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Hepcidin, a 25-amino acid peptide encoded by the HAMP gene and

produced mainly by hepatocytes and macrophages, is a mediator of innate

immunity and the central iron-regulatory hormone. Circulating hepcidin

controls iron efflux by inducing degradation of the cellular iron exporter

ferroportin. HCV infection is associated with hepatic iron overload and

elevated serum iron, which correlate with poor antiviral responses. The

HCV nonstructural NS5A protein is known to function in multiple aspects

of the HCV life cycle, probably exerting its activity in concert with cellular

factor(s). In this study, we attempted to delineate the effect of HCV NS5A

on HAMP gene expression. We observed that transient transfection of hep-

atoma cell lines with HCV NS5A resulted in down-regulation of HAMP

promoter activity. A similar effect was evident after transduction of Huh7

cells with a recombinant baculovirus vector expressing NS5A protein. We

proceeded to construct an NS5A-expressing stable cell line, which also

exhibited down-regulation of HAMP gene promoter activity and significant

reduction of HAMP mRNA and hepcidin protein levels. Concurrent

expression of HCV core protein, a well-characterized hepcidin inducer,

revealed antagonism between those two proteins for hepcidin regulation. In

attempting to identify the pathways involved in NS5A-driven reduction of

hepcidin levels, we ruled out any NS5A-induced alterations in the expres-

sion of the well-known hepcidin inducers SMAD4 and STAT3. Further

analysis linked the abundance of intracellular zinc ions and the deregula-

tion of the MTF-1/MRE/hepcidin axis with the observed phenomenon.

This effect could be associated with distinct phases in HCV life cycle.

The 25-amino acid long hepcidin is an antimicrobial

peptide found in human urine and serum. Its precursor

form of 84 amino acids undergoes maturation before

it is released in circulation [1]. Hepcidin binds to the

only known cell surface iron exporter Fpn expressed in

hepatocytes, duodenal enterocytes, and macrophages,

triggering the internalization and the consequent

degradation of the latter. Thus, hepcidin is able to
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constrain iron recruitment from the hepatic stores,

iron absorption by the duodenum, and macrophage-

dependent iron recycling, and therefore, it is consid-

ered as the key peptide hormone that controls iron

homeostasis [2,3].

Hepcidin expression is up-regulated by iron via the

BMP pathway [4,5] and by infection or inflammation

through STAT3 [6]. On the other hand, hepcidin is

down-regulated by elevated erythropoietic activity and

low body iron stores [7]. Various other transcription

factors engaged in hypoxia, liver-specific gene tran-

scription, tumorigenesis, and cell differentiation are

involved in the regulation of HAMP gene expression

[8–14].
Hepatitis C virus belongs to the Flaviviridae family

together with other highly infectious single-stranded,

positive-sense RNA viruses. Its 3000-amino acid

polyprotein precursor produces at least ten structural

and nonstructural proteins (Core, E1, E2, p7, NS2,

NS3, NS4A, NS4B, NS5A, and NS5B), following pro-

cessing by viral and cellular proteases [15]. HCV infec-

tion affects more than 71 million individuals

worldwide [16]. 65–80% of them will develop liver

inflammation and fibrosis, which are hallmarks of per-

sistent infection. Hepatic steatosis will be detected in

more than 40% of CHC patients, who will subse-

quently deteriorate and develop cirrhosis over a 3-dec-

ade time span. It is estimated that 5% of HCV-

positive cirrhosis patients eventually develop HCC,

annually [17].

Deregulation of the iron homeostasis network,

encompassing increased serum iron and ferritin levels

and elevated intrahepatic iron stores, is often detected

in CHC infection [18–22]. As it turns out, this condi-

tion has deleterious effects on the liver, as it causes

widespread hepatocyte injury due to induction of

oxidative stress, organelle dysfunction, aberrant

growth, and onset of liver fibrosis [23].

Hepcidin expression in HCV infection has remained

ambiguous so far, with some studies reporting increas-

ing [24,25] and others decreasing levels [20,22,26,27].

Discrepancies between studies could possibly be attrib-

uted to different conditions and subjects of each study.

Our previous work revealed a strong positive relation-

ship between viral load and hepcidin serum levels, with

acutely infected and chronic patients with high viral

load possessing statistically significant elevated hep-

cidin levels compared with healthy donors. Conversely,

chronic HCV patients with low viral load had reduced

hepcidin levels. Trying to delineate the molecular

mechanisms behind the HCV-mediated regulation of

hepcidin, we demonstrated that HCV nucleoprotein

core is responsible for the observed positive

modulation of HAMP gene expression through the

activation of a complex signaling network involving

BMP/SMAD and STAT3 pathways and casein kinase

II. Furthermore, we showed that this increase of hep-

cidin in HCV-infected hepatocytes in vitro results in

significantly elevated HCV replication [28,29].

The HCV NS5A is a versatile protein with key roles

in viral translation [30], replication [31,32], and assem-

bly [31,33]. It consists of three domains, and its multi-

purposity in HCV virus life cycle is directly linked to

its structure; since domains I [34] and II [35,36] are

required for HCV genome replication, domain III has

a role in virion assembly [31], whereas all three are

involved in HCV RNA translation [37,38]. Given that

NS5A exerts multiple effects on host hepatic gene

expression and signaling and that it can either enhance

or contradict core protein actions [39] most likely as

part of its regulatory activity over particular phases of

the viral life cycle, we sought to investigate the effect

of this viral protein on hepcidin expression.

Materials and methods

Plasmids

The full-length human �3.1 kb HAMP gene promoter was

a kind gift from Dr. P. Lee (The Scripps Research Institute,

USA) [40]. The expression plasmids pHPI 1430 and pHPI

728 that code for the full-length core (c191) and NS5A pro-

teins from HCV-1a strain, respectively, have been described

elsewhere [41]. The pCMV5 Flag-DPC4 (SMAD4) expres-

sion plasmid was a gift from Joan Massague (Addgene

plasmid # 14039; http://n2t.net/addgene:14039; RRID:

Addgene_14039). The pCDNA3.1+/C-MTF1 and pTK-Hyg

expression plasmids were purchased from GenScript (Pis-

cataway, NJ, USA) and Clontech (Mountain View, Califor-

nia, USA), respectively.

For the construction of the stable Tet-off NS5A cell line

(pTRE-NS5A), the HindIII fragment from the pHPI 611

plasmid [42] carrying the NS5A sequence-genotype 1a was

cloned into the HindIII site of the pTRE-tight expression

vector.

For the expression of NS5A in HepG2 cells via bac-

ulovirus transduction, recombinant baculovirus Bac8119

was generated with the aid of a novel transfer vector (pHPI

8113). Specifically, the new baculovirus transfer vector was

initially constructed by ligation of the NruI-EcoRI

(1059 bp) fragment from pIREShyg plasmid (Clontech),

containing the CMV promoter and a synthetic intron, into

the StuI and EcoRI sites of the pBacPAK8 vector (Strata-

gene, La Jolla, California, USA). Subsequently, the SphI-

EcoRI fragment from pHPI 691 [43], containing the coding

region for HCV NS5A 1a, was cloned into the SphI and

EcoRI sites of the pHPI 8113 vector, yielding plasmid
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pHPI 8119. The recombinant baculovirus was generated by

cotransfection of Sf9 cells with pHPI 8119 plasmid along

with BaculoGold DNA (BD Biosciences) and was further

propagated, according to standard protocols [44]. Expres-

sion of NS5A in transduced cells was confirmed by western

blot analysis, in Huh7 and other cells (data not shown)

[41]. The control baculovirus Bac1746 used in this study

has been described before [44].

Cells and transfection assays

The Huh7 and HepG2 hepatoma cell lines were maintained

in low glucose DMEM supplemented with 2 mΜ glu-

tamine, 10% (v/v) heat-inactivated FCS and 100 U�mL�1

penicillin/streptomycin. BHK-21 (Baby Hamster Kidney)

cells were maintained in high glucose DMEM supple-

mented with 2 mΜ glutamine, 10% (v/v) heat-inactivated

FCS, and 100 U�mL�1 penicillin/streptomycin. Huh7 cells

expressing the tetracycline transactivator (H7TA-61) (kind

gift from Dr. Darius Moradpour) were maintained in high

glucose DMEM supplemented with 2 mΜ glutamine, 10%

(v/v) heat-inactivated FCS, 100 U�mL�1 penicillin/strepto-

mycin, and 200 µg�mL�1 G418.

For the generation of NS5A expressing (NS5A cells) and

their relative control (pTRE-tight) cells, 8000 Η7ΤΑ-61
cells/well were seeded in 6-well plates. The cells were simul-

taneously transfected using JetPEI (Polyplus) with 2 lg
pTRE-NS5A or pTRE-tight plasmid, and 2 lg pTK-Hyg

to provide hygromycin resistance, according to [45]. After

24 h, the cells were washed with phosphate-buffered saline

and left for 48 h in fresh culture medium. Selection of

transfected cells was performed using 200 µg�mL�1 G418,

100 µg�mL�1 Hygromycin, and 100 µg�mL�1 doxycycline.

The cells were maintained in medium containing

200 µg�mL�1 G418, 40 µg�mL�1 Hygromycin, and

100 µg�mL�1 doxycycline. Moreover, the control cell line

pTRE-tight was subjected to the same treatment without

doxycycline and used for comparison purposes instead of

doxycycline-treated NS5A cells, due to the slight leakiness

of protein expression, often observed with the Tet-Off sys-

tem. HCV NS5A expression following induction of the

NS5A cell clone by removal of doxycycline was examined

by immunofluorescence.

For transient transfections, 100 000 cells per well were

seeded in 48-well plates 24 h prior to the experiment.

The cells were transfected using JetPEI (Polyplus) with

0.25 lg promoter-luciferase DNA constructs and the

appropriate amount of expression plasmid/empty vector

up to 0.1 µg of total DNA, as well as 0.05 lg of CMV-

b-galactosidase expression plasmid to provide an internal

control for transfection efficiency. After 6 h, the cells

were washed with phosphate-buffered saline and left for

48 h in fresh culture medium. Cell lysates were subjected

to luciferase and b-galactosidase activity determination

with commercially available kits (Promega, Madison,

Wisconsin, USA). Luciferase activity was normalized to

b-galactosidase activity in order to yield relative luciferase

activity (RLA). In all figures, the RLA vector control

value (mean � SD: standard deviation) was set as 100%

(black bars) and all other values were depicted as a ratio

of this.

For baculovirus transduction of HepG2 cells, cells at a

density of 5 9 105 were infected with an MOI of 25 for 3 h

at room temperature. Following infection, 5 mΜ of sodium

butyrate was added in the medium for 24 h. After 48 h of

infection, cells were lysed as described previously.

mRNA expression analysis

Total RNA was isolated from cells using RNAzol B (Wak-

Chemie Medical, Steinbach, Germany), according to the

manufacturer’s instructions with the following modification;

1 lg�lL�1 glycogen was used to enhance RNA precipita-

tion from isopropanol solutions, before the final wash step

in 75% (v/v) ethanol. Reverse transcription reactions were

carried out using 1 µg RNA and MMLV reverse transcrip-

tase (Promega). The prepared cDNA was subjected to

qPCR using the Kapa� SYBR Fast Master Mix (Kapa

Biosystems, Wilmington, Massachusetts, USA) in a Mini

Opticon PCR thermocycler (Bio-Rad, Hercules, California,

USA). The gene-specific primers used were HAMPF: 50-
CCA CAA CAG ACG GGA CAA CTT-30, HAMPR: 50-
AGT GGG TGT CTC GCC TCC TT-30. Primers for 18S

rRNA have been described elsewhere [46]. Results were

analyzed with the internal standard-curve method and nor-

malized to 18S rRNA to provide the relative mRNA

expression. In all PCR experiments, the relative mRNA

expression control value (mean � SD) was set as 100%

(black bar) and all other values were depicted as a ratio of

this.

Protein and immunofluorescence analysis

Cells were washed twice with phosphate-buffered saline and

harvested in whole-cell extract lysis buffer (10 mM Tris/HCl

pH 7.05, 50 mM NaCl, 1% (w/v) Triton X-100, 0.5 mΜ
PMSF and protease/phospho-protease inhibitor cocktails

by Roche). Protein concentrations were measured with the

MicroBCA assay (Thermo Scientific). 40 lg of cell lysates

were resolved in 10% (v/v) SDS/PAGE gels and transferred

onto nitrocellulose membranes. After blocking, membranes

were incubated overnight with primary antibodies. Mem-

branes were then washed and incubated with the appropri-

ate secondary antibody for 90 min at room temperature.

Chemiluminescence was detected using Pierce ECL western

blotting substrate (Thermo Scientific).

The following antibodies were used in this study:

SMAD4 (#9515) by Cell Signaling (Danvers, Mas-

sachusetts, USA); TMPRSS6 (ab56180), by Abcam (Cam-

bridge, UK); b-actin (MAB1501) by Millipore (Burlington,
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Massachusetts, USA); ferroportin 1 (MTP11) by Alpha

Diagnostics (San Antonio, Texas, USA); and STAT3 (sc-

483) and HepC Cag (C7-50) by Santa Cruz Biotechnology

(Dallas, Texas, USA). The polyclonal HCV NS5A and

HCV-1a core antibodies used in this study have been

described before [43,47].

Hepatitis C virus NS5A expression following induction

of the cell clones was examined by immunofluorescence

with the HCV NS5A polyclonal antibody, as previously

described [41].

Enzyme-Linked Immunosorbent Assays (ELISA)

Quantification of secreted hepcidin levels was performed by

home-made competitive ELISA, as earlier reported [48].

Protein expression of the control cells was set as 100%

(black bars), and all other values were calculated as a per-

centage of the control.

Statistical analysis

Statistical analysis was performed using Student’s t-test

with P ≤ 0.05 considered as statistically significant (*P-
value ≤ 0.05; **P-value ≤ 0.005). Unless otherwise shown,

statistical analysis was carried out between control and

treated cells.

Results

HCV NS5A protein down-regulates hepcidin

expression

The effect of HCV NS5A protein on HAMP gene

expression was evaluated with its ectopic expression in

hepatoma cells by transient transfection, and the sub-

sequent assessment of the relative HAMP gene pro-

moter activity. To elaborate, Huh7 and HepG2 cells

were cotransfected with the full-length �3.1 kb HAMP

gene promoter and pHPI 728 NS5A-coding expression

plasmid. Figure 1A shows that in both types of cells,

HCV NS5A decreased the activity of HAMP promoter

by 60%, as compared to the empty vector control. To

increase cell transfectability, Huh7 cells transiently

transfected with the above mentioned HAMP gene

promoter construct were transduced with BAC8119.

This experiment further verified the HCV NS5A-medi-

ated down-regulation of HAMP gene promoter

(Fig. 1B). Figure S1A,B depicts HCV NS5A protein

levels in transfected and virally transduced cells,

respectively.

In order to verify the effect of HCV NS5A protein

on HAMP gene expression, we used the inducible

Huh7 Tet-off cell line expressing the full-length NS5A

protein upon withdrawal of the antibiotic selection

marker doxycycline for up to 120 h. Induction of

NS5A was confirmed by immunofluorescence

(Fig. 2A1) and western blot assay (Fig. 2A2). When

the NS5A expressing cells were transfected with the

�3.1 kb HAMP gene promoter, the activity was once

again reduced, in contrast to the pTRE-tight control

cells (Fig. 2B).

Fig. 1. HCV NS5A protein decreases the activity of HAMP gene

promoter. (A) Transient cotransfections of Huh7 and HepG2 cells

with the �3.1 kb HAMP gene promoter reporter construct and the

expression plasmids encoding either full-length NS5A or the empty

vector (pCI) (black bar). The normalized luciferase activity (RLA)

48 h post-transfection of the vector has arbitrarily been assigned

as 100% (black bar), with that of the HCV NS5A protein being

represented with respect to this value. (B) Huh7 cells transiently

transfected with the full-length HAMP construct were transduced

with baculovirus Bac8119 expressing the NS5A protein or the

control baculovirus Bac1746. The normalized luciferase activity

(RLA) 72 h post-transduction of cells transduced with Bac1746 has

arbitrarily been assigned as 100% (black bar), with that of the HCV

NS5A protein being represented with respect to this value. Error

bars denote mean � SD and significance was calculated by

Student’s t-test, with P-value ≤ 0.05 considered as statistically

significant (*P-value ≤ 0.05; **P-value ≤ 0.005). Each experiment

was carried out at least 3 times in triplicate.

240 FEBS Open Bio 11 (2021) 237–250 ª 2020 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

The effect of HCV NS5A on HAMP gene expression A. Dimitriadis et al.



Subsequently, we sought to verify the effect of HCV

NS5A on endogenous HAMP mRNA levels by RT-

qPCR in NS5A-expressing cells and its pTRE-tight

control cells. Figure 2C reveals that HAMP mRNA

decreased gradually over time, reaching only about

10% or less of the control levels and in line with the

maximal increase of NS5A, 120 h post-induction. Hep-

cidin secreted peptide levels were also determined by

ELISA in the supernatants of NS5A-overexpressing

and control cells and showed a similar drop, suggest-

ing a clear HCV NS5A-mediated transcriptional regu-

lation of HAMP gene expression (Fig. 2D). The

observed hepcidin concentration was found to be

27.58 � 0.57 ng�mL�1 for pTRE-tight cells and

dropped to 3.41 � 0.08 ng�mL�1 in NS5A cell

supernatants. Experiments carried out in the stable cell

lines in the presence of doxycycline failed to procure a

reduction in hepcidin expression (data not shown).

Collectively, the above presented data clearly demon-

strate an HCV NS5A-mediated transcriptional regula-

tion of HAMP gene expression.

Interestingly, western blot analysis in whole-cell

extracts from NS5A-expressing cells and their controls

revealed that the main cellular target of hepcidin, the

iron exporter Fpn remained intact, while the negative

hepcidin regulator Matr2 was dramatically down-regu-

lated (Fig. 3). These results are consistent with the role

of these proteins in iron homeostasis network and the

observed decrease in hepcidin transcription and secre-

tion.

Fig. 2. HCV NS5A down-regulates HAMP gene expression. (A) An inducible Huh7 Tet-off cell line expressing the full-length NS5A protein

upon withdrawal of the antibiotic selection marker (NS5A cells) was constructed, and the expression of NS5A was monitored with confocal

microscopy at 96 h (A1) and time-course of NS5A protein expression analyzed in whole-cell extracts by western blotting analysis (A2) with

antibody against NS5A. pTRE cells: cells stably transfected with the empty pTRE-tight vector. The two images of NS5A cells in A1

represent different field of the same slide. The bar length is 20 lm. Actin in A2 was used as an internal control. Polypeptide molecular

mass are given on the side in kDa. (B) pTRE-tight and NS5A cells were transiently transfected with the �3.1 kb HAMP gene promoter

reporter construct. The normalized luciferase activity (RLA) 48 h post-transfection of pTRE-tight cell extracts has arbitrarily been assigned as

100% (black bar) with that of the HCV NS5A protein being represented with respect to this value. Error bars denote mean � SD and

significance was calculated by Student’s t-test, with P-value ≤ 0.05 considered as statistically significant (*P-value ≤ 0.05; **P-

value ≤ 0.005). The experiment was carried out 3 times in triplicate. (C) HAMP mRNA levels during an HCV NS5A expression time-course

experiment. Total RNA was isolated at various time points following induction of NS5A expression and subjected to RT-qPCR with HAMP

gene-specific primers. The histogram depicts HAMP relative mRNA expression during the course of NS5A induction for 120 h. pTRE-tight

mRNA expression at 120 h was arbitrarily set as 100% (black bar) with all other values being represented as a ratio of this. Error bars

denote mean � SD and significance was calculated by Student’s t-test, with P-value ≤ 0.05 considered as statistically significant (*P-

value ≤ 0.05; **P-value ≤ 0.005). The experiment was carried out 3 times in triplicate. (D) Secreted hepcidin protein levels from pTRE-tight

and NS5A cell supernatants measured by a competitive ELISA assay during the course of 120 h. The value of pTRE-tight protein expression

at 120 h was arbitrarily set as 100% (black bar) with all other values being represented as a ratio of this. Error bars denote mean � SD and

significance was calculated by Student’s t-test, with P-value ≤ 0.05 considered as statistically significant (*P-value ≤ 0.05; **P-

value ≤ 0.005). The assay was repeated three times in quadruplicates.
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HCV NS5A attenuates the HCV core-mediated

increase of HAMP gene expression

Our previous studies revealed that HCV core protein,

standing at the forefront of virus–host interactions,

positively regulates hepcidin expression and affects

components of the iron homeostasis network [29]. In

the light of these results, it was intriguing to investi-

gate whether HCV NS5A and core proteins would

exert an antagonistic effect on HAMP gene expression.

Therefore, we cotransfected Huh7 hepatoma cells with

the full-length �3.1 kb HAMP gene promoter reporter

construct together with the pHPI 1430 plasmid

expressing the HCV core protein and the pHPI 728

plasmid expressing the NS5A protein at different mass

ratios and measured promoter activity by luciferase

assay. Figure 4A1 reveals that while the HCV core

protein increased HAMP gene promoter activity

almost twofold, as seen before [29], the concurrent

expression of core and NS5A eradicates the observed

effects when NS5A is in excess. Subsequently, the

HAMP gene promoter construct was cotransfected

together with different amounts of the pHPI 1430 plas-

mid coding for HCV core, in the NS5A-expressing cell

line. Again, increasing amounts of core protein were

able to invert the NS5A-mediated down-regulation of

HAMP gene promoter and even abrogate it at a

threshold of 1 µg of HCV core expression plasmid

(Fig. 4A2). Measurements of hepcidin mRNA

(Fig. 4B) and peptide levels (Fig. 4C) using total RNA

and supernatants from the same experiments corrobo-

rated the observed effect. At the same time, results

from the cotransfection of the pTRE-tight control cells

were in line with the already published data concern-

ing the effect of HCV core protein on the HAMP gene

expression [29]. Figures S 1B1,B2 demonstrate the dif-

ferent expression levels of HCV core and HCV NS5A

proteins upon transient transfection of the correspond-

ing expression plasmids at the described mass ratios.

Taken together, the above results demonstrate that the

antagonistic effect of HCV NS5A and core protein on

HAMP gene promoter activity hints toward the neces-

sity for fine tuning of the iron homeostasis network

through tight regulation of hepcidin expression during

HCV infection.

Hepcidin decrease is independent of NS5A-

mediated suppression of SMAD4 protein

expression

Previous studies from our laboratory have shown that

HCV core up-regulates HAMP gene expression

through SMAD4 and STAT3 signaling [29]. Given the

well-documented HCV NS5A-mediated modulation of

the STAT3 pathway [49–51], which we replicated in

our own NS5A-expressing cell line (Figure S1C), we

examined whether SMAD4 was implicated in the

NS5A-induced hepcidin down-regulation. Western blot

analysis using pTRE-tight and NS5A whole-cell

extracts revealed that HCV NS5A protein led to a dra-

matic decrease of SMAD4 expression levels, 72 h post-

induction when NS5A protein is overexpressed. As

expected, ectopic expression of increasing amounts of

HCV core could partially overcome the nullifying

effect of NS5A on these proteins (Fig. 5). Unfortu-

nately, transfection of a SMAD4 overexpression plas-

mid in these stable cell lines was not able to abrogate

the NS5A-mediated down-regulation of HAMP gene

promoter activity (data not shown). Thus, it is possible

that although NS5A protein suppresses SMAD4 sig-

naling, there are other factors involved in the observed

NS5A-induced alteration of hepcidin gene expression.

Implication of the MTF-1/MRE signaling pathway

in the NS5A-mediated down-regulation of HAMP

gene expression

It is well documented that HCV NS5A is a zinc metal-

loprotein [52]. Since Balesaria et al. reported that diva-

lent metal ions, like zinc, regulate hepcidin gene

transcription via interactions between functional

MREs in the hepcidin promoter (Fig. 6A) and the

MTF-1 transcription factor [53], one explanation for

NS5A-induced HAMP gene down-regulation could be

that the viral protein may function as a ‘zinc ion

sponge’, thereby reducing hepcidin gene transcription.

To test this hypothesis, we incubated NS5A-expressing

cells and their controls with ZnCI2 at a final

Fig. 3. HCV NS5A protein affects components of iron homeostasis

network. Western blot analysis of whole-cell extracts from pTRE-

tight and NS5A cells with antibodies against the iron-regulatory

pathway proteins Fpn and Matr2. Actin was used as an internal

control. Polypeptide molecular weights are given on the side in

kDa. Individual gel photographs presented in this figure panel

depict results from samples that were derived from the same

experiment and processed in parallel. Additionally, the loading

control was run on the same blot as the primary antibodies.
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concentration of 100 lM and 6 h later the cells were

harvested. RT-qPCR analysis revealed that hepcidin

mRNA levels remained low in NS5A cells even after

the addition of ZnCl2 (data not shown). Similarly, the

presence of ZnCl2 could not abrogate the NS5A-medi-

ated effect on HAMP gene promoter in cotransfection

experiments with the NS5A expression plasmid (data

not shown).

Due to the main role of the liver in heavy metal

detoxification processes [54,55], we decided to repeat

the aforementioned experiments with nonhepatic cell

lines, such as the BHK-21 cells. Addition of ZnCl2 in

the medium of control BHK-21 cells led to a 2.5-fold

up-regulation of HAMP gene promoter activity, indi-

cating the suitability of this cellular system for zinc

studies (Fig. 6B). Overexpression of HCV NS5A led to

a significant decrease in luciferase activity, as expected,

while supplementation with Zn2+ ions inhibited the

NS5A-exerted effect. Furthermore, cotransfection of

MTF-1 with NS5A expression plasmids not only

Fig. 4. HCV NS5A and core proteins exert an antagonistic effect on HAMP gene expression. (A1) Huh7 cells were transiently cotransfected

with the �3.1 kb HAMP gene promoter reporter construct, and expression plasmids coding for the NS5A protein (N), the core protein (C) or

the empty pCI vector, either individually, or in combination at the stated ratios. The normalized luciferase activity (RLA) 48 h post-

transfection of the vector has arbitrarily been assigned as 100% (black bar), with that of the other transfected proteins being represented

with respect to this value. (A2) NS5A and pTRE-tight cells were transiently cotransfected with the �3.1 kb HAMP gene promoter reporter

construct and different amounts of the expression plasmid coding for the full-length HCV core protein. The normalized luciferase activity

(RLA) 48 h post-transfection of the pTRE-tight cells has arbitrarily been assigned as 100% (black bar), with all other values being

represented with respect to this value. Error bars denote mean � SD and significance was calculated by Student’s t-test, with P-

value ≤ 0.05 considered as statistically significant (*P-value ≤ 0.05; **P-value ≤ 0.005). Each experiment was carried out at least 3 times in

triplicate. (B) HAMP mRNA levels in pTRE-tight and NS5A cells transiently transfected with different amounts of the expression plasmid

coding for the full-length HCV core protein. Total RNA was isolated 48 h post-transfection and subjected to RT-qPCR with HAMP gene-

specific primers. HAMP mRNA expression in pTRE-tight cells was arbitrarily set as 100% (black bar) with all other values being represented

as a ratio of this. Error bars denote mean � SD and significance was calculated by Student’s t-test, with P-value ≤ 0.05 considered as

statistically significant (*P-value ≤ 0.05; **P-value ≤ 0.005). The experiment was carried out 3 times in triplicate. (C) Secreted hepcidin

protein levels in supernatants from pTRE-tight and NS5A cells transiently transfected with different amounts of the expression plasmid

coding for the full-length HCV core protein, measured by a competitive ELISA assay 48 h post-transfection. The value of pTRE-tight protein

expression was arbitrarily set as 100% (black bar) with all other values being represented as a ratio of this. Error bars denote mean � SD

and significance was calculated by Student’s t-test, with P-value ≤ 0.05 considered as statistically significant (*P-value ≤ 0.05; **P-

value ≤ 0.005). The assay was repeated three times in quadruplicates.
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abrogated the NS5A-induced down-regulation of

HAMP gene promoter in the presence of zinc ions,

but also increased promoter activity by approximately

twofold, thus confirming the implication of the MTF-

1/MRE transcriptional axis in the observed effect.

Discussion

NS5A has the ability to interact with more than 130

host-cell proteins under certain conditions and in

response to different stimuli [31], thus controlling the

host-cell pathways and facilitating virus propagation.

For that reason, one may assume that NS5A could

manipulate the iron homeostasis network, which is

vital for HCV proliferation [28]. Indeed, in our hands

NS5A protein was able to transcriptionally diminish

the expression of the iron-regulatory protein hepcidin,

since the effect was prominent on HAMP gene pro-

moter as well as on the hepcidin mRNA and peptide

levels. Consistently, levels of the main cellular target

of hepcidin, ferroportin, were not altered. At the same

time, the negative hepcidin regulator matr2 was dra-

matically down-regulated, a seemingly peculiar

Fig. 5. HCV NS5A protein suppresses SMAD4 protein expression.

Western blot analysis of whole-cell extracts from pTRE-tight and

NS5A cells transiently transfected with different amounts of the

expression plasmid coding for the full-length HCV core protein,

against the constitutively phosphorylated SMAD4 protein. The

expression of NS5A protein, core protein, and actin was monitored

as internal control. Polypeptide molecular weights are given on the

side in kDa. Individual gel photographs presented in this figure

panel depict results from samples that were derived from the

same experiment and processed in parallel.

Fig. 6. HCV NS5A protein down-regulates HAMP gene expression through the MTF-1/MRE transcriptional axis. (A) Schematic diagram of

the HAMP gene promoter region with transcription factor binding sites. The black arrow denotes the transcription initiation site. ORF:

hepcidin open reading frame. (B) BHK-21 cells were transiently cotransfected with the �3.1 kb HAMP gene promoter reporter construct,

and expression plasmids coding for the NS5A protein and/or the MTF-1 transcription factor in the presence/absence of ZnCl2 (Zn). The RLA

value 48 h post-transfection from zinc-untreated cells has been arbitrarily assigned as 100% (black bar), with all other values being

represented with respect to this value. Error bars denote mean � SD and significance was calculated by Student’s t-test, with P-

value ≤ 0.05 considered as statistically significant (*P-value ≤ 0.05; **P-value ≤ 0.005). The experiment was carried out 3 times in triplicate.

244 FEBS Open Bio 11 (2021) 237–250 ª 2020 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

The effect of HCV NS5A on HAMP gene expression A. Dimitriadis et al.



observation. However, Belot and colleagues have

reported that the endoplasmic reticulum (ER) stress

suppresses Matr2 expression at the transcriptional level

[56]. Given that the accumulation of HCV NS5A into

the cell triggers the endoplasmic reticulum stress [49],

the detected down-regulation of Matr2 could be attrib-

uted to the NS5A-induced ER stress and is not

directly linked to altered iron levels [57].

Previous studies from our laboratory concerning the

action of HCV core protein on the iron homeostasis

network implicated the two major signaling pathways

BMP/SMAD and STAT3 in the core-driven hepcidin

regulation. In those experiments, expression of total

and phosphorylated STAT3 in Tyr705 and Ser727 was

found up-regulated by HCV core [29]. STAT3 has also

been shown to be activated by phosphorylation in

both Ser and Tyr residues in HCV NS5A-transiently

transfected hepatoma cells, as well as in the liver of

NS5A transgenic mice [49–51]. As we did not observe

any changes in STAT3 levels in our NS5A-expressing

cells either, we ruled out a putative involvement of this

transcription factor in the NS5A-mediated decrease of

HAMP gene expression. At the same time, another

member of the JAK/STAT family, STAT1, has been

demonstrated to be involved in IFN-c-inducible regu-

lation of HAMP gene expression in macrophages and

other cells [58,59]. However, given that STAT1 activa-

tion is known to be inhibited by both HCV core and

NS5A via blockage of its import into the cell nucleus

[60] and that we observed a differential modulation of

these viral proteins on hepcidin expression, we hypoth-

esized that STAT1 might not be involved in the HCV

NS5A-mediated down-regulation of HAMP gene

expression. Therefore, we concentrated our efforts on

the investigation of the BMP/SMAD pathway involve-

ment in our effect and, surprisingly, we detected a

potent NS5A-induced down-regulation in the expres-

sion of SMAD4, a finding that has never been

reported before and could result in TGF-b signaling

inhibition. Choi and Hwang reported that NS5A was

able to inhibit the TGF-b signaling cascade via inter-

action with TGF-b receptor I (TbR-I) and blockade of

multiple SMAD-related steps of the pathway. How-

ever, analysis of the endogenous SMAD4 expression

was not conducted in that study [61]. Transfection of

NS5A-expressing cells with a SMAD4 expression plas-

mid had no success in overturning hepcidin reduction,

thereby indicating that the BMP/SMAD pathway is

not involved in the NS5A-mediated modulation of

hepcidin gene expression.

Interestingly, the analysis of domain I of NS5A

revealed the existence of a tetracysteine motif capable

of coordinating the binding of a zinc atom in the N

terminus of the protein, making NS5A a metallopro-

tein [52]. This motif is vital for NS5A function, since

its mutation led to the abolishment of the zinc interac-

tion and the consequent abrogation of HCV genome

replication. Hepcidin, on the other hand, seems to be

a pleiotropic sensor of divalent metals, zinc included,

as shown by Balesaria and colleagues [53]. Their study

demonstrated that in response to zinc treatment,

MTF-1 transcription factor binds to three consensus

MRE cis-acting elements in the �1.8 kb HAMP gene

promoter, with the first one consisting of two overlap-

ping elements in reverse orientation, thereby modulat-

ing hepcidin promoter activity. Therefore, we

hypothesized that the expression of the viral protein

leads to divalent metal ion binding on its zinc-binding

motif, triggering the reduction of metal ions from the

cells, and the subsequent dissociation of MTF-1 from

MRE elements on hepcidin promoter. Nevertheless, it

was not possible for us to test whether supplementa-

tion of ZnCl2 in the medium of NS5A-expressing hep-

atoma cells could reverse the observed reduction in

hepcidin mRNA. It is well known that the hepatic cell

lines constitutively express metallothionein-1 (MT-1)

[54,62], a protein that plays a key role in the protec-

tion against metal toxicity and oxidative stress,

through its ability to bind both physiological and

xenobiotic heavy metals and ions [55,63]. The utiliza-

tion of a cell line like BHK-21, which has decreased

endogenous MT-1 expression and, as a result, exhibits

a lower capacity to buffer zinc intracellularly [53], was

key in demonstrating that exogenously added zinc

could abrogate the NS5A-induced reduction in HAMP

gene promoter activity. Moreover, the concurrent

overexpression of the transcription factor MTF-1 led

to a complete inversion of the effect, supporting the

notion that the NS5A-triggered down-regulation of

HAMP gene expression could be attributed to the

depletion of Zn2+ ions and the subsequent inactivation

of the MTF-1/MRE axis.

The relationship between HCV core and NS5A has

been extensively studied in the past. It has been

reported that these two viral proteins colocalize on the

surface of lipid droplets [64] and together with other

nonstructural proteins are responsible for the produc-

tion of infectious viruses [65]. Moreover, Masaki and

colleagues reported that NS5A physically interacts

with core through its domain III and that effective

production of progeny virions is directly linked to the

levels of this interaction [66]. However, NS5A alone is

the viral protein responsible for regulating the shift

from HCV replication to virion assembly and the for-

mation of viral capsids. It is also believed to be the

viral switch between translation and replication [67].
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To fulfill these unique roles, HCV NS5A recruits

known, such as the membrane sorting protein Annexin

A2, the apolipoprotein E, the double-stranded RNA

sensor PKR, and, as yet, unknown host factors that

need to be regulated accordingly so that the virus life

cycle can be completed [30,33]. Thus, HCV NS5A

modulates the expression of necessary host factors in a

synergistic/additive way with HCV core, as it is often

the case [39]. In contrast, crucial transcription factors

that regulate multiple cellular events important for cell

homeostasis and stimuli-dependent gene expression,

like c-jun, AP-1, and p53, have been shown to be dif-

ferentially altered by HCV core and NS5A [68–73].
This is true for other cellular processes, such as hepatic

lipid accumulation, which is absolutely necessary for

the completion of almost all stages of the viral life

cycle [74] or the regulation of chemokine secretion

[75]. In the light of these studies, the observed NS5A-

mediated down-regulation of HAMP gene expression

may be justifiable to the extent that NS5A is capable

of fine-tuning host gene expression to facilitate succes-

sion of viral life cycle steps. Overall however, HCV

core accumulation was proven able to reinstate hep-

cidin expression by activating the appropriate signaling

cascades, when needed, so that the net effect of HCV

infection on hepcidin remains positive.

Finally, our results indicate that NS5A diminishes

HAMP gene expression by acting as a zinc ion

‘sponge’, thereby causing imbalance in the MTF-1/

MRE/HAMP regulatory axis. Previous studies on the

effect of JFH-1 HCV on HAMP mRNA expression

revealed a transient but significant reduction at the

very early stages of infection (6- to 12-h post-infection)

[28]. At that point, we attributed observation to a side

effect of viral genome translation during the first

round of virus replication. We now postulate that it

may well be a result of NS5A production, at least in

part.

In conclusion, we have shown that HCV NS5A pro-

tein is able to significantly diminish the expression of

the iron-regulatory protein hepcidin, leading to match-

ing changes in other components of iron homeostasis.

This reduction was caused irrespectively of major sig-

naling events responsible for constitutive and HCV

core-mediated regulation of HAMP gene expression,

like the BMP/SMAD pathway, but could be restored

by HCV core when appropriate. A possible mechanism

for the observed effect that involves a decrease in

abundance of intracellular zinc ions and deregulation

of the MTF-1/MRE/hepcidin axis may be dependent

on the avid production of NS5A during HCV RNA

translation. Further repercussions of the down-modu-

lation NS5A confers on hepcidin and how these may

be related to completion of specific parts of the viral

life cycle and the well-being of the host remain to be

investigated.
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online in the Supporting Information section at the end

of the article.
Fig. S1. Western blot analysis of whole-cell extracts

from A1: Huh7 and HepG2 cells of figure 1A, A2:

Huh7 cells of figure 1B, B1: Huh7 cells of figure 4A1,

and B2: pTRE-tight and NS5A cells of figure 4B2

against the HCV NS5A and core proteins. C: Western

blot analysis of whole-cell extracts from pTRE-tight

and NS5A cells against the STAT3 transcription fac-

tor. The expression of actin was monitored as internal

control. Polypeptide molecular weights are given on

the side in kDa. Individual gel photographs presented

in this figure panel depict results from samples that

were derived from the same experiment and processed

in parallel.

250 FEBS Open Bio 11 (2021) 237–250 ª 2020 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

The effect of HCV NS5A on HAMP gene expression A. Dimitriadis et al.


	Outline placeholder
	feb413048-aff-0001
	feb413048-aff-0002

	 Mate�ri�als and meth�ods
	 Plas�mids
	 Cells and trans�fec�tion assays
	 mRNA expres�sion anal�y�sis
	 Protein and immunoflu�o�res�cence anal�y�sis
	 Enzyme-Linked Immunosor�bent Assays (ELISA)
	 Sta�tis�ti�cal anal�y�sis

	 Results
	 HCV NS5A pro�tein down-reg�u�lates hep�cidin expres�sion
	feb413048-fig-0001
	feb413048-fig-0002
	 HCV NS5A atten�u�ates the HCV core-me�di�ated increase of HAMP gene expres�sion
	 Hep�cidin decrease is inde�pen�dent of NS5A-me�di�ated sup�pres�sion of SMAD4 pro�tein expres�sion
	 Impli�ca�tion of the MTF-1/MRE sig�nal�ing path�way in the NS5A-me�di�ated down-reg�u�la�tion of HAMP gene expres�sion
	feb413048-fig-0003
	feb413048-fig-0004

	 Dis�cus�sion
	feb413048-fig-0005
	feb413048-fig-0006

	 Acknowl�edge�ments
	 Con�flict of inter�est
	 Data acces�si�bil�ity
	 Author con�tri�bu�tions
	feb413048-bib-0001
	feb413048-bib-0002
	feb413048-bib-0003
	feb413048-bib-0004
	feb413048-bib-0005
	feb413048-bib-0006
	feb413048-bib-0007
	feb413048-bib-0008
	feb413048-bib-0009
	feb413048-bib-0010
	feb413048-bib-0011
	feb413048-bib-0012
	feb413048-bib-0013
	feb413048-bib-0014
	feb413048-bib-0015
	feb413048-bib-0016
	feb413048-bib-0017
	feb413048-bib-0018
	feb413048-bib-0019
	feb413048-bib-0020
	feb413048-bib-0021
	feb413048-bib-0022
	feb413048-bib-0023
	feb413048-bib-0024
	feb413048-bib-0025
	feb413048-bib-0026
	feb413048-bib-0027
	feb413048-bib-0028
	feb413048-bib-0029
	feb413048-bib-0030
	feb413048-bib-0031
	feb413048-bib-0032
	feb413048-bib-0033
	feb413048-bib-0034
	feb413048-bib-0035
	feb413048-bib-0036
	feb413048-bib-0037
	feb413048-bib-0038
	feb413048-bib-0039
	feb413048-bib-0040
	feb413048-bib-0041
	feb413048-bib-0042
	feb413048-bib-0043
	feb413048-bib-0044
	feb413048-bib-0045
	feb413048-bib-0046
	feb413048-bib-0047
	feb413048-bib-0048
	feb413048-bib-0049
	feb413048-bib-0050
	feb413048-bib-0051
	feb413048-bib-0052
	feb413048-bib-0053
	feb413048-bib-0054
	feb413048-bib-0055
	feb413048-bib-0056
	feb413048-bib-0057
	feb413048-bib-0058
	feb413048-bib-0059
	feb413048-bib-0060
	feb413048-bib-0061
	feb413048-bib-0062
	feb413048-bib-0063
	feb413048-bib-0064
	feb413048-bib-0065
	feb413048-bib-0066
	feb413048-bib-0067
	feb413048-bib-0068
	feb413048-bib-0069
	feb413048-bib-0070
	feb413048-bib-0071
	feb413048-bib-0072
	feb413048-bib-0073
	feb413048-bib-0074
	feb413048-bib-0075


