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Background
In 2014 in the US, there is an estimation of 1,665,540 new diagnosed cancer cases 
and 585,720 deaths. Cancer maintains its ranking as the second most common cause 
of death in the developed and developing countries, accounting for nearly a quarter of 
deaths (Siegel et al. 2015). Among others, these statistics make cancer the most urgently 
investigated disease in today’s research efforts.

Cancer description

Neoplasm or tumor is an independently growing mass of abnormal cells. The tumors 
that remain localized, cannot metastasize to other organs and  are therefore innocent 
called benign tumors. Malignant tumors, also called cancers, are locally destructive neo-
plasms with the potential for distant spread, thus causing death (Goldschmidt and Chief 
2013). Cancers are classified by the tissue from which they arise and by the type of cells 
involved. For example, leukemia is a cancer of circulating white blood cells, sarcoma is 
a type of cancer arising from tissues of mesenchymal derivation such as adipose or con-
nective tissues, and carcinoma is a cancer originating from epithelial cells. The epithe-
lial cells, are cells closely interconnected in such a way as to form acinar or glandular 
structures, or to line cavities or tubular organs. Such examples are the cells forming the 
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respiratory or gastrointestinal tract or solid organs such as the breast, the pancreas and 
the prostate gland, among several others. Until recently, the classical model of carcino-
genesis stated that cancer starts when a cell inside a tissue is subjected to DNA muta-
tions that change its phenotype to cancerous. A primary tumor, which is a tumor in its 
original site of occurrence, is usually traced to a single mutated cell, from which over a 
period of time, a colony of cells is formed. Progeny of cancer cells reproduce at a faster 
rate than normal cells forming a colony. In cancers of epithelial origin, namely carcino-
mas, this colony is delimited by a basement membrane that isolates the neoplastic cells. 
At this phase, the tumor is called carcinoma in situ and has no metastatic potential. Once 
the neoplastic cells acquire additional abilities to break out of the basement membrane, 
than they invade the surrounding extracellular matrix (ECM) and the tumor is called 
invasive carcinoma and can find access to vessels and produce metastases. Cancers can 
grow up to 1–2 mm3 by obtaining oxygen and nutrients through the existing vasculature 
(Folkman 1990). During this stage the tumor is said to be avascular. Invasive carcinoma 
cells can find access to old and newly formed blood vessels. Once the tumor cells enter 
the blood vessels they can be transported via the circulation to other organs, where they 
can exit from the circulation, engraft in the new environment and start to grow again to 
produce a metastatic or secondary tumor. In this manuscript we consider only the early 
stages of cancer development, while the tumor remains in an avascular state. Tradition-
ally the cause of cancer is considered being the fact that DNA replication and repair is 
not a 100% accurate process, and cancers emerge as a result of the many gene mutations 
accumulating in the human body over a person’s lifetime. There is evidence that a single 
abnormal cell, which gives rise to a tumor, has risen through a number of genetic altera-
tions, or epigenetic mutations; the latter means a change of gene expression as a result of 
blocking of gene promoters. The two main ways by which genes can become oncogenic 
are: (1) a stimulating gene becomes hyperactive, or upregulated; such an abnormal gene 
is called oncogene; and (2) an inhibitory gene becomes inactive, or downregulated; it is 
called a tumor suppressor gene, an example being the p53 gene which controls the pro-
gression of the cell cycle. In order to continue to grow, the tumor requires new sources of 
nutrients. It does it by secreting chemicals called tumor growth factors, which stimulate 
the formation of new blood vessels, attracting them into the tumor. This is the process of 
angiogenesis; a tumor which has developed beyond this stage is said to be vascularized. 
Further on, the progeny of cancer cells have a higher probability of mutations that lead 
to increased cancer aggressiveness over time. Breakthroughs in medical science led to 
the discovery that cancer is initiated not only by the mutation of a cell’s DNA but rather 
by the mutation of a stem cell’s DNA (Reya et al. 2001; Jordan et al. 2006). This mutated 
stem cell now named cancer stem cell travels inside the tissue like normal stem cells, 
producing cancer cells.

Modeling

Eykhoff in 1974 defined a mathematical model as a ‘representation of the essential 
aspects of a system which presents knowledge of that system in usable form’ (Åström 
and Eykhoff 1971). Considering cancer as a multiparametric complex dynamical sys-
tem, mathematical modeling aims to provide a better understanding of the mechanisms 
causing the tumor growth and contribute to the diagnosis, therapy and prevention. 
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Through mathematical methods, the empirical and qualitative observations and experi-
mental data can be explained and integrated to realistic models that may also serve as 
a indispensable ‘non-invasive tools’, for either assessing a treatment (therapy) or for 
understanding the biological rules of growth. Numerous mathematical models have 
been developed in the last 50  years for the study of tumor growth, in different phases 
(Lowengrub et al. 2010). Most of these mathematical approaches fall initially into two 
general categories, the continuum and the discrete; based on the assumptions made for 
the tumor tissue. Continuum models represent the main category of models employed 
in this field, (see for example Murray 2003; Chaplain and Lolas 2005), where the tumor 
is considered to be homogeneous and continuous averaging out the effects of individual 
cells. Its growth is described through the evolution of its boundary. Exemplary efforts of 
continuum models for cancer growth are those provided by Byrne and Chaplain (1996) 
and Byrne et al. (2003) where the proposed models describe the evolution of the bound-
ary of an avascular solid tumor driven by nutrient supplied by the extracellular matrix. 
Cellular movement has been studied in (Macklin and Lowengrub 2007; Greenspan 
1976; Friedman 2007; Byrne and Matthews 2002; Chaplain and Sleeman 1993). Con-
tinuum cancer models are focusing on the evolution of the densities of cells (abnormal, 
normal, or dead), and the evolution of boundaries of the tumor regions which are due 
mainly to changes of the concentrations of biochemical species, are described by dif-
ferential equations. Their approach is based on the principles of continuum mechanics. 
Some of these models use only ordinary differential equations (ODEs) (Greenspan 1972; 
Andersen et al. 2005), overpassing the spatial heterogeneity of tumor growth. Otherwise 
Partial Differential Equations (PDEs) of reaction diffusion type take into account spatial 
effects and also may describe the time evolution of the tumor region. Since a determin-
istic approach neglects random influences on the growth process, stochastic differential 
equations can be regarded as more adequate models for the development of a population 
(Rosenkranz 1985). Additionally one of the methods that is applied to describe tumor 
growth is the dynamic scaling of interfaces based on the work given by Brú et al. (2003). 
There is strong experimental evidence that the fluctuations of tumor region bounda-
ries show temporospatial behavior, that contain the characteristics of self-affinity. The 
interface fluctuations seem to evolve according to power laws. This approach is used as a 
starting point to describe the evolution of tumor boundaries through the use of stochas-
tic partial differential equations.

Discrete models on the other hand consist a separate category, where the behavior of 
the tumor is determined by the interaction between individual cells and the microen-
vironment both. Recently, discrete-numerical models (Swanson et al. 2002; Clatz et al. 
2005) are given much attention due to the increase in computer power that is available 
nowadays. In these numerical models the biological processes are described using math-
ematical tools, available from numerical analysis methods. Special reference is due to the 
Cellular Potts Model (CPM) also known as extended large-q Potts model or Glazier and 
Graner model. The CPM is a lattice-based computational modeling method to simulate 
the collective behavior of cellular structures with notable applications on cancer mod-
eling (Graner and Glazier 1992; Ghaemi and Shahrokhi 2006; Turner and Sherratt 2002; 
Stott et al. 1999). In the CPM the process of the simulation progresses by updating the 
cell lattice one pixel at a time based on a set of stochastic rules. CPM can be thought of 
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as an agent based generalized cellular automaton method in which cell agents interact 
through precise methods. Hybrid models employ differed methods from both contin-
uum and discrete mathematics in order to archive a better modeling approach of the 
studied phenomenon. In the case of hybrid tumor modeling, continuum methods are 
being used mainly to model the tumor on a macroscopic scale while discrete functions 
are applied mainly to the microscopic scale. Multiphase modeling is used in modeling 
physical phenomena that are described by two-or-more liquids that flow on different 
phases. Each of the phases is considered to have a separately defined volume fraction 
and velocity field. In the case of cancer multiphase modeling, the tumor is described as 
two or three separate liquids, depending on the assumptions of each approach. These 
liquids are correlated with corresponding types of tumor cells and are presumed to flow 
with different velocity fields, thus simulating the evolution of the various tumor regions 
in time (Sciumè et al. 2013). Multiscale approach is employed in order to solve problems 
which have important features at multiple scales. Multiscale models may serve as theo-
retical tools but also allow for a deeper understanding of the underlined biological sys-
tem. These models incorporate biological mechanisms that refer to intracellular, cellular 
or extracellular scale. While employing multiscale modeling several restrictions have to 
be taken under consideration, the most important of which is scale linking (de Pablo 
2011; Steinhauser 2008). A detailed review of the various proposed mathematical mod-
els for tumor growth can be found in the work of Lowengrub et al. (2010).

Results and discussion
In the present manuscript we propose a hybrid multiscale model for avascular tumor 
growth. At the tissue scale, the concentrations of the encountered biochemical species 
are described through diffusion equations, while at the cellular scale cellular life is mod-
eled as an cellular automaton. At this scale we introduce the concept of a function that 
encounters the chemical energy level of each cell in ATPs. The existence of this function 
in the model affects the behavior of the cells and consequentially determines the mor-
phology of the tumor. At the intracellular scale, stochastic methods describe the behav-
ior of the cellular organs.

Results

Based on the configuration and methodology explicitly presented in the following sec-
tions, we demonstrate our early results (of 30 simulations) that describe the behavior of 
a tumor. The qualitative characteristics of the proposed model are in accordance to other 
mathematical models of avascular tumor growth, while in addition, qualitative informa-
tion of the tumor morphology is gained, which is the formation of necrotic islands in the 
center region of the tumor. The obtained results coincide with observed clinical data. 
In more detail the following figures depict a series of cross sections of a simulated three 
dimensional tumor at different time iterations, where the simulated cells are shown as 
circles.

Figure  1a shows initialization of the model and the first cancer cell that is added. 
Until an initial time period of 46 intervals, the population of the proliferating cancer 
cells keeps following an exponential growth which is attributed to the extremely rich 
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biochemical environment which allows for high values of the health function (11) of all 
the cells and thus at a high proliferating rate. This can be observed in Fig. 1b.

After the 52 time iteration, we notice that the amount of nutrient doesn’t suffice to 
allow the entire population of cancer cells to remain proliferating and so we observe 
a quiescent region appearing in the center of the tumor. This results in reduction of 
the growth rate of the cancer cell population. Such behavior is depicted in Fig. 1c. As 
simulation time progresses, we observe that the cancer stem cell produced a new pro-
liferating cancer cell that in turn, starts an exponentially growing second tumor. Such 

Fig. 1  Time lapse of a cross sections from a characteristic three dimensional tumor simulation. Initialization 
and progress of cancer tumor growth, depicting the formation of regions and secondary tumors
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behavior is depicted in Fig. 1d. As time progresses, we notice that the growth of the 
population of the second tumor, even though it remains exponential, it is of a lower 
rate than the one of the original tumor. This behavior is due to the fact that the total 
amount of nutrient inflow, through the tissue remains constant. Therefore the second 
tumor behaves as if it grows in a poorer biochemical environment. This is shown in 
Fig. 1e.

In Fig. 1f we observe the existence of a necrotic region, which appears at the center of 
the first tumor. This is due to the lack of sufficient amount of nutrients in the simulated 
area. Thus the tumor can not sustain the entire cell population and cells that exist in the 
domain with the poorest biochemical environment undergo necrosis.

In Fig.  2 we first show that the cancer stem cell introduces a new cancer cell to 
the model. Secondly we observe that although the area of the first tumor remains 
intact allowing small fluctuations we observe new necrotic cells to appear. This is 
attributed to the degradation of the biochemical environment in the region from 
the growth inhibitors. Finally, we detect that the second tumor shows increased 
thickness of the proliferating area which is closer to the boundary of the simulated 
area. This is due to the inflow of nutrition from the extracellular environment that 
allows for richer biochemical surroundings on that side of the tumor. Also focusing 
in to the quiescent region of the tumor depicted in Fig. 3, the appearance of agglom-
erations of necrotic cells is evident. These agglomerations provide a better insight of 
the morphology of a tumor. 

Model validity and generalization

Studying the evolution of cancer cell population over time iterations, the proposed 
model produces various growth patterns that all converge to a maximum value of each 
type of proliferating and quiescent cells. In the following figure we show the evolution of 
simulated tumor cell populations over time. The lines in Fig. 4 represent the evolution of 
the population of each category of cancer cells with green, blue and black representing 
respectively quiescent, proliferating and necrotic cells.

Fig. 2  Appearance of quiescent region at the center of the second tumor as well as expansion of the 
necrotic region of the first tumor
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In the simulations made under the aforementioned assumptions, the proposed model 
shows that the evolution of the population of quiescent cells over time Q(t) is described 
from the following function:

while the evolution of the population of the proliferating cells over time P(t) is described 
from the following function:

(1)Q(t) =
9.5322E + 06

1+ e−0.0826(t−61.2127)

(2)P(t) =
3.9289E + 06

1+ e−0.1193(t−79.0278)

Fig. 3  Two-dimensional cross-section of a simulated three-dimension tumor. The figure demonstrates a two-
dimensional cross-section of a simulated three-dimension tumor

Fig. 4  Population of cancer cells over time. The dashed lines represent the number or quiescent and prolifer-
ating cells in the simulated area at time iteration t, and the smooth lines represent the data fit estimations of 
the two cellular population growths
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From (2) and (1), we can extrapolate that the total population of living cells of the simu-
lations is 1.3461E+07. This value depends on the imposed boundary assumptions. These 
estimation functions cross validated against the produced simulation data using the 
Leave-p-out methodology. Aiming to verify qualitatively the results obtained through 
the model, we compare them with those derived by classical population models.

Reduction to known results

In order to verify quantitatively the obtained results, the method of data fiting is 
employed. Given the obtained results from the simulations performed and apply-
ing various sigmoid data fitting functions, such as Gompertz, Logistic, Hill, Chapman, 
Boltzmann and Don Levin, the best fit is produced by the Logistic function (3) with 
R-squared: 0.998563718067 and is depicted in Fig. 5.

The general form of the logistic function is:

where N corresponds to the population of living cells, K is the carrying capacity of cell 
population given the biochemical environment and the ECM, r is the growth rate and N0 
is the cell population at the beginning of the simulation. The solution of Eq. (3) is:

Now given that N represents the population of simulated cancer cells, and thus is a 
positive integer, and in order to produce a simpler mathematical model for the simula-
tions with discreet time, the following hazard function (Gillespie 1976) is applied on the 
Logistic equation.

(3)
dN

qt
= rN

(

1−
N

K

)

(4)N (t) =
KN0e

rt

K + N0(ert − 1)

(5)h(N , r,K ) = rN

(

1−
N

K

)

Fig. 5  Average tumor cell population over time. The points represent the average over multiple simulations 
number of cells at time iteration t, and the continuous line represents logistic fit of the average cell population 
at time iteration t in the domain Ω
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Starting from time t = 0 and a single cancer cell at that time, we can calculate the time 
intervals until the next mitosis by using the values of the distribution:

Thus, cancer cell population growth over time can be calculated as demonstrated in the 
following Fig. 6. We depict in this figure that for time t = 0 a single cancer cell exists in 
the simulation environment.

Discussion

Improving our previous work on the proposed model (Ampatzoglou and Hadjinicolaou 
2013) we extended the model by implementing a mechanism for the induction of cancer 
cells from cancer stem cells. In medical literature, these CSC are considered to travel 
inside the tissue and spore at times new cancer cells. This expansion is included in the 
proposed model by a mechanism that allows for a CSC to travel freely inside the simu-
lated area and randomly produce daughters that are cancer cells which can produce new 
tumor ‘islands’. This expansion of the model derives simulation results that are consistent 
with the previously proposed model and are in accordance with the observations of in-
vivo cancer tumors that usually show a non-well-formed and consistent cancer tumor, 
but rather multiple and fluctuated tumors that appear in the form of cancer agglom-
erations within the tissue. Moreover, given the finite rate of inflow of biochemical fac-
tors inside the tumor, we observe a competition for nourishment between the different 
tumor islands. Simulations show that the new tumor islands that are introduced to the 
model from the cancer stem cell deprive already existing tumors from nutrients, thus 
forcing them to reduce the number of cells.

It is well documented both in-vino and in-vitro, that avascular carcinomas can show 
complex structures that deviate from the standard spheroidal patterns (see for exam-
ple Bredel-Geissler et al. 1992; Byrne and Matthews 2002). Similar morphologic char-
acteristics are evident in the proposed model mainly in the development of the necrotic 
region where the necrotic region is not a spherical or a symmetric continuous domain, 

(6)δt = eh(N ,r,K )

Fig. 6  Tumor cells population growth. The lines represent the hazard simulations of population growth for 
the tumor cells. As computer model time t progresses by t = t + δt the population of cancer cells increases 
until the carrying capacity K is reached. In this figure such a simulation is shown with K = 1.3461E + 07, 
r = 0, 21583949 and N0 = 1. The vertical axis represents the population of cancer cells, while the horizontal 
axis represents time iterations
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but rather is divided in two sub-regions. One in the center that is spherical and is occu-
pied solely from necrotic cells and a second area that is occupied from both quiescent 
and necrotic cells with the later forming complex clusters and agglomerations. Simi-
lar formations documented appear in many types of human tumors such as the case of 
human prostate cancer (Hedlund et al. 1999) and seems to be in accordance with real 
data obtained in the case of the Ductal Carcinoma In-Situ of the breast published from 
Fonseca et al. (1997).

Conclusions
We propose a lattice free multiscale model, that describes avascular tumor growth 
through a chemical energy vantage point, using the ATP molecules as a quantification 
approach to reveal cellular dynamics. The proposed health function offers greater reso-
lution and insights to cellular dynamics with respect to small time intervals; in contrast 
to other tumor models where such effects are averaged. Tumor cells are persevered as 
incompressible bodies that react to the cellular environment both biochemicaly and 
mechanicaly. The biochemical environment is described by the concentrations of bio-
chemical species, that propagate through the studied area through diffusion. The values 
of the concentrations of these species are calculated using finite element methodology. 
Cellular movement is implemented as a result of both chemotaxis and a spring based 
cellular adhesion hypothesis. Estimations made for various parameters of the model 
are explained. The model requites calibration in order to produce results that are better 
approaches to observed tumor behavior.

The model predicts (1) avascular tumors that are growing within a circular or spherical 
extracellular environment are likely to reach and oscillate around equilibrium. (2) The 
population of tumor cells depends on the amount of nutrition that it is provided to the 
tumor by the host tissue through the ECM. This is a result of the implemented chemi-
cal energy approach that restricts the population of cells that can be sustained from the 
nutrients that are offered to the tumor by the ECM. (3) The model demonstrates com-
plex formations of necrotic regions scattered around the center of the tumor as shown 
in Fig. 3.

Figure 7 presents the different regions of the proposed model. The tumor grows inside 
the studied area Ω and shows the aforementioned regions with all tumor cells inside 
the UT boundary. The innermost region of the simulated tumors ΩN exists inside the 
boundary noted as UN. In this area all cells are necrotic as a result of low concentrations 
of oxygen and glucose that are incapable to provide enough energy to the cells to remain 
alive. Further the model shows a region between the boundaries UQ1 and UQ2, where all 
cells remain in a quiescent state. In this area noted as ΩQ the biochemical environment 
can support cellular life but is unable to provide the high amount of nutrients and oxy-
gen required by cells to proliferate. Also, the domain between UQ2 and UT is occupied 
by both proliferating and quiescent cells. Both these types of cells appear in this region 
because once a mother cell reaches mitosis, its chemical energy is equally divided to the 
two daughter cells. Thus each daughter cell has a chemical energy level or health level 
that is characteristic of quiescent cells. In the area between the UN and UQ1 bounda-
ries, defined by ΩA a mixture of both quiescent and necrotic cells exists. In this area 
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formations or agglomerations of necrotic cells appear as a result of the model’s consid-
erations, assumptions and is not imposed.

Region ΩA is an innovation when compared with other mathematical models of cancer 
tumor development for the following reasons: such a region is not predicted by other 
models; or is observed under a forced behavior as a direct result or border fluctuations. 
In the proposed model no such rule or assumption is made that forces the creation of 
such artifacts inside the tumor region. Rather, they are produced as a result of the health 
level function that allows for greater insights to cellular behavior.

Methods
The proposed model is a multiscale model for tumor growth. The tumor is presumed to 
consist of cancer cells that develop and evolve freely inside the studied area. These cells 
in accordance with other cancer models belong to three categories that are explained 
in the following section. The behavior of the tumor as a whole as well as the behavior 
of each participating cell individually, is an implicit result of the biochemical environ-
ment in which the cells exist. The participating biochemical species are: oxygen, glucose, 
waste, growth factors and growth inhibitors. The later three are abstract biochemicals 
that include a number of different factors and proteins of cellular life affecting the tumor 
similarly. For example the generic term waste envelops the total of metabolic end prod-
ucts that cells produce such as pyruvate, lactate, alanine, proline, aspartate, and citrate 
(Lanks and Li 1988). Further, we presume that inside the studied area, cancer stem cells 
(CSC) exist, that are able to randomly produce new cancer cells inside the ECM every 70 
time intervals.

Fig. 7  Tumor regions. The different regions produced by the model inside the studied boundary Ω
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Formulation of the problem

For the purpose of this model we assume that the tumor starts and develops over time in 
the tumor domain Ω. ∂Ω is the boundary between the tumor tissue and the host tissue 
as show in Fig. 8. The domain Ω is occupied by the extracellular fluid (ECF) that acts as 
a substrate where all the biochemical factors ‘travel’. ECF corresponds to all body flu-
ids outside the cells. Further on, we assume that the evolution of cancer cells is a result 
of the biochemical environment of each cell. The biochemical species that are consid-
ered to constitute the aforementioned environment oxygen, glucose, waste, growth fac-
tors and growth inhibitors. Each of these species (1) participates in the evolution of the 
tumor according to its concentration Ci(u, t). 

Also an initial state at time t = t0 is imposed for the domain Ω where for each biochemi-
cal species concentration an initial value is assumed:

Further on, in accordance with classical multicellular spheroid models (Greenspan 
1972), we assume that inside domain Ω, there can be cancerous cells that according to 
their state can be divided in three distinct categories: proliferating (cells in the G1, S, 
G2 and M phases); quiescent cells, representing cells in the G0 phase; or necrotic cells. 
These cells abide to adhesion mechanisms, try to move according to chemotaxis laws 
and undergo mitosis under a specific rule framework described in the following sec-
tions. These cancerous cells may be of any geometric shape and size and can move freely 
inside the domain Ω. This configuration allow without enforcing, the creation of regions 
occupied by proliferating, quiescent and necrotic cells. These areas in Fig. 8 are noted by 
ΩP, ΩQ and ΩN respectively. The flowchart of the model is presented in Fig. 9.

(7)Ci(x, t) = Ciconstant, x ∈ ∂Ω

(8)Ci(x, t0) = Ciconstant, x ∈ Ω

Fig. 8  Tumor regions. The studied area Ω including areas occupied by proliferating (ΩP), quiescent (ΩQ) and 
necrotic (ΩN) cells
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Tissue scale

In the proposed model, the biochemical environment of the cells is described through 
the concentrations of five biochemical species, namely oxygen, glucose, waste, growth 
factors and inhibitor factors. All of these biochemical substances are provided either by 
the tumor environment, (oxygen and glucose) and are consumed by the cells or they are 
produced by the cells and removed through the extracellular tissue (waste, growth fac-
tors and inhibitor factors). Propagation of these biochemical species through the domain 

Fig. 9  Model flowchart
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Ω is modeled by diffusion equations with prescribed diffusion constants based on exper-
imental data given by Jiang et al. (2005) as shown on Table 1.

A Dirichlet boundary condition is applied at the boundary ∂Ω expressing the assump-
tion of a constant level of concentrations for all these species at the Ω− and therefore at 
the boundary ∂Ω. When setting up a mathematical model of a biological process, it is 
very important to determine the numerical value of the parameters, because biological 
processes are typically valid only within a limited range of parameters. Further on, each 
biochemical species is considered to be produced or consumed by each cell indepen-
dently according to its state. The equation that is used to describe the diffusion for each 
of these biochemical species for each cell and thus allows the calculation of the concen-
tration of each biochemical factor at each location inside the model is:

where i = 1,2,…,5 corresponding to the oxygen glucose.... respectively.

• • Ci: concentration of biochemical specie ‘i’
• • t: time.
• • Di: diffusion coefficient of biochemical factor ‘i’
• • Qi,j: rate of production-consumption of biochemical factor ‘i’ dependent on the state 

of cell ‘j’ the values of which given in Table 2. 

Cellular scale

On the micro-scale we employ a discrete cell-based model where each cell is represented 
by a set of variables that uniquely characterize it (Harjanto 2010). These are: the location, 
the state of each cell (proliferating, quiescent and necrotic) and the number of mitoses 
that separate it from the original cancer cell that gave rise to the tumor. At this scale our 
proposed model extends to the analogous models that are found in literature, by intro-
ducing a health level function h. This function represents the overall condition of each 
cell and is correlated with/to the equivalent amount of Adenosine 5-triphosphate (ATP) 
molecules of that each cell has got (Knowles 1980).

(9)
∂Ci

∂t
+ ∇ · (−Di∇Ci) = Qi,j

Table 1  Diffusion constants for biochemical species (Jiang et al. 2005)

Oxygen Glucose Waste Growth Inhibitor

Diffusion constant 5.94× 10
−2

1.52× 10
−3

2.124× 10
−3

10
−6

10
−6

Unit (cm2/h)

Table 2  Metabolic rates for  the biochemical species for  proliferating, quiescent 
and necrotic cancer cells (Jiang et al. 2005)

State Oxygen Glucose Waste Growth Inhibitor

Proliferating 108 162 240 1 0

Quiescent 50 80 110 0.5 1

Necrotic 0 0 0 0 2

Units mM/h/cm3 %/h/cm3
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This is a fundamental concept of the proposed model which is explicitly justified 
as follows. Adenosine triphosphate is a nucleoside triphosphate used in cells as a co-
enzyme. According to Knowles (1980) ATP is the ‘molecular unit of currency’ of intra-
cellular energy transfer. While Campbell states that ‘ATP transports chemical energy 
within cells for metabolism. It is one of the end products of photophosphorylation, cel-
lular respiration, and fermentation and is used by enzymes and structural proteins in 
many cellular processes, such as biosynthetic reactions, motility, and cell division’ (Neil 
et  al. 2004). Specifically, a molecule of ATP contains three phosphate groups, and it 
is produced by a wide variety of enzymes, e.g. ATP synthase, from adenosine diphos-
phate (ADP) or adenosine monophosphate (AMP) along with various phosphate group 
donors. Substrate level phosphorylation, oxidative phosphorylation in cellular respira-
tion, and photophosphorylation in photosynthesis are the three major mechanisms of 
ATP biosynthesis. Metabolic processes that use ATP as energy source convert it back to 
its precursors. Therefore ATP is continuously recycled in organisms. ATP is used by cells 
‘as a substrate in signal transduction pathways by kinases that phosphorylate proteins 
and lipids, as well as by adenylate cyclase, which uses ATP to produce the second mes-
senger molecule cyclic AMP. The ratio of ATP over AMP used as a way for a cell to sense 
how much energy is available, and control the metabolic pathways that produce and 
consume ATP’ (Hardie and Hawley 2001). According to Warburg et  al. (1956; Hardie 
and Hawley 2001; Moses 1962) the rate of respiration in cancer cells is within an order of 
accuracy, identical to that of normal cells, while the glucose uptake is approximately 10 
times higher than that of a normal cell. Furthermore, the complete combustion of glu-
cose through the citric acid cycle and the electron-transport chain is at about 200 times 
decreased against the high rates of the anaerobic glycolysis process with lactic acid as an 
end product. All glucose molecules that are taken up, are primarily oxidized via respira-
tion, while the remaining glucose molecules split to form lactic acid (Tiedemann 1952). 
Thus Warburg stated that although the anaerobic glycolysis yields only a fraction of the 
necessary cell energy (2 ATP), compared to the complete combustion of glucose (32 
ATP). This relatively inefficient metabolic pathway is extremely preferable by the rapidly 
growing tumor cells even in the presence of oxygen. Recent studies, based on a more 
accurate estimation of ATP yields, during the oxidative phosphorylation steps, show that 
the complete oxidation of glucose rarely produces the full potential of 32 ATPs while a 
value of 30 ATPs is a more accurate estimation (Hinkle et al. 1991). In cancer cells this 
process is taking place reversely, where the anaerobic glycolysis acts as the mainstream 
metabolic pathway of glucose, whereas the Krebs cycle and oxidative phosphorylation 
have a supportive role (Gatenby and Gillies 2004).

Evaluation of parameters

In order to perform the following simulations, some more estimations and assump-
tions have to be made. These approximations are necessary since most of the medical 
and biological data that are available in the literature are qualitative ones. Model param-
eter extraction from biological data and estimations are presented in the following 
paragraphs.
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Cell size

 In the following simulations we assume that the tumor consists of a number of eukary-
otic cells. Literature states that eukaryotic cell size varies between 10 and 30 μm, thus 
the approximation of 20 μm was used for the diameter of the cells.

Metabolic rates

 In accordance to the principles of Warburg et al. we propose that the glucose absorbed 
by each cell, will follow both metabolic paths. The amount of glucose that can be aerobi-
cally metabolized will do so in the mitochondria abiding to the stoichiometric laws using 
six parts of oxygen and one part of glucose to produce 30 parts of ATPs and the remain-
ing glucose will be converted to 2 parts of ATP per glucose. Combining the work of War-
burg et al. to the cell’s metabolic rates experimentally produced by Jiang et al. based on 
EMT6/Ro mouse mammary tumor cell line (Jiang et al. 2005), specific rates at which the 
proposed biochemical species produced or consumed from the tumor cells are provided 
on Table 2. Including the aforementioned methodology we are able to derive a new set of 
metabolic rates for each state of cancer cells as shown in the following examples:

Example of proliferating cell

 18 mM/h/cm3 glucose will aerobically metabolize using the 108 mM/h/cm3 of oxygen 
and will produce 540 mM/h/cm3 ATP. The remaining 144 mM/h/cm3 of glucose will 
produce 252 mM/h/cm3 ATPs. Thus the total amount of ATP produced in the proliferat-
ing cells is 828 mM/h/cm3. In what follows, this value will be indicated as HP.

Example of quiescent cells

8.3 mM/h/cm3 of glucose will aerobically metabolize with the 50 mM/h/cm3 of oxygen 
and produce 250 mM/h/cm3 ATPs. The remaining 71.7 mM/h/cm3 of glucose will pro-
duce 143.4 mM/h/cm3 ATP. Thus the total amount of ATP produced in quiescent cells is 
393.4 mM/h/cm3. In what follows of the present manuscript his value will be indicated 
as HQ.

This process can be described as a first order chain reaction of oxygen and glucose 
producing ATP.

where [E1] is the concentration of the produced ATP molecules during the aerobic com-
bustion of glucose, and [E2] is the concentration of produced ATP molecules during the 
anaerobic metabolism of the remaining glucose.

Health function

Presumably we introduce a function that describes the metabolic rates of each cell 
according to its own state, named ‘health function’ δhit of cell ‘i’ which is given by:

(10)Glucose + Oxygen aerobic
−−−−→

E1 + Glucose anaerobic
−−−−−−→

E2

(11)δhit =
1

HQ







�

Si

E1 +

�

Si

E2






− D(t)δt
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where hit denotes the health level at time t of cell ‘i’, and D(t) is the normalized decay rate 
of cellular energy that over time is equal to the ATP production of a quiescent cell and δt 
is the simulated time between two iterations. We consider that the aerobic metabolism 
takes according to which where glucose is burned at the mitochondria in presence of 
oxygen.

The remaining of the absorbed glucose is metabolized anaerobically in the cell.

Considering that the 393.4 mM/h/cm3 ATP is the energy transaction requirement for a 
cell to remain quiescent, then the remaining 434.6 mM/h/cm3 of the totally 828 mM/h/
cm3 produced ATP, are the energy transactions required to proliferate. Also 1 mM/h/
cm3 of waste is considered to be produced for every 3.5 mM/h/cm3 of ATP. As nutrition 
supplies become available for each cell through the environment, each cell then adds or 
retracts from its previous health level. Hence the proposed normalized health function, 
dictates that a proliferating cell will undergo mitosis at the target health value of:

The health function identifies explicitly the influence of the concentration of biochemi-
cal factors on the future health state of each cell. In the case where the health level of 
a cell increases more than the threshold value, i.e. takes values greater than 1.5, the 
state of this cell changes to proliferating. On the contrary, in the case where the health 
level decreases bellow a critical value, i.e. takes values smaller than 0.5, then this cell is 
characterized as necrotic and an apoptosis mechanism is implemented in the proposed 
model that dissolves the cell after a time period. The health level is representing the in-
vivo behavior of cells, where cells with high amount of ATP are able to use this intracel-
lular energy to perform various metabolic tasks such as movement and mitosis, while 
other cells, that are low in ATP, restrict cellular functionality. Thus depending on the ht 
variable, the function carries information with respect to the metabolic rates of each cell.

Oxygen

 Hemoglobin ([HB] or Hgb), is the iron-containing oxygen transport metalloprotein in 
the red blood cells of all vertebrates (Maton 1993). Hemoglobin in the blood carries 
oxygen from the respiratory organs to the rest of the body where it releases the oxy-
gen in order to burn nutrients and provide energy to power the functions of the cells. 
The hemoglobin concentration in blood of an adult female is 122–150  g/L Hutler et al. 
(2000). The molecular weight of hemoglobin is 64,450  g/mol. Hence we can transform 

(12)E1







�

Si

CO(�u, δt),

�

Si

CG(�u, δt)






: CG ∈ [0, 162],CO ∈ [0, 108]

(13)E2







�

Si

CG(�u, δt)






: CG ∈ [0, 162]

(14)hmitosis =
HP

HQ
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the above hemoglobin concentration into mmol/L (or mM = milli Molar, 1 Molar = 
1 mole/L) as 0.0019–0.0023 mM/cm3 for an adult female. The hemoglobin concentra-
tion decreases as blood flows from large arteries to the various tissues. For example the 
cerebral-to-large vessel hematocrit ratio is 0.69 (Wyatt et al. 1990). Hence if the hemo-
globin concentration in blood is assumed 0.002 mM/cm3 in large vessels, then assuming 
a breast tissue to large vessel hematocrit ration of 0.8 the hemoglobin concentration in 
blood in the regions of the breast is: 0.0016 mM/cm3. When hemoglobin is totally satu-
rated, each hemoglobin molecule carries four oxygen molecules. In the breast regions 
however, the blood in arterioles is not 100% saturated. It is more likely that the blood 
saturation (due to hemoglobin) is between 0.7–0.8. Hence assuming that the blood satu-
ration is 0.75, then the oxygen concentration in blood in the region of the breast would 
be: CB = 0.0016 × 4 × 0.75 = 0.0048 mM/cm3. The Hill equation (Goutelle et al. 2008) 
relates CB to CP (oxygen concentration in plasma) as:

where:

• • [HB] is the tetra haemoglobin concentration in blood that is equal to 0.0048mM/cm3

• • PO2 is the oxyphoric power of tetra haemoglobin and is equal to 4
• • h is the Hill coefficient equal to 2.73 (Hill 1910)
• • P50 the value of PO2 at which haemoglobin is 50% saturated equal to 26 mmHg
• • α is the solubility coefficient equal to 1.39× 10× 10−3 mmol.L−1.(mmHg)−1

• • The solution of the equation indicates that at CB = 0.005175 mM, the oxygen con-
centration in plasma is CP = 0.00053 mM. Thus the following simulations were 
made under the assumption that the Dirichlet boundary value for the concentration 
of oxygen at the ECM is equal to the value of CP or 0.00053 mM/cm3.

Glucose

 In humans, the normal glucose concentration of extracellular fluid that is regulated by 
homeostasis is presumed to have a value of 0.005 mM/cm3.

Waste–growth and inhibitor factors

 For these biochemical species we assume that all the factors that are produced by the 
tumor cells are nullified when they are diluted through blood circulation inside the 
human body. Thus an assumption is made that the Dirichlet data for these species at the 
ECM are set equal to zero.

Mitosis

Mitosis is the part of the normal cell cycle by which a mother cell is separated into two 
identical daughter cells. Further we assume that the possibility for each cell to undergo 
mitosis changes according to its health level and to the biochemical environment. The 
function that describes the probability for mitosis of a proliferating cancer cell is a result 
of the following stochastic process:

(15)
CB = CP +

[HB]PO2

1+
(

aP50
CP

)h
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The value M is defined as follows:

where:

• • ht is the health value of the mother cell at time t
• • M corresponds to the mean probability of mitosis and it’s a function of r,µ,CGF ,CGI

• • r corresponds to the average mitosis probability of a normal tissue cell with value of 
0.0315 as described by Ramis-Conde et al. (2008)

• • µ corresponds to the effect on mitosis of the number of phenotype mutations
• • σ is the standard deviation of mitosis probability
• • CGF and CGI the concentrations for, growth factors and growth inhibitor factors 

respectively
• • N corresponds to the number of generations that separate each cell from its original 

cancer cell
• • ǫ(t) is the Gaussian noise term
• • Once a mother cell undergoes mitosis, the two progeny cells occupy the same space 

at that time iteration and they are able to move freely thereafter. Also the health fac-
tor value of mother cells is equally divided between the two daughters upon mito-
sis. During mitosis, the number of phenotype mutations for each daughter cell has a 
probability to increase. This variable is introduced in the model, in order to represent 
the evolution of the cancer in more aggressive forms. This process as it was described 
explicitly above has been motivated from the work of Andrerson et  al. (2011) and 
it is considered to describe comprehensively the biological phenomenon of mitosis. 
In the mitosis mechanism we have implemented a value for the Hayflick limit. This 
upper limit, as it is found in biological literature is set at 60 generations (Hayflick and 
Moorhead 1961).

Cellular adhesion

Cellular adhesion is employed in the proposed model by implementing the differen-
tial adhesion hypothesis (DAH) as postulated by Malcolm Steinberg (2007), to model 
the mechanism of adhesion of the cells in the same state. The theory of cell adhesion 
advanced, to explain the mechanism by which heterotypic cells in mixed aggregates 
sort out into isotypic territories. The DAH postulates that tissues are visco-elastic liq-
uids, and as such possess measurable tissue surface tensions. These surface tensions 
have been determined for a variety of tissues, including embryonic tissues. The surface 
tensions correspond to the mutual sorting behavior: the tissue type with the higher sur-
face tension will occupy an internal position with regard to a tissue with a lower sur-
face tension. Differences in homo and heterotypic adhesion presumed to be adequate 

(16)Pmitosis = f
(

ht ,CGF ,CGI , r,µ,N ;M, σ 2
)

(17)Pmitosis =

{

(ht − 1)M + ǫ(t) : N < 60
0 : N ≥ 60

(18)M = r(1+ µ)(1+ CGF − CGI )
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to account for the phenomenon without requiring cell type specific adhesion systems. 
According to DAH, cellular movement and assortment is governed by the spontaneous 
rearrangement of cells, in much the same way as a liquid to obtain a more thermody-
namically stable equilibrium. This is achieved by maximizing the amount of energy that 
is utilized in adhering the cells together, which decreases the free energy available in the 
system.

As cells with similar strengths of surface adhesion bond to each other, bonding energy 
in the overall system increases, and interfacial free energy decreases causing the arrange-
ment to be thermodynamically more stable. Liquids behave in a similar manner, but with 
molecules moving due to their kinetic energy instead of motile cells moving around due 
to a combination of their kinetics and active movement. This allows examples of tissue 
spatial relation to correspond to the behavior of liquids, such as one tissue spreading 
across another corresponding to oil spreading across water; the oil spreads crossways 
the water to minimize weak oil-water interactions and maximize stronger water-water 
and oil-oil interactions, the cells similarly sort themselves to be near other cells of simi-
lar adhesive strength and bond with them. Other tissue interactions that DAH offers an 
explanation for included tissue hierarchy, are tissues with weaker surface adhesion that 
surround tissue with stronger surface adhesion, the rounding of irregular cell masses 
to become spherical, and the cell sorting and construction of anatomical structures 
that occurs independent of the path taken. This DAH mechanism forces the cells of 
the tumor, especially the proliferating cells, to remain connected to the tumor and not 
roam freely inside the simulated area while reinforcing the creation of agglomerations of 
necrotic cells.

Chemotaxis

Chemotaxis is described as the effect of nutrients and waste in cellular movement or 
taxis and has been well documented (2011). In the proposed model while quiescent and 
necrotic cells are unaffected by taxis, proliferating cells make effort to move following 
the vector of the nutrient-waste function �m according to:

Cellular mechanics are used in order to ensure that the simulations produce compre-
hensive results. The implementation of cellular mechanics in the following simulations 
is done with the use of the Open Tissue algorithms for incompressible body dynamics 
and collision (Erleben et al. 2005s). The proposed model includes a mechanical physics 
engine that ensures that the representation of cellular life and movement remains coher-
ent at all times. The following assumptions  were made in order to enforce a physical 
coherence of the simulations:

• • all cells are considered to be incompressible bodies
• • between two adjacent cells an adhesion force is assumed in the form of a spring. Each 

of these springs forces attraction between the cells equal to F = −kd, as defined by 
Hooke’s law, where k is a constant factor characteristic of the spring, and d is the dis-
tance between the two neighboring cells.

(19)�m(u, t) = α �δCO(u, t)+ β �δCG(u, t)− γ �δCW (u, t), α,β , γ ∈ R
+
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• • for proliferating cells subjected to chemotaxis, an extra force is assumed moving the 
cell on a vector of the nutrient-waste function, give in (19)

• • The types of connections between two neighboring and adjacent cells with respect 
to order of magnitude are kQQ, kPQ or kQP and kPP. while connections between a 
necrotic and cells of other type are neglected.
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