
Frontiers in Immunology | www.frontiersin.

Edited by:
Manfred B. Lutz,

Julius Maximilian University of
Würzburg, Germany

Reviewed by:
Frank Momburg,

German Cancer Research Center
(DKFZ), Germany
Joshua E. Elias,

Stanford University, United States

*Correspondence:
Laura Santambrogio

las4011@med.cornell.edu

Specialty section:
This article was submitted to

Antigen Presenting Cell Biology,
a section of the journal

Frontiers in Immunology

Received: 17 February 2022
Accepted: 19 April 2022
Published: 16 May 2022

Citation:
Santambrogio L

(2022) Molecular Determinants
Regulating the Plasticity of the MHC

Class II Immunopeptidome.
Front. Immunol. 13:878271.

doi: 10.3389/fimmu.2022.878271

MINI REVIEW
published: 16 May 2022

doi: 10.3389/fimmu.2022.878271
Molecular Determinants Regulating
the Plasticity of the MHC Class II
Immunopeptidome
Laura Santambrogio1,2,3*

1 Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States,
2 Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States, 3 Sandra and Edward Meyer
Cancer Center, Weill Cornell Medicine, New York, NY, United States

In the last few years, advancement in the analysis of the MHC class II (MHC-II) ligandome
in several mouse and human haplotypes has increased our understanding of the
molecular components that regulate the range and selection of the MHC-II presented
peptides, from MHC class II molecule polymorphisms to the recognition of different
conformers, functional differences in endosomal processing along the endocytic tract, and
the interplay between the MHC class II chaperones DM and DO. The sum of all these
variables contributes, qualitatively and quantitatively, to the composition of the MHC II
ligandome, altogether ensuring that the immunopeptidome landscape is highly sensitive
to any changes in the composition of the intra- and extracellular proteome for a
comprehensive survey of the microenvironment for MHC II presentation to CD4 T cells.
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MHC CLASS II POLYMORPHISM

The gene clusters encoding MHC-II proteins are among the most polymorphic genes in the
genome. They are closely linked in all species (on chromosome 2 in humans and chromosome 17 in
mice) and therefore inherited together. Most of our knowledge of the immunological relevance of
MHC-II proteins derives from the analysis of patients with MHC II deficiency due to a failure in
MHC-II transcription (1). Lack of MHC-II expression results in severe compromise of CD4+ T cell
development and a consequent fatal immunodeficiency (bare lymphocyte syndrome) (1). Similarly,
mice lacking MHC-II experience a near-complete elimination of CD4+ T cells from secondary
lymphatic organs, and the thymus is populated by immature CD4+ thymocytes (2). Even a less
severe MHC-II deficiency (eightfold reduction in MHC class II expression) leads to a suboptimal T
cell response, increased autoimmunity, and altered cytokine inducibility (3).

The major “classical” MHC-II proteins are designated as HLA-DR (DR), HLA-DP (DP), and
HLA-DQ (DQ) in humans and H2-A and E in mice. Each of the HLA and H2 loci contains genes
coding for the alpha (DPA, DRA, or DQA in humans and A-alpha E-alpha in mice) and beta chain
(DPB, DRB, or DQB in humans and A-beta E-beta in mice) proteins (4–6). Additionally, each of the
classical MHC-II genes contains several alternate alleles; the combination of alleles on a given
chromosome is called a haplotype, and currently, human alleles/haplotypes have been mapped in
the thousands (http://hla.alleles.org/nomenclature/index.html), underscoring the diversity of
MHC-II proteins across individuals and establishing the molecular basis for the differences in
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immune response across the population. Both MHC alleles in
any one individual are co-dominantly expressed without allelic
exclusion and inherited in a Mendelian fashion from each
parent; as such, each individual, will express both maternally
and paternally derived haplotypes.

Each MHC class II molecule assembles as a dimeric protein
pairing one alpha and one beta chain, which form an open-ended
groove capable of binding peptides of 13–25 amino acids in
length (7). Professional antigen presenting cells (APCs; dendritic
cells, macrophages) will express two unique DP, DQ, and DR
isoforms (IA and IE in mice), albeit some individuals express
additional DR alleles. The MHC-II polymorphism is mostly
clustered in the peptide-binding cleft (5, 6), where conserved
amino acid residues located at key positions of the peptides act as
anchoring residues in the MHC-II-binding groove determining
the peptide-binding specificity of each MHC-II haplotype (8).

Besides affecting peptide selection/binding, the MHC-II
polymorphism also affects interaction with its chaperone
invariant chain (Ii). Invariant Chain, assemble in the
endoplasmic reticulum (ER), with the MHC II a and b chains
to prevent binding of ER-derived peptides and, through its
Leucine/Isoleucin endosomal targeting signals, facilitate MHC II
endosomal traffic, via de plasma membrane (9–11). The Invariant
Chain, prevents ER-peptides binding by inserting one of a nested
set of peptides, known as CLIPs (class II-associated Ii peptides),
into theMHC II binding groove (10). The presence of at least three
CLIP peptides, comprising the Ii sequence between aa 87 and 107,
and their ability to bind in different registers, allows the
promiscuity of CLIPs binding to various MHC II molecules.

Analysis of MHC-II trafficking in mice has shown that in the
absence of Ii, the I-Ab haplotype aggregates in the ER, and
surface MHC-II complexes have an unstable “floppy” MHC II
conformation. On the other hand, the I-Ak and I-Ad haplotypes
assemble more efficiently and are more conformationally similar
to mature wild-type MHC (12–14). Additionally, although Ii-
lacking cells are generally defective in presenting intact antigens,
all haplotypes can efficiently load peptides at the cell surface (15).

In humans, analysis of different haplotypes has also shown
heterogenicity in response to the absence of Ii. From the DR1
(DRA, DRB1*0101) haplotype which is highly dependent on Ii
for MHC II trafficking and assembly, to the HLA-DP alleles
carrying the 84Gly beta chain polymorphism, which fail to bind
CLIP, and can assemble as empty molecules, and still bind
exogenously derived peptides at the cell surface (16). Analysis
of CLIP stability also indicated that some haplotypes (DR*0401
and DR*0404) are less stable than others (DR*0402), and the
haplotypes with reduced CLIP stability are more prone to
autoimmunity (17).

Quantitative differences in expression and translation of
MHC-II proteins is also accountable for the unequal
expression among the different alleles, with DR in humans and
I-A in mice being the most abundant as compared with DQ, DP,
and IE, respectively (18).

Additionally, CIITA, the master regulator of constitutive and
inducible MHC-II expression, is controlled by different
promoters in different professional and nonprofessional APCs,
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with promoter I being the most represented in DCs and
macrophages, promoter III constitutively expressed in B cells
and pDCs, and promoter IV being induced by IFN-g in both
hematopoietic and non-hematopoietic cells (19–21).
Additionally, CIITA variants with reduced transactivation
function have been reported, altogether further expanding the
quantitative differences in MHC-II expression among APCs.

Finally, MHC-II molecules can also exist in two distinct
conformational states due to duplicate GXXXG motifs in the
alpha chain transmembrane region, which enable alternative
pairing with the single motif in the beta chain, generating one
of two possible conformations (M1 or M2). M1 is the less
represented conformation; however, it is uniquely linked to B
cell activation and presentation of peptides derived from the
processing of B cell receptor (BCR)-bound cognate antigens. On
the other hand, antigens phagocytosed by fluid phase
endocytosis are loaded on both M1 and M2 conformations
(22, 23).

Finally, a previously unidentified variant of mouse I-As (Pro
vs Ala) at residue 58 induces changes to MHC-II structure and
conformational stability, skewing peptide binding/recognition
via alternate docking modes (24).

In sum, the level of MHC-II expression on professional and
nonprofessional APCs, as controlled by CIITA variants and the
pro-inflammatory environment; unequal expression of different
alleles; M1 and M2 conformations; and, most importantly, the
MHC- II intrinsic polymorphism all contribute to the quantitative
and qualitative differences in MHC-II -restricted presentation.
SOURCES OF MHC II PEPTIDES

There are two main sources of proteins entering the MHC-II
compartments: extracellular and cytosolic (25–27) (Figure 1).
Exogenous proteins are continuously acquired through
phagocytosis, macro/micropinocytosis, and receptor-mediated
endocytosis, particularly in APCs with high phagocytic activity,
such as DCs and macrophages (27). B cells mostly rely on BCR-
mediated endocytosis (28), although they can internalize
extracellular antigens by fluid phase endocytosis when present
at high concentrations (29).

Cytosolic proteins enter endosomal compartments through
different forms of autophagy, macroautophagy (MA), endosomal
microautophagy (eMI), and chaperone-mediated autophagy
(CMA) (25, 30, 31) (Figure 1). Additional antigen-acquisition
routes include preprocessed cytosolic proteasome-generated
peptides (32, 33), as well as acquisition of extracellular peptides
present in biological fluids loaded on plasma membrane and
recycling of MHC-II molecules (34–37) (Figure 1). Indeed, using
experimental protease databases, it was determined that MHC-
II-eluted self-peptides presented by immature conventional DCs
(cDCs) derived from a variety of processing pathways including
cathepsins (cysteine, aspartate and serine proteases), and other
endopeptidase such as asparagine endopeptidase (AEP),
caspases, complements, and matrix metalloproteases, among
many others (38) (Figure 1).
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Any pathological conditions that change protein synthesis
rate or protein afflux to the endosomal compartments will, by
default, change the immunopeptidome composition.

For example, in chronic metabolic conditions, such as type II
diabetes, the number of MHC-II presented peptides derived from
stress-related proteins, metabolic enzymes, and lipoproteins was
found to be greatly enhanced (39). Among those, the increase in
Apo-B epitope copy number contributed to tilting the immune
response from tolerance to immunity with several autoreactive, anti-
Apo-B T cells infiltrating the aorta and worsening the inflammatory
process (39).The increase in Apo-B MHC-II presentation was not
related to MHC-II plasma membrane upregulation because
peptides were eluted from the same amounts of MHC-II
molecules as quantified by ELISA (39). Similarly, the comparative
analysis of theMHC-II immunopeptidome eluted from nodal APCs
under physiological or inflammatory conditions clearly identified
changes in the immunopeptidome uniquely associated with the
inflammatory process, indicating that the increased transcription of
adaptive immunity-associated proteins was mirrored in the eluted
Frontiers in Immunology | www.frontiersin.org 3
MHC-II immunopeptidome (40). Additionally, MHC-II elution
from both autoimmunity, or in vivo infection models has clearly
mapped peptides related to the autoimmune process, as well as map
pathogen-specific peptides, respectively (41–46). Finally, conditions
that increase autophagic flux to the endosomes or increase rate of
phagocytosis have been shown to skew the presented
immunopeptidome toward the incoming protein source (25, 30,
47, 48).

Altogether, with the advancement in sensitivity and
reproducibility of mass spectrometry peptide mapping, it has
been possible to quantify changes in MHC-II peptidome, as well
as detect peptides represented at low copy number, better than
ever before. This technical advancement has allowed for a more
comprehensive view of the MHC II ligandome and shown that
the immunopeptidome landscape is a balance between intra- and
extracellular sources, and it is highly sensitive, and mirrors
changes in the cellular proteome. Overall, this ensures that
APCs perform a comprehensive survey of the environment for
MHC-II presentation to CD4 T cells (38, 49).
HETEROGENICITY IN THE MHC CLASS II
ENDOSOMAL PROCESSING
COMPARTMENTS

An additional component that influences the composition of the
MHC-II immunopeptidome in professional APCs is the
anatomical and molecular organization of the endocytic
compartments. Early/recycling endosomes, multivesicular late
endosomes, and unilamellar or multilamellar lysosomal
compartments are endosomal organelles progressively located
along the endocytic tract. The early endosomes, directly derive
from the invagination of the plasma membrane, the
multivesicular endosomes, are late endosomal compartments,
and the lysosomes have been morphologically described as either
uni- or multilamellar (50). All these compartments have been
shown to be enriched in MHC-II molecules (51). Ultrastructural
analysis of these organelles has indicated a variability in their
number and morphology among the various types of murine and
human APCs and under different cytokine/growth factor
conditions. In both human and murine DCs, the major MHC-
II compartments have been grouped as either late endosomal
multivesicular bodies (MVBs), which may contain few to several
internal vesicles, or as multilamellar bodies (MLBs) (50–52),
which are formed by onion-like concentric lamellae (50, 52). In
immature murine DCs, the most prominent organelle is the
multivesicular type (50), whereas in monocyte-derived human
DCs, differentiated in granulocyte-macrophage colony-
stimulating factor (GM-CSF) and IL-4, both MVBs and MLBs
are present, although a bias toward the MLB type has been
observed (52). In B cells and macrophages, the MVBs are the
most represented MHC-II organelle, and in human monocytes,
electrodense unilamellar endosomes and MVBs have been
described (53). Additionally, early endosomes, directly deriving
from plasma membrane invagination, have also been described
as antigen-processing compartments (46, 54–57).
FIGURE 1 | Schematic of the cytosolic and exogenous pathways for antigen
delivery to MHC II compartments. Exogenous antigens are acquired through fluid
phase endocytosis and receptor-mediated endocytosis. Cytosolic proteins enter
MHC II compartments through Macroautophagy (MA), upon fusion of the
Autophagosomes with Lysosomes (Autophagolysosome) or with Late Endosomes
(Amphisome); Endosomal Microautophagy (eMI, ESCRT-dependent and
independent), and LAMP2A-mediated chaperone-mediated autophagy (CMA).
Additional antigen-acquisition routes include preprocessed cytosolic proteasome-
generated peptides, as well as acquisition of extracellular peptides present in
biological fluids loaded on plasma membrane and early-endosomes recycling
MHC-II molecules. As such, MHC-II-eluted self-peptides derived from a variety of
processing pathways including Cathepsins, Caspases and other endopeptidase
such as asparagine endopeptidase (AEP), and matrix metalloproteases (MMPs),
among many others.
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All these compartments contain an array of endo/lysosomal
hydrolases including proteases, lipases, phosphatases, glycosidases,
and nucleases (58). Although the specific and unique contribution
of each compartment to antigen processing andMHC-II loading is
yet to be fully characterized, important differences are already
known. For example, proximal compartments such as early
endosomes are enriched in neutral proteases such as cathepsins
H, Z and C, (Figure 2A) (58, 59) and in these compartmentsMHC
IImolecules can exchange Ii for peptide complexes and recycle back
the cell surface (60, 61). On the other hand, endosomal and
lysosomal compartments are enriched in acid active enzymes
such as cathepsins S, B, and D (58, 59, 62, 63) (Figure 2A). Other
cathepsins, most notably cathepsin L, have been shown to be
secreted and function at neutral pH (64).
Frontiers in Immunology | www.frontiersin.org 4
Additional differences in the protease composition exist
among different APCs, with cathepsin F being expressed
mostly in macrophages (65) and cathepsins S and L in DCs
(63, 66). Exposure to different inflammatory stimuli controls
cysteine protease expression at the transcriptional level; for
example, pro-inflammatory stimuli have been shown to
decrease or increase cathepsin S, L, and B mRNA according to
the examined cell type (58). Furthermore, alternative splicing for
aspartic and cysteine proteases has also been reported,
controlling protein translation, stability, and route of transport,
which favor either extracellular secretion or endosomal transport
(67). Finally, it has also been reported that cathepsin B, L, and S
activities shift from endosomal to lysosomal localization upon
IFN-g treatment (68), likely to avoid extracellular egress of
A

B

FIGURE 2 | Chaperones and organelles involved in the generation of the MHC II ligandome.(A) Endopeptidases (*) present in early and late endosomes, involved in
the generation of the MHC II ligandome. In early endosomes the processed peptides will be loaded on MHC II molecule recycling from the plasma membrane.
Peptide can also load directly at the cell surface on empty MHC II molecules or in exchange for low affinity peptides. In late endosomes the processing enzymes are
located in the lumen of the compartment, outside the vesicles. MHC II molecules are anchored to the vesicles limiting membrane and exposed to the processed
peptides. DM is mostly located on the endosomal limiting membrane. As such optimal DM activity is generated during inflammation-mediated endosomal tubulation,
which transport MHC II at the cell surface. (B) In immature DC, or non-activated B cells, DM activity is inhibited by DO, as such the MHC-II ligandome contains a
broad and diverse peptide spectrum, comprises of both low and high affinity peptides and with some empty and MHC-II-CLIP complexes at the cell surface. This
MHC-II ligandome facilitate tolerance (Bottom panel) Following DCs and B cell activation the decreased DO activity allows DM to select a more focused, and high
affinity MHC-II ligandome to facilitate immunity (Top panel). Braces indicates MHC II molecules in the top and bottom panels, loaded with the same peptide.
May 2022 | Volume 13 | Article 878271
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endopeptidase during inflammation-mediated endosomal
tubulation for MHC II transport at the cell surface (69). Lastly,
developmental regulation of end lysosomal pH has also been
reported as a means to control proteolytic activity and peptide
generation in DCs (70).

Although a comprehensive analysis of how all these changes
in cathepsin translation, location, and activity influence the
processing of the MHC-II immunopeptidome has not been
conducted yet, it is likely that they have an effect on the
generation of the MHC class II ligandome, being the most
represented enzyme category in the endo/lysosomal tract.

Indeed, over the years, evidence has indicated that different
peptides can be generated in different compartments along the
endocytic tract, from the analysis of Ii KO mice, where antigens
such as ribonuclease protein was presented equally well in
absence of Ii (14), to the processing of myelin basic protein in
early endosomes (55, 57) and the fine mapping of different
influenza viral peptides being processed either in early or late
endosomes (46). Likewise, peptides found in biological fluids,
such as lymph, can load on surface MHC-II in immature DCs, as
well as on recycling MHC-II molecules in early endosomes (34–
36, 38, 71–73). The importance of these compartments, as well as
peptides loading at the plasma membrane, has also been
emphasized by the intact efficiency of peptides presentation
even when MVBs are disrupted (74). On the other hand,
globular antigens that need unfolding and S-S bridge reduction
require a proteolytic environment as found in late endosomes
and lysosomes (49, 75–77).

Altogether, the differential intra and extracellular processing
activity (58, 78), generates peptides that can be loaded onto
MHC-II proteins at the cell surface (55, 75) or along the
endosomal tract, from recycling endosomes (55) to the endo-
lysosomes (48, 79). Diversity in antigen location (cytosolic or
extracellular), antigen structure (globular or unfolded), organelle
processing activity and pH, all contribute to the location along
the endocytic tract where peptides are generated.
INTERPLAY BETWEEN HLA-DM AND DO
IN SHAPING THE MHC II
IMMUNOPEPTIDOME

Changes in protein sources (autophagy vs extracellular) and in
endosomal processing influence the repertoire of the available
peptidome for MHC-II binding. However, among the available
peptides, the specificity of the peptide amino acid residues for the
polymorphic MHC class II binding groove and the interplay
between the MHC-II chaperones HLA-DM and HLA-DO (H2-
M and H2-O in mice) will ultimately determine which peptide
will occupy the binding groove (80–84). A network of hydrogen
bonds and Van der Waals force will then stabilize the non-
covalent bond between peptides and MHC-II.

HLA-DM (DM) was discovered in both human and murine
cell lines, which were capable of binding exogenous peptides but
were much less efficient in presenting internalized proteins, and
their surface MHC-II immunopeptidome included several copy
Frontiers in Immunology | www.frontiersin.org 5
numbers of CLIP peptides (81, 85). These results and further
studies underscore the enzyme-like activity of DM in exchanging
CLIP for antigenic peptides and editing out the low-affinity for
high-affinity peptides, altogether ensuring that only stable MHC-
II-peptide complexes are transported from the endosomes to the
plasma membrane (82, 86). However, DM activity is controlled
by the non-polymorphic MHC-II-like molecule HLA-DO (DO).
DM and DO associate in the ER and traffic together to the
endosomes; more importantly, their interaction is of very high
affinity and exceptionally stable, as opposed to the weak DM-
MHC class II interaction (87–90). Biochemical studies indicated
that DO blocks DM catalyzing activity (90), as later confirmed by
crystallographic studies (87). The DO-dependent inhibition of
DM activity is developmentally controlled in APCs such as DCs,
B cells, and thymic epithelial cells (90). Indeed, DO activity is
high in naive B cells and immature DCs, which could explain the
presence of CLIP-loaded MHC class II on immature DCs (80), as
well as empty MHC-II molecules (34, 35, 52, 91) (Figure 2B). On
the other hand, upon B and DC maturation, DO is
downregulated, as are surface MHC-II-CLIP and empty
molecules (80, 92) (Figure 2B).

Overall, a broad peptide repertoire, with a limited copy number
of each epitope, decreases the possibility of T cell activation. On the
other hand, upon B cell and DC activation/maturation, DO
downregulation will favor DM catalytic activity and presentation
of high-stability peptides is conducive to immunity.
Developmentally, this mechanism would favor the MHC-II
presentation of a tolerogenic immunopeptidome in immature DC
and a more “focused” immunity-inducing peptidome upon DC
maturation (Figure 2B). This theory has been proven at both the
cellular and the MHC-II immunopeptidome level. Early work
indicated that HLA-DR1-restricted T cell clones raised against
fully competent APCs (DR1+ Ii+ DM+) failed to respond to
APCs lacking DM (DR+ Ii- DM- APC) (93, 94). Later on,
immunological studies indicated that mice overexpressing DO
selected an altered self-peptide repertoire preventing the activation
of diabetogenic T cells and subsequent diabetes development (95).
At the MHC-II peptidome level, DO-mediated DM inhibition has
been suggested to favor immunological tolerance by increasing
surface MHC-II-CLIP, as well as to broaden the peptide
repertoire by allowing low-stability peptides to be presented.
Indeed, characterization of the MHC II peptidome in DO-
sufficient and DO-deficient APC, pointed to a set of peptides
uniquely present when DO is expressed (96). The same peptides
were sensitive to DM-mediated exchange, suggesting that decreased
DM editing was responsible for the increased diversity (96).
Similarly, analysis of the peptides enriched upon DM expression
indicated a higher affinity of the overall peptidome, as compared to
the one isolated from low DM expression samples (97).
CONCLUSION

Overall, in the last decade, many studies have converged in defining
the composition of theMHC-II ligandome at steady state and during
pathological conditions. Combined analyses have clearly indicated
the plasticity of the MHC-II ligandome, which closely reflects the
May 2022 | Volume 13 | Article 878271
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dynamic changes of the cellular and extracellular proteome
composition, the heterogenicity of the processing compartments,
and the interplay of theMHC-IImolecular chaperones,DOandDM.
Altogether, the orchestrated fine-tuning of all the components in the
antigen processing and presentationmolecularmachinery insure the
immunosurveillance role of MHC-II molecules.

However, although much progress has been achieved, several
open questions remain, for example, how conformational changes
in MHC-II structures, related to alpha beta alternative pairing,
amino acid variants, or open and empty conformers, contribute to
the immune response, or howdomains outside the peptide-binding
groove drive structural changes and potentially different peptide
selection. Additionally, the discovery of the subcellular overlapping
between MHC I and MHC II presentation pathways still needs to
address how this could change peptide selection. Finally, how the
amount of MHC class II epitope copy number influenced by the
Frontiers in Immunology | www.frontiersin.org 6
DO/DM ratio changes the immune response is still open to
investigation. Discoveries in these areas will further contribute to
our understanding of how MHC II influences both health
and disease.
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