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Abstract

Motivation: Differential network inference is a fundamental and challenging problem to reveal gene interactions and
regulation relationships under different conditions. Many algorithms have been developed for this problem; how-
ever, they do not consider the differences between the importance of genes, which may not fit the real-world situ-
ation. Different genes have different mutation probabilities, and the vital genes associated with basic life activities
have less fault tolerance to mutation. Equally treating all genes may bias the results of differential network inference.
Thus, it is necessary to consider the importance of genes in the models of differential network inference.

Results: Based on the Gaussian graphical model with adaptive gene importance regularization, we develop a novel
Importance-Penalized Joint Graphical Lasso method (IPJGL) for differential network inference. The presented
method is validated by the simulation experiments as well as the real datasets. Furthermore, to precisely evaluate
the results of differential network inference, we propose a new metric named APC2 for the differential levels of gene
pairs. We apply IPJGL to analyze the TCGA colorectal and breast cancer datasets and find some candidate cancer
genes with significant survival analysis results, including SOST for colorectal cancer and RBBP8 for breast cancer.
We also conduct further analysis based on the interactions in the Reactome database and confirm the utility of our
method.

Availability and implementation: R source code of Importance-Penalized Joint Graphical Lasso is freely available at
https://github.com/Wu-Lab/IPJGL.

Contact: lywu@amss.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As biological data becomes more accessible, researchers are looking
to extract key information from the differences in data between nor-
mal and disease samples. Although many studies analyze differences
between data and extract knowledge from a single-gene perspective
(Love et al., 2014; Robinson et al., 2010), there is still a wealth of in-
formation to be mined in the differential data. Studies have shown
that the co-expression pattern between a pair of genes may have
changed significantly even in the absence of significant differences in
the expression levels of either one of these genes (de la Fuente,
2010). Therefore, it is necessary to study biological mechanism from
the perspective of gene interactions. And studies have shown that
biological networks differ a lot in different states, different organiza-
tions, and even at different times (Bandyopadhyay et al., 2010;
Greene et al., 2015; Ha et al., 2015). Therefore, in order to study
key genes which are the root cause of diseases, we need to focus on
the differential networks. In general, we focus more on the

differential expression between normal samples and disease samples,
i.e. given two groups of gene expression data, our problem becomes
how to build a differential co-expression network to explore the key
genes by differential network analysis (DiNA). However, it is not
simple, because there are always numerous false positives in the net-
work inferred by various methods. One of the reasons is that many
interactions in co-expression networks result from indirect influence
(Cecchini et al., 2018). To eliminate such indirect influence, many
models have been developed. One kind of the models widely devel-
oped by researchers is the Gaussian graphical models (GGMs) be-
cause of its good property: if the entry of the precision matrix Hij is
zero, it is equivalent that variables i and j are conditionally inde-
pendent, i.e. there is no co-expression interactions between i and j
(Friedman et al., 2008). Many researchers have conducted research
based on the GGMs and proposed various methods to meet different
assumptions.

Under usual circumstances, the number of genes p� n, the num-
ber of samples, which results in the sample covariance matrix not
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being invertible. This means the precision matrix H ¼ R�1 could not
be computed directly, where R is the real covariance matrix.
Graphical Lasso (GLasso) was a popular method to estimate the pre-
cision matrix H (Banerjee et al., 2008; Friedman et al., 2008; Yuan
and Lin, 2007). This method added the Lasso penalty term on the
likelihood function to obtain a sparse solution, guiding the develop-
ment of the GGMs. Subsequently, many researchers have researched
the differential networks based on this model. Danaher et al. (2014)
first used the differential matrix as the penalty term assuming that
the networks from two groups should be similar in the overall struc-
ture despite the relatively subtle differences and hence proposed
Joint Graphical Lasso (JGL). On this basis, Mohan et al. (2014) pro-
posed Perturbed-Node Joint Graphical Lasso (PNJGL) and Co-hub
Node Joint Graphical Lasso (CNJGL) to solve node-based problems:
the first one assumes that there are hub nodes in differential net-
works, and the second assumes that different states have the same
hub nodes. The differential network can not only be obtained by the
direct subtraction between networks of two states but can also be
directly solved as a variable (He and Deng, 2019; Tang et al., 2020;
Tian et al., 2016; Yuan et al., 2017; Zhao et al., 2014), on the prem-
ise of ensuring accuracy while greatly reducing the number of sam-
ples required.

However, the above methods have a common shortcoming, i.e.
they put all genes in the same position. This is not the case in the real
world. Different genes have different mutation probabilities. Even
the same gene has different mutation rates in different tissues and
locations (Scally, 2016). In general, the more important genes are
less likely to mutate. This is because, on the one hand, if extremely
important genes mutated in an individual, such as genes that regulate
essential activities of life, the individual will have a high probability
of not being sampled due to rapid death. On the other hand, studies
have shown that even if a mutation occurs, important genes will be
repaired preferentially, i.e. one of the reasons for the different proba-
bilities of gene mutations is the DNA repair mechanism (Supek and
Lehner, 2015). Some methods adjust the weights of different genes
(Lyu et al., 2018; Ou-Yang et al., 2020; Zuo et al., 2017). However,
these methods need the prior information from the database. Once
the prior information is insufficient, or the information in the data-
base is a little biased, the results may also have certain deviations.
Some method does not rely on prior information (Sulaimanov et al.,
2019), but it requires the time-consuming iterative generation of
weights; moreover, it only considers a single state, which is not
developed for inferring differential networks.

To address the above issues, we proposed a novel differential net-
work inference method to meet the hypothesis that the important
genes are less likely to mutate. In this proposed model, we add an
importance penalty to each gene, and the penalties vary with the so-
lution. The genes that are significantly altered between two states
will be penalized if they also have large degrees in either one of two
estimated networks. The comprehensive simulation experiments
proved that the proposed Importance-Penalized Joint Graphical
Lasso (IPJGL) method outperforms several state-of-the-art differen-
tial network inference methods based on GGMs, on the datasets
simulated under realistic and reasonable assumptions. To better
evaluate the results of differential network inference, we also pro-
pose a new metric named APC2 for the differential levels of gene
pairs. We further applied IPJGL to the TCGA colorectal cancer and
breast cancer datasets. The networks obtained by IPJGL showed
some connections within the same family, as well as those already
existed in BioGRID (Stark et al., 2006) and Cytoscape Reactome
database (Jassal et al., 2020; Shannon et al., 2003; Sidiropoulos
et al., 2017; Wu et al., 2010), which confirmed the validity of our
method. Moreover, in the enrichment analysis, our method success-
fully obtained a gene set among about 1000 genes, which was sig-
nificantly enriched in the pathway most relevant to the disease. On a
deeper level, through survival analysis, we discovered a gene SOST
that may be closely related to colorectal cancer. It is an inhibitor of
WNT signaling (Wang et al., 2016), and WNT signaling happens to
be a signaling pathway related to multiple cancers, especially colo-
rectal cancer (Clevers, 2006). Research on these genes may reveal
the pathological mechanism of colorectal cancer.

2 Materials and methods

2.1 JGL and its variants
Given the gene expression matrix of two sets of samples, normal

samples, Xð1Þ ¼ x
ð1Þ
ij

� �
n1�p

, and disease samples, Xð2Þ ¼ x
ð2Þ
ij

� �
n2�p

,

where p represents the number of genes, and n1 and n2 represent
the number of normal samples and disease samples, respectively.

Let Sð1Þ ¼ s
ð1Þ
ij

� �
p�p

and Sð2Þ ¼ s
ð2Þ
ij

� �
p�p

be the corresponding sam-

ple covariance matrices, Hð1Þ ¼ Hð1Þij

� �
p�p

and Hð2Þ ¼ Hð2Þij

� �
p�p

be

the corresponding precision matrices. Also, we define the matrix

norms, Xj jj j1 ¼
Pp

i;j¼1

jxijj and Xj jj jF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i;j¼1

x2
ij

s
. For vectors

V ¼ ðv1; v2; . . . ; vpÞ, the vector norm is defined as Vj j1 ¼
Pp
i¼1

vij j

and Vj j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiPp
i¼1

v2
i

s
.

Under the assumption that the variable x ¼ ðx1;x2; . . . ; xpÞ are
from the p-dimensional Gaussian distribution, Danaher et al. (2014)
proposed the JGL model. They followed Friedman et al. (2008) and
added a penalty term to make the precision matrices of the two
states share an overall similar structure as follows:

minH 1ð Þ ;H 2ð Þ2Sp
þþ
�L H 1ð Þ;H 2ð Þ
� �

þ k1

X2

k¼1

X
i6¼j

H kð Þ
ij

��� ���þ k2P H 1ð Þ;H 2ð Þ
� �

;

where S
p
þþ is the space of p-dimensional positive definite matrices

and L Hð1Þ;Hð2Þ
� �

¼
P2
i¼1

ni½log det HðiÞð Þð Þ � tr SðiÞHðiÞð Þ� is the likeli-

hood function of the GGMs. The first penalty term is the sparsity
penalty. The second penalty term is the similarity penalty, which is
defined as

P H 1ð Þ;H 2ð Þ
� �

¼
P

i;j H 1ð Þ
ij �H 2ð Þ

ij

��� ���:
This penalty term penalizes edges that are different between two

states, and its weight is k2.
On this basis, Mohan et al. (2014) proposed PNJGL and

CNJGL, of which the first term is the same likelihood function, but
the first penalty is slightly different in that they penalized the diag-

onal values, i.e.
P2
k¼1

P
i;j H kð Þ

ij

��� ���, and the second penalty is modified as

P H 1ð Þ;H 2ð Þ
� �

¼
Xp

j¼1

Vj

�� ��
q

s:t: H 1ð Þ �H 2ð Þ ¼ V þ VT

and

P H 1ð Þ;H 2ð Þ
� �

¼
Xp

j¼1

Vð1Þ

Vð2Þ

� 	
j

�����
�����
q

s:t: H ið Þ � diagðH ið ÞÞ ¼ V ið Þ þ V ið Þ
� �T

; i ¼ 1;2;

where q ¼ 1; 2, respectively. They decomposed the matrix symmet-
rically to ensure that there are hub nodes in the corresponding net-
work structure. PNJGL makes the hub structures exist in the
differential matrix, and CNJGL supposes two states have the same
hub nodes. In these models, all genes are treated equally, which does
not tally with the actual situation.

2.2 Importance-Penalized Joint Graphical Lasso
We proposed the IPJGL model based on the following assumptions:
(i) the expressions of each gene in the samples of each state follow a
Gaussian distribution; (ii) the importance of genes is correlated with
their degrees in the network and the important genes are less likely
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to mutate; (iii) if a gene mutates, its existed or new interactions with
other genes are dropped or established with certain probabilities,
respectively.

The IPJGL model is given as follows:

min
H 1ð Þ;H 2ð Þ2Sp

þþ ;V
�L H 1ð Þ;H 2ð Þ
� �

þ k1 H 1ð Þ
�� ���� ��

1 þ H 2ð Þ
�� ���� ��

1

� �

þk2

Xp

j¼1

H 1ð Þ
j

��� ���2
2
þ H 2ð Þ

j

��� ���2
2


 �
Vj

�� ��
q

s:t: H 1ð Þ �H 2ð Þ ¼ V þ VT

where
Pp
j¼1

H 1ð Þ
j

��� ���2
2
þ H 2ð Þ

j

��� ���2
2


 �
Vj

�� ��
q

is the importance penalty and

wj ¼ H 1ð Þ
j

��� ���2
2
þ H 2ð Þ

j

��� ���2
2

is the importance weight of gene j. We fol-

lowed PNJGL and decomposed the differential matrix symmet-
rically so that V is not necessarily symmetric, and such
decomposition will make the differential matrix easier to present
the structure with hubs (Mohan et al., 2014). When the precision

matrices H 1ð Þ and H 2ð Þ are adjacency matrices, i.e. binary matri-
ces, the importance weight wj represents the sum of the degrees

of gene j in each of the two networks. The vital genes are often
hubs in the networks and therefore have large importance penal-
ties. According to our assumptions, these genes are penalized to
involve the differential edges between two states.

In brief, IPJGL adjusts the magnitude of its second penalty term
according to the importance weights wjf gj¼1;:;p

of genes which are

adaptively updated from the estimated networks of two states. With
the differentiated importance penalties, IPJGL gives more chances to
reveal those less important genes involved in the differential net-
work. Figure 1 illustrates the influence of the importance penalty
using a small toy example descirbed in Supplementary Figure S1.
The normalized degrees in the estimated differential network are
used to represent the inferred changes of gene activity between two
states. When the importance weights of genes in IPJGL are bigger
than those in PNJGL, the degrees of these genes may be repressed in
IPJGL, e.g. the genes 9, 5 and 10. On the contrary, when the genes
have smaller importance weights in IPJGL than PNJGL, the degrees
of these genes may be increased in IPJGL, e.g. the genes 1, 7, 8 and
6. Therefore, the genes involved in the differential network but with
low degrees in the networks of the two states, such as gene 6, have a
higher chance to be identified (Fig. 1 and Supplementary Fig. S1),
while these genes may be ignored by other algorithms such as
PNJGL. It is worth noting that the Joint Graphical Lasso models are
very complicated so that the higher or lower importance weights do

not necessarily imply the repression or increase of gene activities in
the differential network, respectively. For example, the degree of
gene 4 is slightly increased while gene 2 totally vanishes in the result
of IPJGL (Fig. 1). If there is strong evidence from the data that a
gene is significantly changed between two states, the gene still can be
revealed even with high importance penalty. If the change of interac-
tions containing a gene is small, even if the importance penalty is
greatly reduced, the result of the gene will not be affected too much.
Therefore, the major difference between IPJGL and other general
methods is that our method pays more attention to less important
genes with the significant changes between the two states.

We used the ADMM (alternating direction method of multi-
pliers) algorithm to solve the IPJGL model. For details of the algo-
rithm, please refer to Section 1 of Supplementary Materials.

2.3 Performance metric
It is well known that the partial correlation coefficient matrix P ¼
qijð Þp�p

can be obtained from the precision matrix

qij ¼
� Hijffiffiffiffiffiffiffiffiffiffiffiffiffi

HiiHjj

p ; i 6¼ j

1; i ¼ j

:

8<
:

Obviously Hij ¼ 0() qij ¼ 0, so the corresponding network
structures of the two matrices are the same. Moreover, the value of
the partial correlation coefficient reflects the strength of the condi-

tional correlation, therefore we consider using Dtrue ¼ Pð1Þ � Pð2Þ as

the real differential matrix, I Dtrue 6¼0f g as the label, D̂ ¼ P̂
ð1Þ � P̂

ð2Þ
as

the predicted differential matrix, and jD̂j ¼ jD̂ ijj
� �

p�p
as the score

to calculate AUPR (area under the precision–recall curve). We did
not use AUC (area under the receiver operating characteristic curve)
as an evaluation indicator because for the sparse network inference
problem, the proportion of positive edges is extremely low, so there
is not much information in the comparison of AUC.

Furthermore, we proposed a novel metric, the absolute value of
the second principal component (APC2) to conduct gene-pair sur-
vival analysis, which can test whether the interaction between a pair
of genes is significantly changed for individual samples. In general
survival analysis, we often consider a single gene and group samples
according to its expression level. However, many diseases are unlike-
ly to be regulated by a single gene. For example, Combarros et al.
(2009) have studied Alzheimer’s disease and found that there are
some carriers of apolipoprotein E4 who have an increased risk of
developing the disease, but not all people who carry apolipoprotein
E4 will get the disease. They, therefore, identified three genes that
interact with apolipoprotein E4 by studying the interactions between
genes, and these interactions have impacts on Alzheimer’s disease.
Therefore, it is necessary to consider the effect of the interaction of a
pair of genes on the survival probability of patients.

Specifically, APC2 is the absolute value of the second principal
component based on principal component analysis. We denote
XTð Þn�2 as the expression values of a pair of genes on n samples,

which is centered on ð0;0Þ. X ¼ URVT is the singular value decom-
position of X, where Uð Þ2�2 is the eigenvector matrix of XXT ,
Rð Þ2�n is the singular value matrix, Vð Þn�n is the eigenvector matrix

of XTX. The principal components of X can be obtained by
Z ¼ VRT , where Z is a n� 2 matrix: the first column Z1 is the first
principal component (PC1) and Z2 is PC2. Therefore, the APC2 of
sample i is Zi2j j. The first principal component can be considered as
the most correlated direction in all samples, and the APC2 of a sam-
ple captures its deviation from the most correlated direction
(Supplementary Figs S22–S24). In the gene-pair survival analysis,
given a pair of genes, we grouped the samples according to their
APC2 values. We divided samples into two groups: half of the sam-
ples with smaller APC2 are in the group ‘high correlation’, and the
other is in the group ‘low correlation’. Using gene-pair survival ana-
lysis based on APC2, we were able to identify some gene pairs that
were significantly associated with patient survival time, whereas
single-gene survival analysis on any of these genes alone did not yield
significant results.

Fig. 1. Schematic diagram for the influence of importance penalty. The X-axis refers

to genes sorted by their importance weights, the left Y-axis refers to the normalized

degrees in the estimated differential network of each method, and the right Y-axis

refers to the importance weights. The red curve represents the importance weight of

each gene in IPJGL, while the green curve indicates the importance weight is identi-

cal for all genes in PNJGL. The relative degrees of the genes with high importance

weights, such as 9, 5 and 10, are repressed. Consequently, other genes such as 1 and

6, have higher chance to be revealed
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3 Simulation experiments

3.1 Data generation
Barabási and Albert (1999) showed that many biological networks
have a scale-free structure and proposed a BA algorithm for simulat-
ing the scale-free networks. In this article, we first used the BA algo-
rithm to generate a scale-free network with the adjacency matrix
A 1ð Þð Þ

p�p, where p refers to the total number of genes. Then we gen-
erated a weight matrix Uð1Þ of the same size as A 1ð Þ whose each entry
is sampled from the piecewise uniform distribution
½�umax;�umin� [ ½umin; umax�, and combine it with A 1ð Þ to obtain
Hð1Þ, i.e. Hð1Þ ¼ A 1ð Þ �Uð1Þ, where � refers to Hadamard product.
This experiment takes umax ¼ 0:8; umin ¼ 0:3.

Second, we need to decide which genes are mutated. According
to the assumptions, the importance of genes is correlated with their
degrees in the network. Therefore, we divided the genes into three
sets according to their degrees in the adjacency matrix Að1Þ: (i)
GHigh: genes ranked by degrees in the top 20%; (ii) GMiddle: genes
ranked by degrees in the top 20–40%; (iii) GLow: genes ranked by
degrees in the bottom 60%. To simulate the differential network, we
need to select m mutated genes from the above three sets, where m is
the preset total number of the mutated genes. To examine the per-
formance of the DiNA algorithms under different conditions, we set
three pure differential modes and two mixed differential modes, as
shown in Table 1. For example, for diffmode5, we selected 0:1m
genes from GHigh, 0:4m from GMiddle and 0:5m genes from GLow as
mutated genes.

Next, we need to decide which interactions associated with the

mutated genes are altered in the second network Hð2Þ. To simulate
the real biological process as much as possible, we divided the inter-

action H 2ð Þ
ij which connects gene i and gene j after mutation into

three categories (because it is an undirected graph, H 2ð Þ
ji ¼ H 2ð Þ

ij ), and

used different ways to generate simulation data for each category: (i)

unchanged: that is H 1ð Þ
ij ¼ H 2ð Þ

ij ; (ii) dropped: the original interaction

is lost, i.e. H 1ð Þ
ij 6¼ 0;H 2ð Þ

ij ¼ 0; (iii) connected: a new interaction is

established, i.e. H 1ð Þ
ij ¼ 0;H 2ð Þ

ij 6¼ 0. After we selected mutated gene

k, each entry of Hð1Þ connected with gene k, i.e. H 1ð Þ
kj 6¼ 0, will lose

the interaction with a certain probability, i.e. H 2ð Þ
kj ¼ 0, as well, each

entry of Hð1Þ unconnected with gene k, i.e. H 1ð Þ
kj ¼ 0, will establish

the interaction with a certain probability, i.e. H 2ð Þ
kj 6¼ 0. The proba-

bilities of dropped and connected interactions are set separately since
the probability of establishing a new interaction by mutation is gen-
erally much smaller than the probability of losing an existed inter-
action by mutation. We used rc; rd to represent the probability of
connected and dropped events, respectively, and set rc 2
f0:1;0:2;0:3g; rd 2 f0:3;0:5;0:7g for different experiment settings.
After deciding which interactions need to be generated, each of these
interactions will be sampled from the piecewise uniform distribution
½�umax;�umin� [ ½umin; umax�. Up to this point, we generated two

preliminary precision matrices for the two states, i.e. H 1ð Þ;H 2ð Þ.
Because the precision matrices need to be positive definite, we let

emin ¼ mink2f1;2gðe kð ÞÞ, where e kð Þ represents the eigenvalue set of
HðkÞ, and add ð eminj j þ 0:1Þ to the diagonals of HðkÞ. So far, we have
got the final precision matrices Hð1Þ;Hð2Þ. Finally, we used the in-
verse matrices of the obtained precision matrices, i.e.
ðH 1ð ÞÞ�1; ðH 2ð ÞÞ�1, as covariance matrices, respectively, to generate
the gene expression matrices X 1ð Þ;Xð2Þ with zero means using the

multivariate normal distribution, Nð0; ðH kð ÞÞ�1Þ, and then input
them or their sample covariance matrices Sð1Þ; Sð2Þ to the differential
network inference methods.

3.2 Parameter selection
All the methods to be compared use two parameters k1; k2.
Therefore, we adopted a more strict framework for parameter selec-
tion following Tian et al. (2016) and Mohan et al. (2014). To com-
pare the performance under each parameter combination in a
comprehensive and detailed manner, we first determined the param-
eter space K for each method. We looked for k1;max (fixed k2 ¼ 0) to

make both Ĥ
ð1Þ

and Ĥ
ð2Þ

have at least 10% edges of the complete

graph, and got k1 space K1 ¼ 0;
k1;max

10 ;
2k1;max

10 ; . . . ;
9k1;max

10 ; k1;max

n o
.

Then, we looked for k2;max (fixed k1 ¼ 0) to make D̂ have at least
2% edges (max #edges of the true networks) of the complete graph,

and got k2 space K2 ¼ 0;
k2;max

10 ;
2k2;max

10 ; . . . ;
9k2;max

10 ; k2;max

n o
. Finally, we

got the overall parameter space K ¼ K1 � K2, which can cover most
network sparsity. For each dataset Dpðdiffmode; rc; rdÞ generated by

the different combination of simulation parameters, we repeated 20
times and then recorded the k1; k2ð Þ once if its AUPR is greater than
0.95 times the maximum AUPR of all parameter combinations.
Finally, we obtained the frequency heatmap and select the best par-
ameter combination ðk�1; k

�
2Þ with the highest frequency as the de-

fault parameter of each method (Fig. 2 and Supplementary Figs S2–
S4).

3.3 Simulation results
To show the effect of the proposed importance penalty, we com-
pared IPJGL with several state-of-the-art methods JGL (Danaher
et al., 2014), CNJGL, PNJGL (Mohan et al., 2014), because all these
methods use similar GGMs to infer differential networks. We set n 2
f25;50;100g; p ¼ 100; q ¼ 2; m ¼ 10 to satisfy the small samples
assumption. It can be seen from the equation that when q ¼ 1,
PNJGL is equivalent to JGL, and in our experiments, q ¼ 2 always
outperformed q ¼ 1. Therefore, to show the results more clearly, we
only show the results with q ¼ 2 in the article. We used the selected
default parameter ðk�1; k�2Þ for each method to predict differential net-
works. Each method kept the top 1000 to 50 edges in the differential
network as the prediction results, and we repeated 50 times in each
case and calculated AUPR (Supplementary Figs S5–S19). To evaluate
the overall performance of each method on different numbers of
kept edges, we show the average AUPR of each method. Here, we
only show the case n ¼ 100 (Fig. 3), the rest we have put in

Table 1. The distribution of mutated genes for five differential

modes

diffmode 1 2 3 4 5

GHigh m 0 0 0:5m 0:1m

GMiddle 0 m 0 0 0:4m

GLow 0 0 m 0:5m 0:5m

Fig. 2. Frequency heatmap of parameter settings for IPJGL (q ¼ 2Þ. X-axis refers to

the ith value of k2 in the parameter space K2, Y-axis refers to the ith value of k1 in

the parameter space K1. The max value of a cell is 1
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Section 4 of Supplementary Materials (Supplementary Figs S20 and
S21).

The results of simulation experiments show that all methods
have better performance when the connected rate increases from 0.1
to 0.3 (Fig. 3 and Supplementary Figs S20 and S21). One of the pos-
sible reasons is the changes between two states become more signifi-
cant therefore easier to detect. On the other hand, the performance
of all methods is more sensitive to the connected rate than the
dropped rate. This is because the original network is scale-free and
sparse, so the interactions to be connected are much more than those
to be dropped.

In all simulation experiments, IPJGL is uniformly superior to other
methods (Fig. 3 and Supplementary Figs S20 and S21). The improve-
ments of IPJGL over PNJGL and CNJGL are especially high when the
connected rate is relatively low. This is because the changes between
two states are too subtle to detect for the cases of low connected rates,
while IPJGL can improve the accuracy by reducing the importance
penalties of those genes with decreased degrees.

The performance of IPJGL on the datasets of different modes is
consistent with our assumptions. The improvements of IPJGL over
PNJGL and CNJGL are largest on the datasets of diffmode 2, 3 and
5, in which none or a few mutated genes are from the group of high
importance. The improvements are the smallest on the datasets of
diffmode 1, in which all mutated genes are from the group of high
importance.

4 Applications in TCGA data

4.1 Datasets preparation
Colorectal cancer and breast cancer are common and plague the nor-
mal life of many people. To explore if our method can extract some
insights from real-world data, we applied IPJGL to the transcrip-
tome profiles downloaded from the TCGA project. The datasets of
HTSeq counts are used in experiments. For colorectal cancer, which
belongs to adenomas and adenocarcinomas, there are a total of 39
normal samples and 398 cancer samples according to annotations.
For breast cancer, which belongs to ductal and lobular neoplasms,
there are a total of 112 normal samples and 1066 cancer samples
according to annotations.

Due to the huge number of genes, we performed the following
screening. First, we selected 10 and 9 pathways related to KEGG’s

colorectal and breast cancer pathway including itself, which include
1034 and 958 genes, respectively. Next, we filtered out genes that
did not express in at least 80% of the samples. Finally, we got 1009
and 953 genes, which are still relatively large and challenging gene
sets for differential network inference problems, for colorectal and
breast cancer, respectively. We used log2ðxþ 1Þ to scale the data,
and then standardize it as the final input.

4.2 Comparison with single-gene-based analyses
As a widely used technique, differential expression analysis (DEA)
typically focuses on a single gene and then compares the difference
between the two states for each gene, e.g. in expression levels. DEA
is not only fast but also simple, straightforward and easy to under-
stand, yet sometimes some genes are not significantly differentially
expressed but their patterns of interacting with other genes are dra-
matically altered (de la Fuente, 2010). Fortunately, DiNA can deter-
mine which interactions between genes have produced changes, and
if most interactions of some gene have changed, that gene can be
considered the main factor in the changes between states. To investi-
gate the power of DiNA, we are particularly interested in the results
that were only discovered by DiNA method but not found by the
traditional method of DEA.

We first applied the DiNA methods with the default parameters
to the real dataset to obtain the initial differential networks, and
then keep the top k edges as the result (denoted as ‘methodk’, e.g.
the network generated by IPJGL with the top 500 edges is
IPJGL500). Next, we used the ‘DESeq2’ package (Love et al., 2014)
in R to perform DEA. The inputs to ‘DESeq2’ are the gene expres-
sion matrices in normal and disease states. The output of ‘DESeq2’,
which we used, is a list of P-values for the genes. If the P-value for a
gene is <0.05, we consider the gene to be significantly differential in
expression level between the two states. We then marked the insig-
nificant genes (P-value > 0.05) with red color, which means those
genes are less likely found by DEA but discovered by DiNA (Fig. 4).

To better exhibit the differential gene pairs discovered by DiNA,
we used the metric APC2 as described in Section 2.3 to conduct
gene-pair survival analysis on the gene pairs connected in differential
networks. We downloaded the clinical data of TCGA and performed
survival analysis using the R package ‘survminer’ on the single genes
and the gene pairs. We fitted the data with the Kaplan–Meier model
(Kaplan and Meier, 1958), which determines whether a difference in
a factor leads to a difference in the probability of patient survival.
For the single-gene survival analysis, the factor is the expression level
of a gene. We divide the samples into two groups, with the gene ex-
pression levels out of the top 50% being called the high expression
group and the bottom 50% being called the low expression group.
For the gene-pair survival analysis, the procedure is the same except
that the factor becomes the APC2 score of a gene pair. Gene-pair
survival analysis can detect some genes which work together to regu-
late cancers, while single-gene survival analysis may ignore those
genes. For example, by our proposed gene-pair survival analysis on
colorectal cancer, DCC-PRKCG is significant with P¼ 0.013 while

Fig. 3. Average AUPR of different methods on simulated datasets, n ¼ 100. The

Y-axis refers to the average AUPR and starts from 0.2.

Fig. 4. The main component of IPJGL100 of colorectal cancer and breast cancer. (a)

colorectal cancer and (b) breast cancer. The nodes and edges are extracted from the

maximal connected component of the differential network with the top 100 edges

identified by IPJGL. The node size represents the sum of the absolute weights of its

adjacent interactions. The node color shows the result of DEA, i.e. blue nodes repre-

sent significantly differentially expressed genes (P � 0:05) and red nodes refer to the

insignificant genes (P > 0:05), where P-values are calculated by DESeq2
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either DCC or PRKCG is not significant (P> 0.05) (Fig. 5a–c).
DCC functions as a tumor suppressor and is frequently mutated or
downregulated in colorectal cancer (Kataoka et al., 2000). In total,
we get 92 significant gene pairs while 68 of them cannot be detected
by single-gene survival analysis (Supplementary Table S6).

4.3 Colorectal cancer analysis
We compared IPJGL only with PNJGL for clarity of results on the real
datasets because PNJGL is second only to our method in the previous
simulation experiments. We kept the top 10 genes ranked by degree in
method10, method50, method100, method500 (Table 2 and
Supplementary Tables S3–S5). For example, top 10 genes in method500
for colorectal cancer are shown in Table 2, where genes that cannot be
found by DEA but can be discovered by DiNA are marked in bold. We
integrated all bold genes in these four tables as the key genes identified
by the corresponding method. IPJGL got 8 key genes: CACNG2,
PTTG2, TUBA3C, HJV, PPP3R2, SOST, TBL1Y, EIF4E1B, and
PNJGL got 7 key genes: TUBA3C, EIF4E1B, SPTA1, CACNG2,
TBL1Y, PPP3R2, FGF22. By applying single-gene survival analysis on
these genes (Supplementary Fig. S25), we finally found a significant dif-
ferential gene SOST (Fig. 5d) obtained only by IPJGL, which regulates
the synthesis of sclerostin (Delgado-Calle et al., 2017), but no direct rele-
vant studies are suggesting its direct association with colorectal cancer.
It may be a novel key gene associated with the molecular mechanisms of
colorectal cancer.

To explore how SOST relates to colorectal cancer, we observed the
adjacent genes of SOST in IPJGL500 and found that some interactions
do appear in the related literature, such as ‘SOST-WNT2’, ‘SOST-
MMP7’ (Kusu et al., 2003; Semënov et al., 2005). We further used
Cytoscape’s plugin ReatomeFIVz (Kusu et al., 2003) to explore the rela-
tionship between SOST’s neighbors and colorectal cancer. A lot of evi-
dence was found to prove the relationship between its neighbors and
colorectal cancer, which further validates the correlation between SOST
and colorectal cancer (Section 6.3 of Supplementary Materials and Figs

S26 and S27). We also compared the relevance of the gene sets in the

differential networks obtained by different algorithms in the Reactome
database. We found that genes picked by IPJGL have more interactions

in Reactome than that by PNJGL when keeping the same edges as the

output (Supplementary Fig. S28), which implies the gene set found by

IPJGL is more closely related in the known colorectal cancer database.

4.4 Breast cancer analysis
We performed KEGG and GO enrichment analysis on genes in the

differential networks with 50, 100 and 500 edges for breast cancer

Fig. 5. Real data analysis results on colorectal and breast cancers. (a) Gene-pair survival analysis of DCC-PRKCG in colorectal cancer. The X-axis represents time in days. Y-

axis represents the probability of surviving or the proportion of people surviving. The yellow line represents the high correlation group, and the blue line represents the low cor-

relation group. The log-rank P-value indicates the significance of the difference between the two sample groups. If P < 0:05, we believe that the correlation level of this gene

pair has a significant impact on the survival time of patients. (b) Single-gene survival analysis of DCC in colorectal cancer. The yellow line represents the high expression group,

the blue line represents the low expression group. The log-rank P-value indicates the significance of the difference between the two sample groups. If P < 0:05, we believe that

the expression level of this gene has a significant impact on the survival time of patients. (c) Single-gene survival analysis of PRKCG in colorectal cancer. (d) Single-gene survival

analysis of SOST in colorectal cancer. (e) KEGG pathway enrichment analysis of genes in IPJGL500 of breast cancer. The X-axis (GeneRatio) represents the proportion of genes

in the corresponding pathway that are covered by IPJGL500. The node size represents the number of genes in the intersection. The node color represents the adjusted P-value,

where red indicates a smaller P-value. We successfully recover the breast cancer pathway using TCGA breast cancer data. The second significant pathway is the WNT signaling

pathway, which is relative to a certain number of cancers. (f) Single-gene survival analysis of RBBP8 in breast cancer

Table 2. Comparison of the top 10 genes in 500-edges differential

networks for colorectal cancer

IPJGL500 PNJGL500

Rank Gene Degree P-value Gene Degree P-value

1 TCL1B 15 0.030 PPP3R2 19 0.635

2 HJV 14 0.735 TCL1B 17 0.030

3 PAK6 12 0.010 INHBC 16 0.009

4 TUBA3C 12 0.071 DKK1 16 0.000

5 PPP3R2 11 0.635 WNT7A 16 0.000

6 SOST 11 0.487 TUBA3C 14 0.071

7 GH1 11 0.000 FGF20 14 0.000

8 INHBC 11 0.009 FGF22 14 0.209

9 TBL1Y 11 0.921 GH1 14 0.000

10 FGF8 11 0.000 PAK6 13 0.010

Note: The P-value is calculated using DESeq2. Genes with P-value >0.05

are marked in bold, which means they cannot be found by DEA but can be

discovered by DiNA. If the degrees are the same, we order them by the sum of

their interaction values.
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(Supplementary Figs S29 and S30). Because our candidate gene set
is selected from the KEGG pathways, we expected that the genes
obtained by the algorithm should enrich the pathways related to
breast cancer. The results confirmed that the genes obtained by
IPJGL have strong functional enrichment properties, and only in
the genes of IPJGL500, we obtained the expected results, as shown
in Figure 5e. Although the dataset is relatively rough, the sample
ratio is unbalanced, and the expression value may be biased, our
method can still identify the corresponding pathway (breast
cancer).

Further, we followed the same data analysis procedure in previ-
ous section to obtain key genes for breast cancer. We first retained
all genes in the differential network method500 with P-value >0.05
in DESeq2. Then we performed the survival analysis for these genes
to obtain the final set of key genes (Supplementary Fig. S31). Among
them, there are 5 key genes obtained by IPJGL: SFRP5, FGF19,
HES5, IL7R, RBBP8, and 3 key genes obtained by PNJGL: SFRP5,
FGF19, HES5. The unique key gene RBBP8 identified by IPJGL is
also called CTIP, whose low-level expression is associated with a
poor prognosis in breast cancer (Wang et al., 2016), as shown in our
survival analysis (Fig. 5f).

5 Conclusion

In this article, we developed a novel algorithm IPJGL for differen-
tial network inference by adding an importance regularization
term in the GGM. The comprehensive simulation experiments of
comparing the proposed method with several state-of-the-art dif-
ferential network inference methods based on GGMs confirmed
the advantages and validity of the new algorithm. We also clarified
the difference between DiNA and DEA in that DEA focuses on in-
dividual genes, whereas DiNA focuses on gene interactions, which
are more complex but can also reveal more information. For this
purpose, we proposed a novel metric APC2 for evaluating the
interaction between a pair of genes for individual samples, which
can be used in the downstream analyses of DiNA such as the gene-
pair survival analysis. Finally, by applying the new method on the
TCGA datasets, we obtained some significant cancer genes, such as
SOST and RBBP8 for colorectal cancer and breast cancer, respect-
ively, and found a lot of evidence related to cancers. In a nutshell,
we hope our algorithm, simulation studies, and gene-pair inter-
action measurement can help biological and medical researchers
find more candidate key genes about various kinds of cancers,
while there is still a lot of work that needs to do based on the as-
sumption of gene importance.
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