be pursued to improve 
model capability, zebrafish response to conspecifics is perhaps most promising, as it will require augmentation of 
data-driven response functions45,53 in 3D, to immediately test social behaviour.

Recent years have witnessed sustained movements that strenuously advocate the respectful treatment and 
welfare of animals in laboratory research. With approximately twenty million animals used in research and 
testing annually, policy-makers, citizens, and scientific authorities alike yearn for alternative approaches, while 
retaining the fundamental instrument of scientific investigation and the improvement of human health. Here, we 
have proposed the systematic integration of computer modelling as a new, unprecedented means to complement 
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preclinical research on animal behaviour, focusing on the zebrafish-animal-model. While our simulations cannot 
replace in-vivo experiments, they can constitute an economical (time and budget-wise) complement to inform 
new experimental design and engineering approaches69–72, along with the definition of mathematically grounded 
measurable parameters73–76, leading to a consistent reduction of experimental subjects.

Materials and Methods
We begin by formulating the model for the time evolution of the yaw rate, pitch rate, and speed, all of which are 
assumed to be coupled. Environmental interactions with the boundaries–tank walls, tank bottom, and water 
surface–are incorporated into the yaw and pitch rates in the form of avoidance reactions. We then detail the 
experimental data used to calibrate the 3D model, followed by model calibration where individual parameters are 
estimated using maximum likelihood estimation (MLE).

Ethics statement. The data used in this paper are obtained from the control condition of trajectory dataset 
published in ref. 38. The experimental methods in ref. 38 were performed in accordance with the relevant guide-
lines and regulations, and were approved by the University Animal Welfare Committee of New York University 
under protocol number 131424, and the Animal Welfare Oversight Committee of the Polytechnic Institute of 
New York University (now New York University Tandon School of Engineering which was independent from 
New York University until 2013 with respect to animal care) under protocol number AWOC-2013-103.

Reference Tank shape Dimensions (cm) Time (s)
Water 

volume (l)
Total surface 

(cm2)
Avg. speed 

(cm s−1) Specific source

88 Rectangular parallelepiped 23.5 ×  13.5 ×  13.0 300 1.0 1408.8 6.2 Fig. 1d: 2D data available

Exp. 189 Trapezoidal prism 27.9 ×  6.4 ×  15.2 300 1.4 1408.8 2.3 Fig. 1: speed estimated from 2D travelled distance

Exp. 289 Trapezoidal prism 27.9 ×  6.4 ×  15.2 300 1.4 1408.8 2.2 Fig. 4: speed estimated from 2D travelled distance

37 Trapezoidal prism 27.9 ×  7.1 ×  15.2 360 1.5 1339.4 4.0 Figs 1 and 2: 3D data available

Exp. 158 Trapezoidal prism 27.9 ×  7.1 ×  15.2 360 1.5 1339.4 2.2 Fig. 1a: speed estimated from 2D travelled distance

Exp. 159 Trapezoidal prism 27.9 ×  7.1 ×  15.2 360 1.5 1483.7 2.7 Fig. 5b: speed estimated from 2D travelled distance

Exp. 259 Trapezoidal prism 27.9 ×  7.1 ×  15.2 360 1.5 1339.4 3.9 Fig. 6b: speed estimated from 2D travelled distance

Exp. 181 Trapezoidal prism 28.0 ×  7.0 ×  15.0 360 1.5 1337.6 2.5 Fig. 1c: 3D data available

Exp. 281 Trapezoidal prism 28.0 ×  7.0 ×  15.0 1800 1.5 1337.6 4.4 Fig. 1d: 2D data available

Exp. 190 Trapezoidal prism 28.0 ×  7.0 ×  15.0 360 1.5 1337.6 3.5 Fig. 1a: speed estimated from 2D travelled distance

60 Trapezoidal prism 28.9 ×  7.4 ×  15.1 900 1.5 1527.7 5.2 Fig. 5a: 2D data available

91 Trapezoidal prism 28.9 ×  15.1 ×  7.1 360 1.5 1527.7 4.7 Fig. 3: speed estimated from 3D travelled distance

40 Trapezoidal prism 27.0 ×  7.0 ×  15.0 360 1.5 1237.5 2.7 Fig. 5a: 3D data available

92 Trapezoidal prism 28.0 ×  7.0 ×  15.0 300 1.5 1337.6 4.0 Table 1: 2D data available

Exp. 381 Cylinder 12.0 ×  19.0 1200 2.0 893.0 2.0 Fig. 4: 2D data available

Exp. 390 Cylinder 21.0 ×  24.0 360 4.2 1483.7 6.0 Fig. 2a: 2D data available

66 Rectangular parallelepiped 30.0 ×  10.0 ×  15.0 60 4.5 1800.0 4.4 Fig. 1b: 2D data available

Exp. 193 Rectangular parallelepiped 30.0 ×  10.0 ×  15.0 300 4.5 1800.0 3.9 Fig. 1c: 2D data available

Exp. 293 Rectangular parallelepiped 30.0 ×  10.0 ×  15.0 300 4.5 1800.0 4.5 Fig. 2c: 2D data available

94 Rectangular parallelepiped 20.0 ×  12.0 ×  25.0 600 6.0 2080.0 5.9 Fig. 5: speed estimated from 2D travelled distance

Exp. 295 Cylinder 21.0 ×  24.0 360 8.3 1339.4 3.4 Fig. 2b: 2D data available

39 Rectangular parallelepiped 25.0 ×  25.0 ×  18.0 1200 8.8 2650.0 4.4 Fig. 1f: 3D data available

96 Parallelepiped 40.0 ×  30 ×  30 1800 36.0 6600.0 7.2 Table 2: 2D data available

97 Parallelepiped 54 ×  30 ×  30.0 600 24.3 5760.0 3.6 Fig. 8: 3D data available

98 Parallelepiped 50.0 ×  25.0 ×  30.0 1800 37.0 6940.0 4.3 Fig. 5: speed estimated from 2D travelled distance

99 Parallelepiped 50.0 ×  30.0 ×  25.0 3600 37.0 7000.0 5.8 Fig. 1: speed estimated from 2D travelled distance

100 Parallelepiped 56.0 ×  30.0 ×  30.0 900 40.6 7832.0 3.0 Fig. 6: 2D data available

101 Parallelepiped 56.0 ×  30.0 ×  30.0 600 43.7 7488.0 5.1 Fig. 4: 2D data available

102 Cylinder 90.0 ×  10.0 300 63.6 15543.0 5.2 Fig. 4: 2D data available

38 Parallelepiped 56.0 ×  30.0 ×  30.0 600 43.7 7832.0 4.5 Table 1: 3D data available

103 Parallelepiped 120.0 ×  120.0 ×  20.0 300 144.0 33600.0 10.5 Fig. S1 (Supporting info): 2D data available

104 Parallelepiped 120.0 ×  120.0 ×  20.0 300 144.0 33600.0 9.3 Fig. 6: 2D data available

Table 1.  Tank shape, dimensions, duration of the experiment, water volume, total surface area, and 
average speed from 32 different experiments reported in the literature. Values from control conditions were 
used to ensure that fish were not exposed to experiment-specific stimuli. Water volume may not match the tank 
volume due to lower water levels than tank height. Total surface area is taken as the sum of the area of all water 
surfaces except when water depth is not available, in which case the tank is assumed to be full (the same rule is 
used for the computation of the water volume). The dimensions for the rectangular parallelepiped and trapezoid 
are given in term of (length(cm) ×  width (cm) ×  depth (cm)) whereas for the trapezoidal tank shape, only the 
maximum length and the width at the top surface are reported. The cylinder shape is given in term of (diameter 
(cm) ×  height (cm)).
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Modelling zebrafish motion in 3D. Fish yaw rate in the tank frame (Fig. 9) is modelled as a jump persis-
tent turning walker (JPTW), following our previous work on zebrafish 2D swimming in shallow water tanks43. 
Briefly, the instantaneous variation at time t of the yaw rate, dωt (rad s−1), is described as the sum of a determinis-
tic term, which quantifies the deviation from a desired value, and two stochastic terms, which represent variability 
in the yaw rate in the form of increments of a Wiener process and intermittent large turns in the yaw direction in 
the form of a jump process. Specifically, the JPTW for the yaw rate reads

ω η ω σ= − + +ω ω ω ω ωf t W Jd ( )d d d , (1)t t t t

where ηω(s−1) is the relaxation rate at which the yaw tends to reach the desired value fω, which encapsulates wall 
interaction; ωWt  is the standard Wiener process, whose time increment is a Gaussian with variance equal to dt; 
σω(rad s−3/2) is a weighting parameter used to scale the Wiener process; and ωJt  is the yaw rate jump process.

We model the wall interaction fω as a decaying function following the approach in ref. 54, and parametrize 
this function with the time to collision53. Denoting by θω (rad) the angle between the normal to the projected wall 
point of impact and the fish heading vector projected on the horizontal plane, the wall interaction function is

θ θ θ=




−




ω ω ω
ω

ω
ωf t k

t
( , ) sgn( ) w cos ,

(2)W a

where sgn(• ) is the sign function; kW >  0 characterizes the intensity of the wall interaction; wa (s−1) is a 
non-negative parameter that captures the tendency to follow the wall; and tω (s) is the time to collision, estimated 
as the time it takes for the fish to reach the wall at its current velocity. Note that the wall interaction function 
depends on the time t through both θω and tω. As such, the simulated fish turns away from the wall with higher 
intensity as the time-to-collision approaches zero, and for large values, the time-to-collision does not affect fish 
swimming. The wall interaction function (2) differs from the one proposed in ref. 53 in terms of the second 
summand − kWwa cos θω, which is included to describe wall following or thigmotaxis, a commonly observed 
behaviour in zebrafish28.

Similar to ref. 43, the yaw rate jump process, ωJt , is modelled as

∑=ω
ν

ω

=

ω

J Z ,
(3)

t
j

j
1

t

Here, ωZj , for j =  1, 2, … , are independent and identically distributed (i.i.d.) Gaussian random variables with zero 
mean and standard deviation equal to γω (  γ∼ω ωZ (0, )j ) and νωt  is a counting process defined such that, for 
time r ≤  t, ν ν−ω ω

t r  is a Poisson random variable with parameter λω(t −  r). The parameters γω (rad s−1) and λω 
(s−1) measure the severity and frequency of the jumps in the yaw rate.

Fish pitch rate in the tank frame (Fig. 9) is also modelled as a JPTW, since zebrafish pitch rate can reach values 
beyond three times the standard deviation with arrival time following an exponential distribution (Fig. 10). The 
instantaneous change in pitch rate dϕt is thus modelled as

Figure 9. Fish orientation in terms of the azimuth (ψ) and elevation (β) in the tank inertial frame (blue). 
Fish yaw rate, pitch rate, and speed are modelled as stochastic processes. Fish interaction with the boundary is 
modelled as a function of the predicted time to collision and the angle made by the projected fish heading to the 
normal at the impact point θ.
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ϕ η ϕ σ= − + + .ϕ ϕ ϕ ϕ ϕf t W Jd ( )d d d (4)t t t t

Here, ηϕ(s−1) is the relaxation rate in reaching the desired value fϕ, which captures the tendency to avoid bound-
aries along the tank depth, that is, tank bottom surface and water surface; ϕWt  is the standard Wiener process, 
which is weighted by the pitch rate variability σϕ(rad s−3/2); and ϕJt  is the pitch rate jump process.

Similar to boundary avoidance in the yaw rate, boundary avoidance along tank depth, fϕ is parameterized by 
the time to collision tϕ and the angle between the normal to the projected boundary point of impact and the fish 
heading vector projected on the vertical plane oriented along the tank depth θϕ

θ θ θ=




−




ϕ ϕ ϕ
ϕ

ϕ
ϕf t k

t
w( , ) sgn( ) cos ,

(5)W a

where kW >  0 and wa are defined in Eq (2). To reduce the number of parameters in the proposed model, we 
describe the interaction with the bottom wall and the free surface through the same parameters used for the side 
walls interaction.

Similar to the yaw, the pitch jump process is also modified to avoid collisions beyond a critical time by forcing 
a jump as

∑=ϕ
ν

ϕ

=

ϕ

J Z ,
(6)

t
j

j
1

t

where ϕZj , for j =  1, 2, … , are i.i.d. Gaussian random variables with zero mean and standard deviation γϕ, and νϕt  
is a counting process defined such that, for time r ≤  t, ν ν−ϕ ϕ

t r  is a Poisson random variable with parameter 
λϕ(t −  r).

Fish speed is found to vary about an average mean value while always staying positive (Fig. 11). We therefore 
model instantaneous change in fish speed, υt(cm s−1) as a Cox-Ingersoll-Ross process52

υ η µ υ σ υ= − + .υ υ υ υ υf t Wd ( )d d (7)t t t t

Here, ηυ(s−1) is the adjustment rate controlling the rate at which fish speed reverts to its long term average value 
μυ(cm s−1); fυ =  fυ(ωt, ϕt) is a scaling function of μυ; and υWt  is a standard Wiener process weighted by the speed 
volatility συ(cm1/2 s−1). Different from Eqs (1) and (4), the Wiener process is weighted by the state variable, 
whereby we multiply the speed volatility by the square root of the speed. This allows for scaling the Wiener pro-
cess proportionally to the instantaneous speed, ensuring that the speed is always nonnegative, provided that the 
remaining model parameters satisfy 2ηυμυ ≥  (συ)2. The scaling function fυ is defined such that

ω ϕ
ω ϕ

=
+

υ
υ

f A( , ) ,
(8)

t t
t t

where Aυ (s−1) is a positive parameter to be determined. This functional dependence ensures that the speed 
decreases with the pitch and yaw rate, whereby the fish is expected to reduce its speed when undertaking a 
manoeuvre in either the vertical or horizontal plane. The stochastic differential equations Eqs (1), (4) and (7) 
define the proposed 3D model of zebrafish swimming.

Beyond the coupling through the function fυ in Eqs (7) and (8), we assume that speed, pitch rate, and yaw 
rate processes are pairwise linearly correlated via the corresponding stochastic terms77. The proposed correlation 
structure is

ρ=υ ϕ υϕW W td d d , (9)t t W

ρ=υ ω υωW W td d d , (10)t t W

where ρ <υϕ 0W  is the correlation coefficient between the speed and the pitch rate Wiener processes; ρ <υω 0W  is 
the correlation coefficient between the speed and the yaw rate Wiener processes; Based on experimental data 
where absence or low correlation is observed between yaw and pitch rate, we hypothesize no correlation between 
pitch and yaw rates, and between the speed Wiener process and the pitch and yaw rate jumps, that is,

=ϕ ωW Wd d 0, (11)t t

=υ ϕW Zd 0, (12)t t

= .υ ωW Zd 0 (13)t t

Model calibration. The experimental dataset of 3D zebrafish swimming used to calibrate the model is 
described first, followed by our approach for parameter estimation, which is a combination of MLE and locally 
weighted regression. Next, we present the discrete form of the 3D fish swimming dynamics that is utilized to 
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simulate trajectories. Finally, we detail the in-silico experiments that are used to validate and evaluate the pro-
posed model.

Experimental dataset for model calibration. We calibrate the model using a subset of the dataset 
collected as part of an earlier study38. Specifically, the data comprises of 3D trajectories of 10 experimentally 
naive zebrafish, filmed one at a time, in a 56 ×  30 ×  30 ×  cm compartment within a 76 ×  30 ×  30 ×  cm glass tank 
(Fig. 12) for 10 minutes each after 10 minutes of habituation. The 56 cm length compartment was separated from 
two side regions, 10 cm in length each, with a glass partition. The water depth in the tank was maintained at 
26 cm. The zebrafish were filmed using two camera arranged to view the top and front side of the tank thus 
obtaining orthogonal views. The tank surface on four sides, where camera view was not required was covered 
with white contact paper for increased contrast during tracking. A custom tracking system was utilized to obtain 

Figure 10. Sample experimental and simulated fish pitch rate time series, (a) and (c), and distribution of the 
jumps arrival time in seconds, (b) and (d). Jumps are identified with values of the pitch rate over three times the 
standard deviation in dashed lines (red). The arrival time is the time between two consecutive jumps, and can be 
fitted using an exponential distribution in solid line (red).

Figure 11. Sample fish speed time series (a) and distribution (b). Speed is modelled as a stochastic process that 
maintains a positive value.
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horizontal and vertical trajectories of fish swimming which were then merged to form three-dimensional trajec-
tory data. Additional details on the experimental procedure and the tracking algorithm can be found in ref. 38.

Fish 3D position data was filtered using a Daubechies wavelet filter78 to remove body movement due to 
tail-beat motion54. Similar to refs 43, 54, the curvature of the fish centroid trajectory was utilized to estimate the 
time trace of fish speed, pitch rate, and yaw rate. Stress-related measures, including freezing and thrashing, were 
computed automatically from the trajectory data79. A single trial where fish was found to freeze more than 70% of 
the time was discarded from the analysis, reducing the total number of trials to nine.

Parameter estimation. The full 3D swimming model excluding boundary avoidance consists of 16 param-
eters denoted by Θ  =  (Ω, Φ , ϒ , P). These include: four independents parameters and two identical parameters 
each for yaw rate Ω =  (ηω, σω, γω, λω, kW, wa) and pitch rate Φ  =  (ηϕ, σϕ, γϕ, λϕ, kW, wa) ; four independent param-
eters for speed ϒ  =  (μυ, ηυ, συ, Aυ); and two correlation coefficients ρ ρ= υϕ υωP ( , )W W . Model parameters were 
estimated using MLE with a discrete time Euler approximation80. Denoting the time index by k =  1, 2, … , where 
tk −  tk−1 =  Δ t (s), the discrete forms of Eqs (1), (4) and (7) are

ω ω σ
η

ε γ ν ζ

= − + − + −

× + ∆ ∆

ω η η ω
ω

η

ω ω ω ω

− ∆ − ∆ − ∆ω ω ω
k f e k e e

k k t k

( ) (1 ) ( 1) 1
2

(1 )

( ) ( ) ( ), (14)

t t t2

ϕ ϕ σ
η

ε γ ν ζ

= − + − + −

× + ∆ ∆

ϕ η η ϕ
ϕ

η

ϕ ϕ ϕ ϕ

− ∆ − ∆ − ∆ϕ ϕ ϕ
k f e k e e

k k t k

( ) (1 ) ( 1) 1
2

(1 )

( ) ( ) ( ), (15)

t t t2

υ µ η υ η σ υ ε= ∆ + − − ∆ + − ∆ .υ υ υ υ υ υk f t k t k t k( ) ( 1)(1 ) ( 1) ( ) (16)

Similar to ref. 43, we hypothesize that a single jump occurs at most in a time step and accordingly, approximate 
the jump processes Δ νω(kΔ t) and Δ νϕ(kΔ t) by Bernoulli random variables with parameters λωΔ t, and λϕΔ t  
respectively. In Eqs (14), (15) and (16), ευ(k), εϕ(k) and εω(k) are all correlated Gaussian random variables.

We estimate the model parameters separately for fish swimming near the boundary and far from it. 
Specifically, we partition the fish trajectory data based on the distance from the wall, where position data further 
from 2 body-lengths (BL) ≃ 6 cm of the wall is considered to be not affected by the wall interaction response. This 
threshold of 2BL represents a rounded up value for measuring zebrafish peripheral activity61,81. Accordingly, we 
first estimate the fish state at time index k denoted by X(k) =  [ω(k), ϕ(k), υ(k)]T, and at k −  1 without the boundary 
avoidance functions as ω ϕ µ η υ ηΠ − = − − ∆ + − − ∆η η υ υ υ− ∆ − ∆ω ϕ

k k e k e t k t( 1) [ ( 1) , ( 1) , ( 1)(1 )]t t T
. 

Using the above notation, the fish discrete state X(k) admits the following distribution:

Figure 12. Illustration of the experimental setup. All sides, except the top and front, are covered with white 
contact paper.
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ε ζ∼ Π − + +X k k k k( ) ( 1) ( ) ( ), (17)

where N Sε =k 0( ) ( , )W  and ζ =k 0( ) ( , )JN S , with 0 =  [0, 0, 0]T being the 3D null vector, and the covariance 
matrices for Wiener process, W, and jump processes,  J, are
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We introduce the system augmented covariance matrix aug , assumed positive definite, as

δ δ
δ δ δ δ
δ δ δ δ

= +
















ϕ ω

ϕ ϕ ϕ ω

ω ϕ ω ω

0
,W Jaug  

where δϕ and δω are equal to 1 when a jump occurs in the pitch or yaw rates respectively, and 0 otherwise. Using 
this augmented covariance matrix, the likelihood probability density function for the state of the fish at a given 
time index k is
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where λ λ δ δ λ λ λ λ= ∆ ∆ − ∆ − ∆ϕ ω ϕ ω ϕ δ ω δ ϕ δ ω δ− −ϕ ω ϕ ω
g t t t t( , , , ) ( ) ( ) (1 ) (1 )1 1  is the probability of a jump to 

occur in either pitch or yaw turn rate and det(• ) is the matrix determinant. Considering a given 3D time series of 
zebrafish speed, pitch, and yaw turn rates =X̂ k{ ( )}k

T
1, where T is the length of the dataset, model calibration is 

performed by maximizing the log-likelihood function50
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The MLE is implemented using the non-linear constraint algorithm available in the optimization toolbox 
of MATLAB (R2015a; MathWorks, Natick, Massachusetts, USA)82. To initialize and reduce the size of the large 
parameter set, three separate likelihood functions, corresponding to the three stochastic differential equations 
associated with, yaw rate, pitch rate, and speed, are utilized to estimate the values of a subset of the parameter set, 
consisting of the 11 independent parameters, with no correlation. Next, these values are used as initial values to 
maximize the 3D likelihood function in Eq (30). Table 2 lists the average value of estimated parameters. The full 
set of calibrated model parameters for each fish are available in the supporting information.

For wall interaction functions fω and fϕ, regression fits are unable to capture two behaviours: wall interaction 
with low times-to-collision during which the fish performs a jump manoeuvre to prevent a collision, and wall 
following28. While simulating wall interaction with jumps require further complexity in the form of additional 
jump term, wall following is likely not captured due to the fit performed on trajectories. Specifically, trajectories 
will be rendered discontinuous due to specific threshold used to partition them into free swimming or wall inter-
action. In reality, this threshold may not be even a constant value. Accordingly, an instance of wall following may 
be captured in the form of two different collision avoidance manoeuvres if the fish swims beyond the assigned 
threshold even once.

During our simulations we found that we can achieve both these behaviours by increasing the value of kW. 
Accordingly, we select the value of kW =  2.33 for wa =  0.88 s−1. The parameter Aυ for the scaling function fυ is esti-
mated in two steps by utilizing a locally weighted regression to estimate the decay function of the absolute turn 
rate and the speed, and by applying a simple linear regression to approximate the decay rate which is averaged to 
2.92 for the 9 fish datasets.

Simulation of fish trajectories. Fish are simulated using Eqs (14), (15) and (16), that is, by Euler integrat-
ing the stochastic differential equations to obtain fish heading velocity at each time step. In particular, identifying 
fish position at k as ∈kr( ) 3 and its orientation in 3D through the azimuth ψ(k) ∈  [− π, π) and elevation 
β ∈ − π πk( ) [ , )

2 2
 in the tank frame (Fig. 9), the position and orientation at the next time index is
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where ω(k), ϕ(k), and υ(k) are obtained as in Eqs (14), (15) and (16). The correlated Gaussian random variables 
ευ(k), εω(k), and εϕ(k) are sampled on uncorrelated standard Gaussian random variables ξυ(k), ξϕ(k), and ξω(k) 
with zero mean and unit standard deviation through77

ε ξ=ω ωk k( ) ( ), (32)

ε ξ=ϕ ϕk k( ) ( ), (33)

ε ρ ξ ρ ξ ρ ρ ξ= + + − − .υ υω ω υϕ ϕ υϕ υω υk k k k( ) ( ) ( ) 1 ( ) ( ) ( ) (34)W W W W
2 2

In-silico experiments. Beyond demonstrating the accuracy of the proposed model on the experimental 
dataset in ref. 38, we consider an independent in-silico experiment addressing conditions which were not part of 
the dataset used for model calibration.

In the first computational experiment, a total number of 10 fish are simulated, each for 600 seconds with  
Δ t =  0.04 s within a 56 ×  30 ×  30 ×  cm bounded environment, replicating the experimental setup in ref. 83. Fish 
position is initialized so that all fish start at right top corner of the tank and the azimuth and elevation are oriented 
at a uniformly random direction. Model parameters are selected randomly to uniformly lie within one standard  
deviation of the average values (Table 2) obtained after model calibration on the real experimental data. This selection  
for the model parameters attempts at facilitating the process of replicating model predictions, and mitigating  
the dependence of inter-individual variability of the subjects on the predictions of ethological observables.

In the second computational experiment, we explore the role of tank dimensions (length, width, and depth) 
on zebrafish response. For a rectangular parallelepiped, we consider three different values for the depth (10, 20 
and 30 cm), five different values for the tank width (5, 10, 20, 50 and 100 cm), and four different values aspect 
ratios (ratio of width to length: 0.25, 0.5, 0.75 and 1) width. Overall, we, simulate a total of 60 different tanks, 
spanning typical sizes considered in the literature (Table 1). We perform a total of 10 simulations for each tank 
geometry, similar to the first computational experiment. Each simulation is initialized as the first in-silico exper-
iment. We set Δ t =  0.04 s and we simulate each fish for 12 minutes. Model parameters are randomized as in the 
first experiment.
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Analysis. The trajectories of the 10 simulated fish in the first experiment are utilized to generate a distribution 
of position and speed along the horizontal and vertical sections of the environment for visual comparison with 
the experimental data. All 10 simulated fish trajectories are then processed to compute ethological observables 
used for analysis in fish behaviour experiments31,36,84, such as: average speed; spatial preference along the water 
column scored from the time spent and number of entries in the top or bottom third of the tank; and the spa-
tial preference along the tank length, measured from number of entries in either of the left or right third of the 
tank and the time spent therein. These observables are then compared with experimental data from38 using a 
non-parametric Kruskal-Wallis test85 which returns the chi-square statistics (χ2(·)) with degree of freedom (·), 
and the p-value.

For the simulations of the second experiment, fish behaviour is analysed in terms of the average speed, which 
is often reported in the technical literature as a measure of activity60,86 (Table 1). The correlation between the fish 
speed and each tank dimension is assessed using a generalized linear regression model (GLM)87. The same model 
is used to aggregate the simulation data and demonstrate the dependence of the speed on the overall tank surface 
area. The latter dependence is verified through comparison with experimental observations, which are also aggre-
gated in terms of the total surface area. The total surface area accounts for the entire surface of the water, including 
the tank sides and the free surface. The experimental data listed in Table 1 is collated from 32 different zebrafish 
experiments, across a range of tank geometries and dimensions. We utilize the command glmfit of Matlab which 
returns the dispersion, the F-test statistics, and the p-value on the regression model assuming Gaussian error 
distribution. All the statistical tests are performed with a significance level set at 0.05.
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