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Introduction
The sodium channel neuronal type 2 alpha subunit (SCN2A) 
gene encodes the voltage-gated sodium channel Navα1.2 which 
is mainly responsible for the generation of action potentials in 
excitable cells.1 Any mutation that causes loss of function 
(LOF) or changes the secondary structure of the SCN2A pro-
tein might result in the disruption of the sodium channel func-
tion. This might cause loss or decreased excitability of the 
neuronal cells, which contributes to autism spectrum disorder, 
or might cause hyperexcitability of neuronal cells, which is char-
acterized as infantile seizures.2 However, LOF, which does not 
result in hyperexcitable neurons, can still cause severe pheno-
types with seizures.3 Later in development, reduced excitability 
of unmyelinated cortical inhibitory neurons might lead to 
hyperexcitable cortical networks. Any pathogenesis due to 
SCN2A LOF might affect inhibitory/excitatory balance, which 
gives rise to seizures, neuropsychiatric disorders, and autism.3

The most common clinical presentation of SCN2A defect 
is the benign familial infantile seizures type 3 (BFIS3; MIM 
607745), which is an autosomal dominant neurological dis-
order, characterized by apnea, cyanosis, and cluster seizures 
that occur over one or several days.4 The seizures are mostly 
focal, consisting of twitching of the limbs with the head 
turned, lips smacking, blinking of the eye, and staring epi-
sodes.5,6 Patients may also present secondary generalized sei-
zures.6 Usually, seizures cease at the end of the first year of 
life, yet some continue to have seizures through adulthood 

without any subsequent abnormality in neurological devel-
opment.5,6 Electroencephalography (EEG) and magnetic 
resonance imaging (MRI) in these patients have insignifi-
cant results. Another phenotype associated with SCN2A 
pathogenesis include the early infantile epileptic encepha-
lopathy type 11 (EIEE11), having autosomal dominant 
inheritance of the neurological disease, exhibiting a more 
severe neurological manifestation.7,8 Patients with EIEE 
present early onset of infantile refractory seizures, which 
eventually lead to a marked delay in intellectual and motor 
development.7,9 Initially, patients may present features such 
as neonatal hypotonia that proceeds to partial seizure along 
with generalized refractory tonic-clonic seizures, which 
might further progress to Ohtahara and West syndromes.10,11 
Patients might exhibit dysphagia, dysarthria, excessive day-
time sleepiness, disturbed visual contact, and in severe cases, 
paralysis.7,8,10 Brain MRI of these patients can show a variety 
of findings, with brain atrophy commonly reported.9,10,12 As 
with MRI, EEG findings vary among patients, mostly show-
ing hypsarrhythmia and focal or multifocal sharp waves.7,8,12

To our knowledge, all the previously reported cases of 
SCN2A gene defects are inherited in dominant heterozygous 
state or de novo state, and there is no previously reported case 
having an autosomal recessive inheritance having homozygous 
variant in the SCN2A gene. Herein, we report the first patient 
with a biallelic missense mutation in the SCN2A gene with an 
autosomal recessive inheritance.
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Case Report
The patient is a 30-month-old Saudi girl born full term via 
elective cesarean section to first cousin parents with an une-
ventful pregnancy. She is the fourth child of her parents with 
three older siblings. At birth, she had a length of 48 cm (10th-
25th centile), weight of 3 kg (10th-25th centile), head circum-
ference (HC) of 34 cm (10th-25th centile), and Apgar scores 
of 9 and 10 at 1 and 5 minutes, respectively. After discharge at 
4 days of age, she presented with neonatal seizures described as 
mouth and eye deviation and jerking movement of the upper 
and lower limbs for one minute. At 1 month of age, the proband 
was alert, awake, afebrile, and she was prescribed phenobarbital 
and phenytoin after initiating appropriate investigations, 
including septic work up, brain computed tomography (CT), 
lumber puncture, EEG, and MRI of the brain. A week later, 
patient seizures were determined to be controlled on phenytoin 
and phenobarbital, and she was discharged as a follow-up 
patient with the pediatric neurology department. Later, she 
presented with multiple emergency department (ED) visits 
complaining mainly of seizures ranging from blinking and 
spasmodic hiccups to classical tonic-clonic movement, upon 
which she was electively admitted for further investigation, 
including long-term EEG monitoring and genetic consulta-
tion. Abnormal EEG results led to the addition of leveti-
racetam to the previous regimen.

Follow-up examination

Other than the symptoms mentioned above, the patient is 
thriving appropriately for her age and has no other medical 
problems. On examination at 30 months of age, her measure-
ments were as follows: height 87 cm (10th-25th centile), 
weight 12 kg (10th-25th centile), and HC 48 cm (25th-50th 
centile). The patient generally looks well; is awake, alert, and 
active; and is not dysmorphic, with normal tone and power and 
normal gait and coordination. She is vitally stable and has 
unremarkable central nervous system (CNS) and other system 
examination results.

Multiple EEGs were performed, all with normal findings. 
Pediatric long-term monitoring (LTM) initially revealed 
abnormal sleep and awake readings, yet subsequent repeated 
LTM/EEGs were within normal limits. Brain MRI, abdomi-
nal ultrasound, cystourethrogram, renal ultrasound, auditory 
brainstem response, echocardiogram, and ophthalmology eval-
uations were normal. Complete blood count, serum drug and 
toxicity levels, renal profile, liver profile, and cerebrospinal fluid 
(CSF) assays for cell counts, protein, and glucose levels, stool 
and urine analyses were all normal.

Laboratory test

All of the following biochemical and genetic investigations 
were unremarkable: acylcarnitine profile, ammonia, lactic acid, 
creatine kinase, total homocysteine, urine amino acids, urine 

organic acids, coagulation profile, lipid profile, very long chain 
fatty acids, urine for creatine and guanidinoacetate, urine for 
purine and pyrimidines, chromosomal analysis, and compara-
tive genomic hybridization (CGH) microarray.

Genetic and Molecular Analysis
Genomic DNA extraction

The present study was performed after the approval of institu-
tional review board (IRB), followed by Helsinki protocols, and 
written informed consent was obtained from the patient’s par-
ents to publish this case report. Genomic DNA was extracted 
using commercially available kit and quantified using standard 
methods.

Gene panel

Genetic testing with an EIEE gene panel (Centogene, Germany) 
identified a homozygous missense mutation (c.5242A > G; 
p.Asn1748Asp) in SCN2A (NM_001040142.1) located on 
chromosome 2q24.3.

Sanger sequencing

Segregation analysis of the identified homozygous variant 
was undertaken for both the parents, three siblings using 
standard methods, and showed that the parents and two sib-
lings were heterozygous carriers, while one healthy sister is 
wild type.

The parents were comprehensively counseled regarding the 
genetic results, its mode of inheritance, and the recurrence risk 
of 25% in each pregnancy. The patient’s seizures are well con-
trolled with phenobarbital and levetiracetam, and she has nor-
mal development with no deterioration or complications.

Discussion
The present report describes the first documented homozy-
gous SCN2A mutation causing EIEE in autosomal recessive 
manner, as all previously reported patients were reported hav-
ing heterozygous SCN2A variant in either dominant or de novo 
fashion. The pathogenicity of the variant (c.5242A > G; 
p.Asn1748Asp) reported here is supported by segregation 
within the family. Furthermore, the variant is rare and not 
described in homozygous or heterozygous state in the Exome 
Aggregation Consortium (ExAC), Genome Aggregation 
Database (gnomAD), Exome Variant Server (EVS), or 1000 
Genomes Project and in 2000 in-house ethnically matched 
exomes. In addition, computational analysis tools, including 
PolyPhen, SIFT, MutationTaster, and phyloP, predict this vari-
ant to be most likely damaging.

Pathogenic heterozygous and de novo mutations in the 
SCN2A gene have been reported with two causes: EIEE11 
(MIM 613721) and BFIS3 (MIM 607745). Table 1 summa-
rizes the patients reported to have EIEE due to either heterozy-
gous or de novo mutations within the SCN2A gene.7,12–90 
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Table 1. Comparison of the current case with previously reported cases having SCN2A gene defects.7,12–90

PREviOUSly REPORTED CASES PRESENT CASE %

Number of cases 290 1 291

Origin Denmark (71), Canada (8), China (28), England (11), Czech 
Republic (2), Turkey (1), Switzerland (5), Australia (40), 
Taiwan (2), italy (15), U.S.A (56), Japan (22), UK (7), 
Sweden (20), and France (2)

Saudi Arabia Most 
common from 
Denmark

Type of inheritance Heterozygous, AD Homozygous, AR  

Neurological symptoms

Family history of seizures 139 Negative 47.9

Type of seizures Benign familial infantile seizures, benign familial neonatal 
epilepsy, childhood seizures, early infantile epileptic 
encephalopathy, epileptic encephalopathy, episodic ataxia, 
febrile seizures, infantile epilepsy, infantile spasms, 
intractable epilepsy, migrating focal seizures of infancy, 
neonatal epileptic encephalopathy, neonatal seizures, and 
recurrent encephalopathy (253)

Early infantile 
epileptic 
encephalopathy

87.24

Autism 62 Not observed 21.3

Migrating focal seizures of infancy 19 Not observed 6.55

Paroxysmal ataxia in toddler 13 Not observed 4.48

Ohtahara syndrome 14 Not observed 4.82

West syndrome 4 Not observed 1.37

lennox-Gastaut syndrome 2 Not observed 0.68

Normal 42 1 14.48

Developmental delay 91 Not observed 31.37

Neurological examination

Dysmorphic features 48 Not observed 16.55

Hypotonia 72 1 24.82

Ataxic gait 23 1 7.93

Spasticity 9 1 3.10

Electroencephalogram findings (187 of 290)

Normal 37 1 12.75

Abnormal (EEG) findings Extremely variable and include multifocal poly spike activity, 
hypsarrhythmia, burst suppression pattern, and diffuse 
slowing (123)

Normal 42.41

MRI findings (175 of 290)

Normal 56 Normal 19.31

Cerebral atrophy 81 Not observed 27.93

Hypoplastic corpus callosum 39 Not observed 13.44

Cerebellar atrophy 53 Not observed 18.27

lesions in right parietal/temporal/
occipital lobes

9 Not observed 3.10

Cortical/subcortical edema 7 Not observed 2.41

Diffuse abnormalities of white matter 15 Not observed 5.17

 (Continued)
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According to Human Gene Mutation Database (HGMD, 
2018), 268 mutations have been reported in the SCN2A gene 
presenting diverse phenotypes (Table 2). We identified a total of 
290 cases having heterozygous or de novo SCN2A gene muta-
tions in the literature survey. Approximately 87.24% of cases 
reported several types of seizures, including BFIS, benign famil-
ial neonatal epilepsy, refractory neonatal epilepsy, infantile 
spasm, episodic ataxia, acute encephalopathy, recurrent enceph-
alopathy, and EIEE, as observed in the present case. Other 
reported symptoms included autism (21.3%), severe pulmonary 
emphysema (4.48%), migrating focal seizures of infancy 
(6.55%), paroxysmal ataxia in toddler (4.48%), developmental 
delay (31.37%), Ohtahara syndrome (4.85%), West syndrome 
(1.37%), and Lennox-Gastaut syndrome (0.68%). The ages of 
symptom onset ranged from a few hours after birth up to 6.6 
years. None of the previously reported cases were documented 

with parental consanguinity as described in our case. Regarding 
clinical features, 14.48% had normal features, 24.82% presented 
with hypotonia, 7.93% with ataxic gait, and 3.10% with spastic-
ity. EEGs showed normal findings in 12.75%, including the 
current patient. Brain MRI was normal in our patient and in 
19.31% of cases in literature. Moreover, 27.93% demonstrated 
cerebral atrophy, 13.44% showed hypoplastic corpus callosum, 
18.27% suffered from cerebellar atrophy, and 3.10% had lesions 
in the right parietal/temporal/occipital lobes. The following 
features were observed in 5.86% of cases such as cortical/sub-
cortical edema, diffuse abnormalities of white matter, lack of 
differentiation between cortex and subcortical layers with pach-
ygyria and anomalies of the cortical gyration, and immature 
myelination at the bilateral periventricular areas. Up to 47.90% 
of cases were reported to have a family history of seizures; how-
ever, the current case had a negative family history of seizures. 
In total, 36 (12.41%) of cases reported so far were deceased, and 
the age at death ranged from 5 to 75 years old.

Patient with de novo or dominant heterozygous SCN2A 
gene mutations display epileptic phenotypes. Thus, it is not 
surprising that patients with a homozygous SCN2A mutation 
also have an epileptic phenotype. Despite the aforementioned 
fact, the importance of the current case relies on the following: 
first, this alerts the clinician to consider SCN2A gene defects in 
any patient presenting with seizures regardless of their family 
history, suggesting an autosomal recessive or autosomal domi-
nant pattern. Second, it is confirmed that an autosomal reces-
sive pattern may lead to more severe presentation, which is 
early neonatal epileptic encephalopathy rather than ataxia and 
autism in heterozygous probands.

Mutations in the SCN2A gene have a strong association 
with the manifestation of numerous types of seizures, along 
with other clinical characteristics, including autism, pulmonary 
emphysema, paroxysmal ataxia in toddlers, and Ohtahara syn-
drome. However, mutations in the SCN1A, SCN1B, SCN8A, or 
SCN9A genes also appear to be related to the expression of 
seizures. Here, we identified a novel homozygous missense 
mutation in the SCN2A causing EIEE; yet heterozygous 
SCN2A mutations can cause severe epileptic phenotypes, espe-
cially when they are de novo. Therefore, clinicians should keep 
in mind the SCN2A gene heterogeneity. This is also true for 
mutations in the SCN1A gene, with de novo mutations causing 

Table 2. To-date mutations reported in the SCN2A gene causing 
different overlapping phenotypes.

S.NO DiSORDER CAUSED NUMBER OF 
MUTATiONS REPORTED

1 Autism spectrum disorder 46

2 Seizures 54

3 Epilepsy 28

4 infantile spasms 2

5 Schizophrenia 3

6 Ohtahara syndrome 14

7 lennox-Gastaut syndrome 2

8 intellectual disability 16

9 West syndrome 4

10 Neurodevelopmental 
disorder

8

11 Cleft lip and/or palate 1

12 Epileptic encephalopathy 89

13 Dravet syndrome 1

 Total 268

PREviOUSly REPORTED CASES PRESENT CASE %

lack of differentiation between cortex 
and subcortical layers with 
pachygyria and anomalies of the 
cortical gyration

17 Not observed 5.86

immature myelination at the bilateral 
periventricular areas

28 Not observed 9.65

Prognosis 36 died Alive 12.41

Table 1. (Continued)
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the severe Dravet syndrome. Similarly, mutations in the SCN9A 
have been associated with pain disorders and suggested as a 
genetic modifier for the Dravet syndrome, thus considered as a 
susceptible gene.39-45 Moreover, SCN8A mutations are also 
inherited dominantly and associated with more severe mani-
festations of EIEE and BFIS.46,47 Homozygous SCN1B muta-
tions have been shown to cause a clinical phenotype of Dravet 
syndrome, while heterozygous mutations in autosomal domi-
nant cases have been associated with generalized epilepsy and 
febrile seizures.48,49 The limitation of the current study is being 
the only homozygous case described in the family and current 
literature making a firm inference of pathogenicity impossible; 
therefore, further homozygous reported cases with similar phe-
notype would confirm such conclusion.

Conclusion
We report the first case of a homozygous SCN2A gene muta-
tion in a female toddler from Saudi Arabia having hallmark 
features of EIEE in autosomal recessive manner. In addition, 
we describe a novel mutation that increased the mutational 
spectrum of SCN2A-associated pathogenesis. This finding 
expands the molecular and inheritance spectrum of SCN2A 
gene defects.
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