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THE BIGGER PICTURE Electronic health record (EHR)-based research is central to fulfill the vision of
personalized medicine. However, due to EHRs being structured for billing purposes, reliably identifying pa-
tients with a phenotype of interest in a clinical data warehouse is difficult. Phe2vec uses unsupervised
learning to derive medical concept embeddings and build phenotype definitions to identify patient cohorts.
Pre-training embeddings leads to a flexible solution which is applicable to any disease by simply defining a
seed concept. This method showed performance comparable or superior to that of other widely adopted
EHR phenotyping approaches. Phe2vec aims to contribute to the next generation of clinical systems that
use machine learning to effectively support clinicians in their activities. These systems capable of scaling
to a large number of diseases, patients, and health data promise to offer amore holistic way to examine dis-
ease complexity and to improve clinical practice and medical research.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Robust phenotyping of patients from electronic health records (EHRs) at scale is a challenge in clinical infor-
matics. Here, we introduce Phe2vec, an automated framework for disease phenotyping from EHRs based on
unsupervised learning and assess its effectiveness against standard rule-based algorithms from Phenotype
KnowledgeBase (PheKB). Phe2vec is based on pre-computing embeddings of medical concepts and pa-
tients’ clinical history. Disease phenotypes are then derived from a seed concept and its neighbors in the
embedding space. Patients are linked to a disease if their embedded representation is close to the disease
phenotype. Comparing Phe2vec and PheKB cohorts head-to-head using chart review, Phe2vec performed
on par or better in nine out of ten diseases. Differently from other approaches, it can scale to any condition
and was validated against widely adopted expert-based standards. Phe2vec aims to optimize clinical infor-
matics research by augmenting current frameworks to characterize patients by condition and derive reliable
disease cohorts.
INTRODUCTION

Building cohorts for observational experiments requires the reli-

able identification of patients with the disease of interest. This is
This is an open access article under the CC BY-N
difficult to achievewith electronic health records (EHRs) because

of data fragmentation and lack of specific inclusion criteria. Diag-

noses, in fact, can stem frommany forms: documented in a chart

note by a physician, in International Classification of Diseases,
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9th and 10th revision (ICD-9/10) codes, or as results of a lab test.

Depending on the disease, varying data modalities can be better

or worse at reflecting reliable diagnosis.1 For example, amajority

of patients with atrial fibrillation are identifiable from their

medications, whereas for patients with rheumatoid arthritis,

medications are far less useful for classification. Input errors,

coding and reporting biases, data availability, sparsity, and

data structure also present further challenges to accurately

identifying patient cohorts.2

Acknowledging these challenges, EHR-based phenotyping is

a computational task to identify key medical concepts in the

patient data that consistently and robustly define a disease

from EHR data. This is commonly done by applying rule-based

algorithms that specify the inclusion or exclusion of certain ICD

codes, ranges of laboratory tests, certain medication prescrip-

tions, or the presence of phrases in clinical notes. Phenotyping

algorithms are manually built by researchers with advanced

knowledge of the specific disease or phenotype of interest,

and require validation through manual chart review by experts3

before being deposited in the Phenotype KnowledgeBase

(PheKB).4 The Electronic Medical Records and Genomics

(eMERGE) consortium led the effort in defining, implementing,

and validating such algorithms at various institutions for a num-

ber of diseases.5,6 While effective, implementing a PheKB algo-

rithm on a new dataset is time intensive as it requires data of

varying formats and specific laboratory or clinical information.

They also have limited scalability due to the nature of their

curated design based on expert knowledge and for a single

disease at a time. Consequently, the number of diseases that

have public PheKB algorithms is limited, with only 46 diseases

or syndromes represented as of July 2020.7

Automated phenotyping provides a more rapid and scalable

alternative if it can achieve the same robustness as rule-based

algorithms.8 Previous work in this domain used supervised and

unsupervised machine learning to derive phenotypes for several

diseases, with different strengths and limitations (see literature

review in Note S1).9–23 Supervised models rely on classifiers

based on manually labeled gold standards for each specific dis-

ease, which is time-consuming and not scalable. Unsupervised

approaches discover phenotypes purely from the data, trying

to aggregate medical concepts commonly appearing together

in the patient records. While more scalable, these approaches

are difficult to tune, often rely on defining in advance the number

of phenotypes, require manual reviews of the disease definitions

and might fail to capture co-occurrences related to less frequent

diseases. While innovative and promising, these works were

generally not benchmarked against gold standard phenotyping

algorithms, i.e., PheKB, to appropriately assess their reliability

for identifying cohorts of patients associated with a disease.

This paper presents Phe2vec, a scalable unsupervised

learning framework based on neural networks for EHR-based

phenotyping. Phe2vec derives vector-based representations,

i.e., embeddings, of medical concepts to define disease pheno-

types using the semantic closeness in the embedding space to a

seed concept (e.g., an ICD code).17 Embeddings are then

aggregated at the patient-level to identify populations related

to a specific disease based on distance from the phenotype in

the embedding space. Experiments based on manual chart

review show that Phe2vec performs, at least, as well as PheKB
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for different and diverse diseases. Phe2vec extends our previous

work17 by including clinical notes, a larger cohort of patients and

diseases, and manual chart review comparing Phe2vec and

PheKB. To the best of our knowledge, this is one of the first

head-to-head comparisons between an automated phenotyping

method and clinically widely used rule-based algorithms. Based

on unsupervised embeddings of medical concepts, Phe2vec

can also potentially be leveraged as the first layer of clinical

predictive learning systems and can be extended to include

other modalities of data, leading to phenotypes related to a

holistic view of the diseases.

RESULTS

We used de-identified EHRs of 1,908,741 patients from the

Mount Sinai Health System (MSHS) data warehouse. For each

patient we aggregated ICD-9 diagnosis codes, medications

normalized to RxNorm, CPT-4 procedure codes, vital signs,

lab tests normalized to Logical Observation Identifiers Names

and Codes (LOINC), and preprocessed clinical notes (see

experimental procedures).

Overview of Phe2vec
Figure 1 summarizes the conceptual framework of Phe2vec: an

automated phenotype algorithm that creates low-dimensional

representations (i.e., embeddings) of the medical concepts from

longitudinal EHRs.17 These representations put all concepts

fromboth structured and unstructured EHRs in a commonpheno-

type space where association is inversely proportional to pairwise

distance (Figure 1A). A disease phenotype is defined as a seed

concept and its neighborhood. Embeddings are then used to

summarize patient history and measure their relatedness with

the phenotype using distance analysis (Figure 1B).

Medical concept embeddings
Longitudinal EHRs are irregularly sampled temporal sequences

of medical concepts. Concepts adjacent to each other in these

sequences should group together in the learned embedding

space. To this aim, we first partition the patient data in time inter-

vals composed by N days. Second, we remove duplicates from

each time interval and third, we randomly shuffle the concepts in

each interval.24 This process is done to reduce biases related to

how the data are inserted in the system. Each time interval rep-

resented as a sequence of unique medical concepts is then

considered as a ‘‘sentence’’ (where each medical concept is a

‘‘word’’) and can be modeled using embedding algorithms

from the NLP literature, such as Word2vec,25 GloVe,26 and

FastText.27 Regardless of the specific algorithm, after training,

every medical concept is represented as a low-dimensional

vector, with all the medical concepts mapped in the samemetric

space.

Definition of disease phenotypes
The disease phenotype is defined frommedical concept embed-

dings by exploring the neighborhood of a specific seed query, for

example, the ICD code that is related to the specific condition.

The size of the neighborhood can be tuned differently based

on the disease but, in order to reduce noise, is limited to the

concepts within a certain distance from the seed concept.
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Figure 1. Phe2vec framework comprising medical concept embedding and disease phenotyping for cohort selection

(A) An embedding algorithm creates low-dimensional vector-based representations of medical concepts from longitudinal EHRs.

(B) Disease phenotypes are defined by considering a seed concept (e.g., an ICD code) and its neighbors in the embedding space. A patient’s clinical history is

summarized by aggregating all the medical concept embeddings. This representation is used to measure the distance of the patient with the phenotype in the

vector space to determine the association with the disease.
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Patient representation
Patient clinical histories are summarized by aggregating medical

concept embeddings. In particular, for each time interval in the

patient clinical history (i.e., the ‘‘sentence’’), we compute the

weighted average of all medical concept embeddings within that

sentence and subtract the projections of the average vectors on

their first principal component.28 This serves to remove the largely
shared components from the vectors, leading to more discrimina-

tive aggregated representations. The weight of each medical

conceptw is defined as 1 = ð1 + pðwÞÞ, with pðwÞ being the esti-

mated medical concept frequency across the dataset, leading to

lower weights for frequent medical concepts. Every patient is

then characterized by a sequence of aggregated embeddings,

one per each time interval, lying in the same space of the medical
Patterns 2, 100337, September 10, 2021 3



Figure 2. Study design implementing and

comparing Phe2vec and PheKB

Our study design implements Phe2vec, an auto-

mated phenotyping method, and algorithms from

PheKB, a bank of manually derived phenotyping

rules, on different diseases using EHRs from a large-

scale hospital system. The cohorts identified by

Phe2vec and PheKB are directly compared and

evaluated via chart review.
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concepts. We refer to these aggregated embeddings as ‘‘patient

sequence embeddings’’ (PSE).

Automated definition of disease patient cohorts
To quantify the association between a patient and a disease, we

compute the distance between each medical concept in the

disease phenotype and each PSE in the patients’ clinical history.

Then, for each concept in the phenotype, we take the closest PSE

and average all these distances to obtain the aggregated score.

Finally, the latter is transformed to an adjacency (similarity)

measure by applying the inverse of the exponential function. We

refer to this aggregated score as ‘‘phenotype score.’’

Performance evaluation
Figure 2 highlights the study design to compare Phe2vec and

PheKB on different diseases using EHRs from MSHS in terms

of phenotype definition and automated disease cohort selection.

We selected diseases with PheKB algorithms that could be

implemented with the MSHS data available for this project and

were well represented in the dataset (see experimental proced-

ures). This resulted in ten diverse diseases: abdominal aortic

aneurysm (AAA), atrial fibrillation, attention deficit hyperactivity

disorder, autism, Crohn disease, dementia, herpes zoster,

multiple sclerosis, sickle cell disease, and type 2 diabetes

mellitus (T2D).
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PheKB algorithmswere implemented for

the ten diseases selected by including in

the phenotypes all the medical concepts

specified that were available in the dataset

(see Table S1). We were able to success-

fully implement all algorithms with only a

few minor specifications (see supple-

mental experimental procedures for more

details). While some of these algorithms

include criteria for a control group, we

focused only on case selection. For

algorithms that differentiated cases into

several types, we simply aggregated all

types. The medical concepts associated

with each disease phenotype as identified

by PheKB are reported in Table S2.

For each disease, we defined Phe2vec

phenotypes by startingwith the associated

ICD code (i.e., ‘‘seed,’’ see Table S3) and

retaining the top K closest concepts in

the embedding space (i.e., ‘‘neighbors’’).

We then ranked patients based on their

distance with such phenotype definitions.
PheKB patients were retrieved by simply considering all the

patients satisfying the logic defined in each disease phenotype.

These algorithms do not specify a score, consequently patients

were not ranked and were treated as equally associated with the

disease.

Disease phenotype analysis
To assess the performance of Phe2vec in building phenotypes,

for each disease, we evaluated the overlap between the medical

concepts retrieved from the seed neighbors and those in PheKB.

Since the number of concepts in a PheKB definition (i.e., recall

level R) varies across diseases, we evaluated different neighbors

with sizes equal to percentages of R of the corresponding dis-

ease (R%).18 We measured precision and recall per disease,

where precision is the number of correct positive results divided

by the number of all positive results, and recall is the number of

correct positive results divided by the number of positive results

that should have been returned. Results averaged over the ten

diseases are reported in Figure 3. Overall, phenotypes obtained

with Word2vec as an embedding algorithm led to better

performances compared with GloVe and FastText. At recall level

(R% = 100), Word2vec obtained an F-score (harmonic mean of

precision and recall) equal to 0.41, compared with 0.28 and

0.38 of GloVe and FastText, respectively. The phenotypes

most related to PheKB definitions were obtained for autism,
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Figure 3. Comparison of three embedding

algorithms’ performances

Precision (A) and recall (B) obtained by phenotypes

derived with Phe2vec using Word2vec, GloVe, and

FastText embedding algorithms when matched

against PheKB averaged over all the diseases. For

each disease, we considered different neighbor-

hoods of the corresponding seed concept with sizes

equal to percentages of the recall level (R%), which is

the number of concepts in the PheKB phenotypes.

ll
OPEN ACCESSDescriptor
dementia, and sickle cell disease, while AAA and herpes zoster

obtained the worst results.

Figure 4 visualizes the (1) phenotype space generated by

Phe2vec with Word2vec embeddings using Uniform Manifold

Approximation and Projection (UMAP) for dimension reduction29

and highlights the phenotypes created for (2) T2D, and (3) de-

mentia. See Figure S1 for the phenotype space of the other dis-

eases considered. As it can be seen, most of the concepts are

clinically related to the condition and create a ‘‘disease defini-

tion’’ that can be used to better identify cohorts of case/control

patients in the dataset.

Disease cohort selection
We used phenotypes based on different embeddings to retrieve

cohorts of patients for each disease. We defined a disease

phenotype by retaining the seed concept and its closest neigh-

bors. In a practical scenario, a domain expert would choose

the optimal number of concepts. Here, for the sake of generaliza-

tion, we retained concepts with adjacency (similarity) scores

greater than 0.7 (with maximum score equal to 1). This value

was chosen to reduce noise in the phenotype definition, while

still including at least five concepts per disease. We computed

phenotype scores between patients and diseases, and we eval-

uated annotation and retrieval performances against cohorts

retrieved with PheKB. We included in the experiment an

approach based on a bag of concepts (‘‘BoCon’’), which, for

each patient, simply counts the occurrence of each concept in

the phenotype identified by Phe2vec (rather than measuring

diseases in the embeddings space). We also assess the

performance of two commonly used phenotyping methods,

PheCode22 and PheMap.21 PheCode groups ICD-9/10 codes

into clinically meaningful phenotypes, thereby collapsing the

diagnosis code space. PheMap is a high-throughput phenotyp-

ing approach that identified concepts important to phenotypes

from publicly available sources, such as MedlinePlus, Medicine-

Net, and Wikipedia. We implemented both of these methods to

retrieve cohort of patients for each disease and likewise evalu-

ated annotation and retrieval performance against cohorts

retrieved with PheKB. Results averaged over the ten diseases

are presented in Table 1. The annotation experiment relies on a

threshold to discriminate between ‘‘phenotype’’ versus ‘‘non-

phenotype,’’ with scores greater than this threshold identifying

patients with the phenotype of interest. To choose a value inde-

pendently and ensure generalizability, for this task we organized

a 2-fold cross-validation experiment where we randomly split the
dataset in half, obtaining two independent cohorts of �800,000

patients that we used to train and test the threshold, and vice

versa). During training, for each disease, we ranged the value

from 0.1 to 1, with 0.05 increments, and retained the threshold

leading to the best results across all diseases in the training

set. We then applied that value to the corresponding test sets

to annotate patients with the phenotypes and evaluate results

in terms of F-score averaged across the two folds. For BoCon,

PheCode and PheMap we annotated the disease for all patients

with at least one concept from the corresponding phenotype. In

the retrieval experiment, for each disease, we sorted all

1.6 million patients by phenotype score and measured the posi-

tion in the ranking of the PheKB patients. We report precision at

the recall level (R-precision) and the area under the precision and

recall curve (AUC-PR). R-precisionmeasures the number of pos-

itive patients in the top R position of the rank, where R is the num-

ber of true patients associated with the disease. The PR curve is

a plot of precision and recall for different thresholds; AUC-PR is

computed by integrating the PR curve. As seen, methods based

on Phe2vec outperforms BoCon as well as PheCode and Phe-

Map for all metrics and embeddings. Using phenotypes

composed by multiple medical concepts leads to better results

than simply using the seed concept. While expected, this indi-

cates the need of inclusive phenotypes methods that overcome

limitations of ICD codes (as also indicated by PheCode perfor-

mances). As in the previous experiment, Phe2vec based on

Word2vec overall obtains slightly better results than using other

embeddingmodels. Table 2 shows results obtained for each dis-

ease using Phe2vec andWord2vec (see Tables S4–S6 for the re-

sults obtained using GloVe, FastText, and BoCon, respectively).

We lastly compared Phe2vec withWord2vec embeddings and

PheKB head-to-head usingmanual review to assess their perfor-

mances independently. For each of the ten disease cohorts, we

selected 50 PheKB-identified patients and 50 Phe2vec-identi-

fied patients, resulting in 100 patients per disease. We per-

formed manual chart review to identify whether the targeted dis-

ease diagnosis was explicitly given at any time in any clinical note

for each given patient. This process consisted of randomly as-

signing each of these 1,000 cases to 2 of 3 possible raters who

would then read over each individual’s notes from all encounters

in order to find a diagnosis for the particular disease. Each rater

evaluated their assigned individuals independently and was

blinded to algorithm predictions. If the two raters agreed on

whether the patient had the disease or not, that would be the

true disease status label. In cases of disagreement, a decision
Patterns 2, 100337, September 10, 2021 5
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Figure 4. Uniform Manifold Approximation

and Projection (UMAP) visualization of the

EHR-based phenotype space generated by

Phe2vec with Word2vec embeddings

Medical concept embedding space (A). Phenotypes

for type 2 diabetes mellitus (B) and dementia (C).

Seed concepts are colored in black, while concepts

in the phenotypes are colored in purple. See Fig-

ure S1 for the phenotypes of the other eight

diseases included in the study.
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was reached by a second round of review with a consensus

reached by all raters, so that each patient’s disease status was

confirmed by at least two, and up to three raters. Figure S2

shows the chart review inter-rater reliability following the point

at which individual raters had made their first assessments.

Table 3 reports results for all ten diseases in terms of positive

predictive value (PPV), which is the proportion of patients

marked as positive by the algorithm that truly has the disease

as defined by chart review. Phe2vec obtained better PPV in

nine diseases, with highest improvements for herpes zoster

and T2D, showing qualitative performances on par with manual

phenotypes. Overall, Phe2vec and PheKB achieved an average

PPV of 0.94 and 0.82, respectively.
DISCUSSION

This study proposes a computational framework based on unsu-

pervised machine learning to define disease phenotypes from

heterogeneous EHRs. Specifically, we developed and validated

an architecture named Phe2vec that infers informative vector-

based representations of medical concepts and uses distance

analysis from a seed concept to define phenotypes and to

retrieve cohorts of patients associated with diseases. Phe2vec

aims to be domain-free, robust, and scalable to all diseases.

Experimental results on large-scale EHRs show that Phe2vec

identifies similar phenotypes to PheKB and can be used to
6 Patterns 2, 100337, September 10, 2021
accurately identify cohorts of patients

diagnosed with a certain disease. In partic-

ular, Phe2vec performed on par or outper-

formed PheKB algorithms in nine out of ten

diseases examined. Experiments also

highlight the slight preference ofWord2vec

as a model to learn medical concepts

embeddings from EHRs over FastText

and GloVe. Phe2vec is purely data driven

and requires no manual effort beyond the

selection of a single-seed concept, which

can simply be the general ICD code

associated with the targeted disease.

Potential applications
Based on medical concept embeddings

derived from a large-scale heterogeneous

EHR dataset, this approach promises to

be easily deployable in other facilities with

minimum effort. In addition, these embed-
dings can be used to initialize machine learning architectures for

clinical predictive analysis and medical research.30,31

The natural application is to identifymedical concepts related to

a disease diagnosis and use them to identify reliable cohorts of

patients for case-control studies. An automated method such as

Phe2vec can be used as a stand-alone tool in clinical facilities

but can also be used to improve and scale the creation of PheKB

definitions. In fact, domain-experts can use Phe2vec to quickly

generate a list of candidate medical concepts, manually refine

them, evaluate them in a multi-center scenario and release it as

standards. This would considerably speed up operations and

would provide a larger number of phenotypes available as

standards. Data-driven phenotypes derived automatically and

updated constantly from EHRs can also help identify changes in

clinical practice and guidelines. This could ultimately increase or

decrease the significance of some concepts as well as introduce

new diagnostic lab tests or medications.

Phe2vec aims to contribute to the next generation of clinical

systems that can scale to millions of patient records and use

machine learning to effectively support clinicians in their daily

activities. The ability to quickly derive disease phenotypes in

the EHRs for a large number of diseases can be used to easily

track clinical history of patients.

Limitations
The main goal of this work was to prove feasibility and robust-

ness of Phe2vec in comparison with PheKB. There are several



Table 1. Disease cohort selection results obtained with the

automated evaluation, where PheKB cohorts are considered as

gold standard

F-score R-precision AUC-PR

PheCode 0.44 0.41 0.53

PheMap 0.49 0.42 0.55

Seed code BoCon 0.42 0.39 0.53

Word2vec 0.50 0.52 0.59

GloVe 0.43 0.51 0.54

FastText 0.47 0.50 0.58

Disease phenotype BoCon 0.53 0.44 0.56

Word2vec 0.64 0.62 0.69

GloVe 0.57 0.54 0.62

FastText 0.59 0.55 0.64

Cohorts are retrieved using a unique seed ICD code, or the correspond-

ing disease phenotype obtained with Phe2vec. We compare embedding-

based methods (Word2vec, GloVe, FastText), which rely on distance be-

tween patients and phenotypes, bag of codes (BoCon), which just count

the frequency of the phenotype concepts in the patient history, Phe-

Code,22 and PheMap.21 All results are average across ten diseases.
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limitations to our study. First, we acknowledge the use of

laboratory test presence only and not of the test result values

themselves. While test frequency is often sufficient when

modeling large datasets of patients and for a number of

diseases,32 result values might be necessary for some other dis-

eases and should be included. To this point, for example, lab

results can be categorized into discrete values (e.g., ‘‘high,’’

‘‘normal,’’ ‘‘low’’) and aggregated into extended concepts

combining test and associated result (e.g., ‘‘<lab_test>|

<lab_result_category>’’). Second, the extensive amount of time

to implement PheKB algorithms and for chart review prevented

us from including more disease categories in the experiment. A

larger-scale evaluation, including validation within other hospital

systems, is required before deployment in any clinical practice.

In the cohort retrieval experiments, we defined the phenotypes

using an arbitrary closeness threshold. In practice, a domain

expert should manually revise the list of medical concepts in

the phenotype and choose the appropriate cutoff level. Definition

of an automated method to select the optimal neighborhood of

the seed concept would increase scalability and reduce this

human intervention. In addition, due to the time-intensive nature

of the manual chart review process, we were limited from

performing in depth error analysis, which could elucidate com-

mon reasons for mistakes. For example, alternative strategies

for arriving at these labels could identify medical concepts asso-

ciated with misclassification. Finally, we only considered the use

of ICD-9 codes as seed concepts. Using more specific diag-

nosis, medications, lab tests, or a combination of codes might

change phenotype definitions and improve performances.
Future work
To start, we plan to evaluate more sophisticated methods to

summarize patient trajectories. While a weighted average of

medical concepts was enough to show effectiveness of

Phe2vec, architectures based on unsupervised deep learning
better represent patient clinical histories and promise to improve

modeling the interactions between patients and pheno-

types.31,33,34 Next, we will evaluate other strategies to create

medical concept embeddings, such as the use of transformer

architectures to model both clinical notes and structured

EHRs.35,36 Third we will define a framework to analyze how phe-

notypes change over time with the goal of improving disease

definitions and their association with patients. We will also

explore the use of Phe2vec to create reliable disease-specific

control cohorts for observational studies. Finally, we will embed

other modalities of data, such as genetics and clinical imaging,

into this framework, which should refine disease phenotypes

and potentially reveal novel associations.

Conclusions
We introduced Phe2vec, an automated method based on

unsupervised machine learning for EHR-based disease pheno-

typing. Phe2vec uses embeddings of medical concepts to derive

phenotypes and to measure the association between disease

and patient representations. We obtained results that are

comparable with electronic phenotyping algorithms that use

manually defined rules from PheKB. Automated architectures

for disease phenotype that are capable of scaling to a large

number of diseases, patients, and health data promise to offer

a more holistic way to examine disease complexity and to

improve clinical practice and medical research.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Riccardo Miotto

(riccardo.miotto@mssm.edu).

Materials availability

This study did not generate any physical materials.

Data and code availability

The clinical data reported in this study cannot be deposited in a public repos-

itory because they are confidential medical records. All original code has been

deposited at https://github.com/HPIMS/phe2vec and are publicly available as

of the date of publication. We also release the 100 most related medical con-

cepts from Phe2vec for each ICD-9 code in the repository above. Any informa-

tion required to reanalyze the data reported in this paper is available from the

lead contact upon request.

Dataset

We used de-identified EHRs from the MSHS data warehouse; the study was

approved under IRB-19-02369 by the Program for the Protection of Human

Subjects at the Icahn School of Medicine at Mount Sinai. MSHS is a large

and diverse urban hospital located in New York, NY, which generates a high

volume of structured, semi-structured, and unstructured data from inpatient,

outpatient, and emergency room visits. We accessed a de-identified version

of the data containing �4.5 million patients, spanning the years from 1980

to 2016.

For each patient, we aggregated ICD-9 diagnosis codes, medications

normalized to RxNorm, CPT-4 procedure codes, vital signs, and lab tests

normalized to LOINC. ICD-10 codes were mapped back to the corresponding

ICD-9 versions. We preprocessed clinical notes using a tool based on the

Open Biomedical Annotator to extract clinical concepts from the free

text.37,38 The vocabulary was composed of 57,464 clinical concepts.

We retained all patients with at least two concepts, resulting in a collection of

1,908,741 different patients, with an average of 88.7 concepts per patient. In

particular, the cohort included 1,068,940 females, 820,239 males, and

19,562 not declared; the mean age of the population as of 2016 was 48.33
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Table 2. Results on cohort selection per disease obtained by

Phe2vec with Word2vec embeddings, where PheKB cohorts are

considered as gold standard

Disease Patients F-score R-precision AUC-PR

Abdominal aortic

aneurysm

1,982 0.64 0.57 0.73

Attention deficit

hyperactivity disorder

7,778 0.72 0.62 0.77

Atrial fibrillation 39,568 0.54 0.54 0.56

Autism 1,279 0.53 0.57 0.58

Crohn disease 6,207 0.73 0.69 0.78

Dementia 15,406 0.58 0.58 0.58

Herpes zoster 1,618 0.45 0.46 0.57

Multiple sclerosis 4,532 0.85 0.82 0.86

Sickle cell disease 949 0.69 0.75 0.71

Type 2 diabetes mellitus 59,233 0.65 0.59 0.73

See also Tables S4–S6. Comparison of Phe2vec and PheKB via Chart

Review.

ll
OPEN ACCESS Descriptor
years (s.d. = 23.71). We used 300,000 random patients for training the medical

concept embeddings and the remaining 1,608,741 patients for testing. We

decided on this split because we wanted to evaluate the phenotype algorithms

on retrieving cohorts of patients from a large population.

Diseases

We selected diseases from PheKB by filtering publicly available algorithms by

‘‘Type of Phenotype’’ equal to ‘‘Disease or Syndrome.’’ We selected diseases

with algorithms that could be implemented with the MSHS data available for

this project and were well represented in the dataset.

Implementation details

We learned medical concept embeddings using the 300,000 patients in the

training set. We tested a large number of configurations (e.g., time interval N

ranging from 3 to 60 days; embedding dimensions spanning from 10 to

1,000; minimum concept frequency from 2 to 10). We trained different embed-

dings using Word2vec, GloVe, and FastText. We trained Word2vec and

FastText with skip-gram and negative sampling,39 while GloVe was trained

with the standard configuration.26 We optimized hyperparameters of all

models by measuring the clinical relevance of the neighbors in the embedding
Table 3. Per disease positive predictive value obtained by

Phe2vec with Word2vec embeddings and PheKB against a gold

standard derived via manual chart review of progress notes

Disease

Positive

Predictive Value

Phe2vec PheKB

Abdominal aortic aneurysm 1.00 0.95

Attention deficit hyperactivity disorder 0.97 0.85

Atrial fibrillation 0.85 0.85

Autism 0.81 0.95

Crohn disease 0.98 0.81

Dementia 0.98 0.82

Herpes zoster 0.92 0.45

Multiple sclerosis 0.97 0.97

Sickle cell disease 0.96 0.83

Type 2 diabetes mellitus 0.98 0.74
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space of all ICD codes in the vocabulary.24 In particular, we used the Clinical

Classification System (CCS), single level, to group ICD codes into higher-level

clinically meaningful categories. We then evaluated whether and to which

extent the nearest neighbors of each ICD code included other ICD codes

from the same CCS group. For brevity here we report only the best setting

derived from this hyperparameter optimization which was then used in the

rest of the evaluation.

For each patient trajectory, we used time intervals of N = 15 days and re-

tained all concepts appearing at least three times. We obtained embeddings

with size equal to 200 for 49,234 medical concepts. Each patient in the test

set was then summarized as a sequence of PSEs covering non-empty

15 day intervals along the clinical trajectory. We used cosine distance to mea-

sure relationships in the phenotype space for both medical concepts and

patients.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100337.

ACKNOWLEDGMENTS

R.M. would like to thank the support from the Hasso Plattner Foundation, the

Alzheimer’s Drug Discovery Foundation, and a courtesy GPU donation from

Nvidia. This study was supported by the National Center for Advancing Trans-

lational Sciences, National Institutes of Health (U54 TR001433-05).

AUTHOR CONTRIBUTIONS

R.M. and B.S.G. initiated the idea. R.M. collected the data, conducted the

research and the experimental evaluation and wrote the manuscript.

J.K.D.F., K.W.J., and B.S.G. implemented the PheKB algorithms, performed

the manual chart review of the results, and refined the article. G.N.N. provided

clinical support and refined the article. E.G. refined the article. J.T.D. and

E.P.B. supported the research. All the authors edited and reviewed the

manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 29, 2021

Revised: June 30, 2021

Accepted: August 5, 2021

Published: September 2, 2021

REFERENCES

1. Wei, W.-Q., Teixeira, P.L., Mo, H., Cronin, R.M., Warner, J.L., and Denny,

J.C. (2016). Combining billing codes, clinical notes, and medications from

electronic health records provides superior phenotyping performance.

J. Am. Med. Inform. Assoc. 23, e20–e27.

2. Weiskopf, N.G., and Weng, C. (2013). Methods and dimensions of elec-

tronic health record data quality assessment: enabling reuse for clinical

research. J. Am. Med. Inform. Assoc. 20, 144–151.

3. Pathak, J., Kho, A.N., and Denny, J.C. (2013). Electronic health records-

driven phenotyping: challenges, recent advances, and perspectives.

J. Am. Med. Inform. Assoc. 20, e206–e211.

4. Kirby, J.C., Speltz, P., Rasmusen, L.V., Basford, M., Gottesman, O.,

Peissig, P.L., Pacheco, J.A., Tromp, G., Pathak, J., Carrell, D.S., et al.

(2016). PheKB: a catalog and workflow for creating electronic phenotype

algorithms for transportability. J. Am. Med. Inform. Assoc. 23, 1046–1052.

5. Gottesman, O., Kuivaniemi, H., Tromp, G., Faucett, A., Li, R., Manolio,

T.A., Sanderson, S.C., Kannry, J., Zinberg, R., Basford, M.A., et al.

(2013). The Electronic Medical Records and Genomics (eMERGE)

network: past, present, and future. Genet. Med. 15, 761–771.

https://doi.org/10.1016/j.patter.2021.100337
https://doi.org/10.1016/j.patter.2021.100337
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref1
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref1
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref1
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref1
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref2
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref2
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref2
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref3
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref3
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref3
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref4
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref4
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref4
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref4
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref5
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref5
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref5
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref5


ll
OPEN ACCESSDescriptor
6. Newton, K.M., Peissig, P.L., Kho, A.N., Bielinski, S.J., Berg, R.L.,

Choudhary, V., Basford, M., Chute, C.G., Kullo, I.J., Li, R., et al. (2013).

Validation of electronic medical record-based phenotyping algorithms: re-

sults and lessons learned from the eMERGE network. J. Am. Med. Inform.

Assoc. 20, e147–e154.

7. Kirby, J.C., Speltz, P., Rasmusen, L.V., Basford, M., Gottesman, O.,

Peissig, P.L., et al. (2017). https://phekb.org/phenotypes.

8. Banda, J.M., Seneviratne, M., Hernandez-Boussard, T., and Shah, N.H.

(2018). Advances in electronic phenotyping: from rule-based definitions

to machine learning models. Annu. Rev. Biomed. Data Sci. 1, 53–68.

9. Carroll, R.J., Eyler, A.E., and Denny, J.C. (2011). Naı̈ve electronic health re-

cord phenotype identification for rheumatoid arthritis. In AMIA Annual

Symposium Proceedings, 2011 (AMIA Symposium), p. 189.

10. Ho, J.C., Ghosh, J., Steinhubl, S.R., Stewart, W.F., Denny, J.C., Malin,

B.A., and Sun, J. (2014). Limestone: high-throughput candidate pheno-

type generation via tensor factorization. J. Biomed. Inform. 52, 199–211.

11. Wang, Y., Chen, R., Ghosh, J., Denny, J.C., Kho, A., Chen, Y., Malin, B.A.,

and Sun, J. (2015). Rubik: knowledge guided tensor factorization and

completion for health data analytics. KDD 2015, 1265–1274.

12. Pivovarov, R., Perotte, A.J., Grave, E., Angiolillo, J., Wiggins, C.H., and

Elhadad, N. (2015). Learning probabilistic phenotypes from heteroge-

neous EHR data. J. Biomed. Inform. 58, 156–165.

13. Halpern, Y., Horng, S., Choi, Y., and Sontag, D. (2016). Electronic medical

record phenotyping using the anchor and learn framework. J. Am. Med.

Inform. Assoc. 23, 731–740.

14. Chiu, P.-H., and Hripcsak, G. (2017). EHR-based phenotyping: bulk

learning and evaluation. J. Biomed. Inform. 70, 35–51.

15. Henderson, J., Ho, J.C., Kho, A.N., Denny, J.C., Malin, B.A., Sun, J., and

Ghosh, J. (2017). Granite: diversified, sparse tensor factorization for elec-

tronic health record-based phenotyping. In 2017 IEEE International

Conference on Healthcare Informatics (ICHI), pp. 214–223.

16. Yu, S., Ma, Y., Gronsbell, J., Cai, T., Ananthakrishnan, A.N., Gainer, V.S.,

Churchill, S.E., Szolovits, P., Murphy, S.N., Kohane, I.S., et al. (2018).

Enabling phenotypic big data with PheNorm. J. Am. Med. Inform.

Assoc. 25, 54–60.

17. Glicksberg, B.S., Miotto, R., Johnson, K.W., Shameer, K., Li, L., Chen, R.,

and Dudley, J.T. (2018). Automated disease cohort selection using word

embeddings from Electronic Health Records. Pac. Symp. Biocomput.

23, 145–156.

18. Lee, J., Liu, C., Kim, J.H., Butler, A., Shang, N., Pang, C., Natarajan, K.,

Ryan, P., Ta, C., and Weng, C. (2020). Comparative effectiveness of

knowledge graphs-and EHR data-based medical concept embedding

for phenotyping. medRxiv. https://doi.org/10.1101/2020.07.14.

20151274.

19. Ahuja, Y., Zhou, D., He, Z., Sun, J., Castro, V.M., Gainer, V., et al. (2020).

sureLDA: a multi-disease automated phenotyping method for the elec-

tronic health record. J. Am. Med. Inform Assoc. 1235–1243. https://doi.

org/10.1093/jamia/ocaa079.

20. Wagholikar, K.B., Estiri, H., Murphy, M., andMurphy, S.N. (2020). Polar la-

beling: silver standard algorithm for training disease classifiers.

Bioinformatics 36, 3200–3206.

21. Zheng, N.S., Feng, Q., Kerchberger, E., Zhao, J., Edwards, T.L., Cox, N.J.,

Stein, M., Roden, D.M., Denny, J.C., and Wei, W.Q. (2020). PheMap: a

multi-resource knowledge base for high-throughput phenotyping within

electronic health records. J. Am. Med. Inform. Assoc. 27, 1675–1687.

22. Wu, P., Gifford, A., Meng, X., Li, X., Campbell, H., Varley, T., Zhao, J.,

Carroll, R., Bastarache, L., and Denny, J.C. (2019). Mapping ICD-10 and
ICD-10-CM codes to phecodes: workflow development and initial evalua-

tion. JMIR Med. Inform. 7, e14325.

23. Lee, J., Liu, C., Kim, J.H., Butler, A., Shang, N., Pang, C., Natarajan, K.,

Ryan, P., Ta, C., and Weng, C. (2020). Comparative effectiveness of

knowledge graphs-and EHR data-based medical concept embedding

for phenotyping. medRxiv. https://doi.org/10.1093/jamiaopen/ooab028.

24. Choi, Y., Chiu, C.Y.-I., and Sontag, D. (2016). Learning low-dimensional

representations of medical concepts. AMIA Jt. Summits Transl Sci.

Proc. 2016, 41–50.

25. Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation

of word representations in vector space. arXiv.

26. Pennington, J., Socher, R., and Manning, C.D. (2014). Glove: global vec-

tors for word representation. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP),

pp. 1532–1543.

27. Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching

word vectors with subword information. Trans. Assoc. Comput.

Linguistics 5, 135–146.

28. Arora, S., Liang, Y., andMa, T. (2017). A simple but tough-to-beat baseline

for sentence embeddings. In 5th International Conference on Learning

Representations (ICLR), p. 2017.

29. McInnes, L., and Healy, J. (2018). UMAP: UniformManifold Approximation

and Projection for dimension reduction. arXiv.

30. Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Hardt, M., Liu, P.J.,

Liu, X., Marcus, J., Sun, M., et al. (2018). Scalable and accurate deep

learning with electronic health records. npj Digital Med. 1, 18.

31. Landi, I., Glicksberg, B.S., Lee, H.-C., Cherng, S., Landi, G., Danieletto,

M., Dudley, J.T., Furlanello, C., and Miotto, R. (2020). Deep representation

learning of electronic health records to unlock patient stratification at

scale. NPJ digital Med. 3, 96.

32. Lipton, Z.C., Kale, D.C., Elkan, C., and Wetzell, R. (2015). Learning to

Diagnose with LSTM Recurrent Neural Networks (ICLR), pp. 1–18.

33. Miotto, R., Li, L., Kidd, B.A., and Dudley, J.T. (2016). Deep patient: an un-

supervised representation to predict the future of patients from the elec-

tronic health records. Sci. Rep. 6, 26094.

34. Beaulieu-Jones, B.K., and Greene, C.S.; Pooled Resource Open-Access

ALS Clinical Trials Consortium (2016). Semi-supervised learning of the

electronic health record for phenotype stratification. J. Biomed. Inform.

64, 168–178.

35. Li, Y., Rao, S., Solares, J.R.A., Hassaine, A., Ramakrishnan, R., Canoy, D.,

Zhu, Y., Rahimi, K., and Salimi-Khorshidi, G. (2020). BEHRT: transformer

for electronic health records. Sci. Rep. 10, 7155.

36. Rasmy, L., Xiang, Y., Xie, Z., Tao, C., and Zhi, D. (2020). Med-BERT: pre-

trained contextualized embeddings on large-scale structured electronic

health records for disease prediction. NPJ digital Med. 4, 86.

37. Jonquet, C., Shah, N.H., and Musen, M.A. (2009). The open biomedical

annotator. Summit Transl Bioinform 2009, 56–60.

38. LePendu, P., Iyer, S.V., Fairon, C., and Shah, N.H. (2012). Annotation anal-

ysis for testing drug safety signals using unstructured clinical notes.

J. Biomed. Semantics 3, S1–S5. https://doi.org/10.1186/2041-1480-3-

S1-S5.

39. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., and Dean, J. (2013).

Distributed representations of words and phrases and their composition-

ality. Proceedings of the 26th International Conference on Neural

Information Processing Systems 2, 3111–3119.
Patterns 2, 100337, September 10, 2021 9

http://refhub.elsevier.com/S2666-3899(21)00185-9/sref6
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref6
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref6
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref6
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref6
https://phekb.org/phenotypes
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref8
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref8
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref8
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref9
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref9
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref9
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref10
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref10
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref10
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref11
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref11
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref11
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref12
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref12
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref12
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref13
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref13
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref13
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref14
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref14
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref15
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref15
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref15
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref15
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref16
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref16
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref16
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref16
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref17
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref17
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref17
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref17
https://doi.org/10.1101/2020.07.14.20151274
https://doi.org/10.1101/2020.07.14.20151274
https://doi.org/10.1093/jamia/ocaa079
https://doi.org/10.1093/jamia/ocaa079
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref20
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref20
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref20
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref21
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref21
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref21
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref21
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref22
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref22
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref22
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref22
https://doi.org/10.1093/jamiaopen/ooab028
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref24
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref24
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref24
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref25
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref25
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref26
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref26
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref26
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref26
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref27
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref27
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref27
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref28
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref28
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref28
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref29
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref29
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref30
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref30
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref30
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref31
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref31
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref31
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref31
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref32
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref32
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref33
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref33
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref33
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref34
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref34
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref34
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref34
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref35
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref35
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref35
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref36
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref36
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref36
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref37
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref37
https://doi.org/10.1186/2041-1480-3-S1-S5
https://doi.org/10.1186/2041-1480-3-S1-S5
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref39
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref39
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref39
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref39
http://refhub.elsevier.com/S2666-3899(21)00185-9/sref39

	Phe2vec: Automated disease phenotyping based on unsupervised embeddings from electronic health records
	Introduction
	Results
	Overview of Phe2vec
	Medical concept embeddings
	Definition of disease phenotypes
	Patient representation
	Automated definition of disease patient cohorts
	Performance evaluation
	Disease phenotype analysis
	Disease cohort selection

	Discussion
	Potential applications
	Limitations
	Future work
	Conclusions

	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Dataset
	Diseases
	Implementation details

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


