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Abstract 

Background:  Learning algorithms come in three orders of complexity: zeroth-order (perturbation), first-order (gradi-
ent descent), and second-order (e.g., quasi-Newton). But which of these are used in the brain? We trained 12 people 
to shoot targets, and compared them to simulated subjects that learned the same task using various algorithms.

Results:  Humans learned significantly faster than optimized zeroth-order algorithms, but slower than second-order 
ones.

Conclusions:  Human visuomotor learning is too fast to be explained by zeroth-order processes alone, and must 
involve first or second-order mechanisms.
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Background
When you learn a visuomotor task, such as shooting 
a target, how do your neural circuits know which syn-
aptic changes will make you more accurate? We know 
a great deal about the biochemistry of synaptic change, 
both strengthening and weakening, but much less about 
how synapses decide, based on feedback from the senses, 
whether to strengthen or to weaken, and by how much. 
The simplest possibility is that the brain adjusts its syn-
apses randomly, then uses sensory feedback to detect 
whether performance has improved, and retains or 
undoes its adjustments on that basis—a method known 
as zeroth-order (or correlation or perturbation) learning 
[1–3]. Or, the brain may learn more efficiently by com-
puting non-random adjustments designed to enhance 
performance. It may compute a promising direction of 
synaptic change—a method called first-order (or gradient 
descent) learning [2, 4, 5]. Or it may compute more-effec-
tive changes by second-order (or quasi-Newton or Hes-
sian-free) learning, though these methods call for more 
complex networks [2, 6].

Many neuroscientists have suggested that the brain 
may use zeroth-order learning, owing to its simplicity [1, 
7–10], but others have proposed first-order schemes [11–
15]. To test these ideas, we had 12 human subjects learn 
a visuomotor task, and raced them against computer-
simulated zeroth, first, and second-order learners. We 
found that human learning was too fast to be explained 
by zeroth-order learning alone, and so must incorporate 
first or second-order mechanisms.

Results
Human learning
Subjects used a joystick to steer a cursor to a target on 
a computer screen and then pressed a trigger to “shoot”. 
The target jumped randomly from place to place on a 
horizontal line (see Fig.  1 and “Methods” section). The 
cursor was invisible except for a period of 0.5 s after each 
trigger-press; i.e., subjects saw it only after they shot. 
Then the cursor disappeared and the target jumped to a 
new location, and this process repeated for a total of 15 
targets, to make up one block. For each new block, the 
computer chose a new, random mapping relating joystick 
position to cursor position, so the subject had to relearn 
to make accurate shots. Each subject performed 30 of 
these 15-shot blocks: six warm-up blocks and then 24 
test blocks which we used to analyze their learning.
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To quantify learning, we plotted unsigned shooting 
error (i.e., distance from cursor to target at the moment 
the trigger was pressed, averaged across all 24 test blocks) 
versus shot number. For example, the thick, bright red 
line in Fig. 2a shows the shot-by-shot errors for a typical 
subject (subject 9 of the 12). The thinner, dark red curve 
in the same panel is the average across all 12 subjects, 
and the thin vertical lines on this average curve show 
standard errors of the mean, across subjects.

All subjects showed the pattern in Fig.  2a, improving 
over the first several shots and then leveling off at a mean 
error well above zero. For our study it was immaterial 
whether learning was finished by the 15th shot, but we 
wanted to estimate our subjects’ long-term accuracy to 
help us program simulations. To that end, we had each 
subject do one long block, identical to the test blocks but 
with 100 rather than 15 shots. This long block always 

came right after the 14th test block. An example, for sub-
ject 9, is shown in Fig. 2b. Red dots show the shot-by-shot 
errors. The thick, bright red curve, a running average of 
those errors with a sliding window of nine shots, shows 
no discernible, consistent improvement after about 15 
shots. The thinner, dark red curve, a running average of 
the aggregated data of all subjects, shows the same thing. 
We took each subject’s average error over shots 51–100 
(the pale gray interval in Fig.  2b), as a measure of their 
long-term accuracy. Of course they might have improved 
further in the very long term, after thousands of trials, 
but this measure sufficed for our purposes, letting us pro-
gram simulated learners that achieved humanlike accu-
racy on the time scale of our experiment, as described 
below.

Simulated learners
We compared our humans to computer-simulated learn-
ers on the same task. These simulations received “visual” 
input (the target location) and responded with a “motor” 
output (a joystick position). Like the humans, the simu-
lations tried to learn their joystick-cursor mappings, to 
improve their shooting. We call these simulations dop-
pelgängers because they were duplicates of our individual 
humans; e.g., each doppelgänger had the same initial, pre-
learning error rate as its human, and some of them were 
programmed with levels of response variability to make 

Fig. 1  Visuomotor learning task. These five panels show a portion 
of the computer screen on which the target and cursor appear. a 
A target (yellow dot) appears at a random location on a fixed, gray 
horizontal line spanning the screen and centered on it vertically. 
The cursor is invisible and at a location (cyan circle) determined by 
the joystick position and the mapping between joystick and cursor. 
b Using the joystick, the subject moves (dotted arrow) the invisible 
cursor, trying to bring it to the target, and then shoots. Right after the 
shot, the cursor becomes visible (cyan dot) for 0.5 s, giving the subject 
feedback about their accuracy. c The cursor then vanishes again and 
the target jumps to a new, random location. The subject again tries 
to move cursor to target and shoot. Fifteen of these shots make up 
one test block. In each new block there is a new, random mapping, 
defined by a magnification factor m and a shift s, relating joystick 
position to cursor location. d For example, when m = 1 and s = 0 
then a motion of the joystick across its entire range moves the cursor 
over the range shown here. e When m = 0.6 and s = 0.15 then the 
same set of joystick positions yields a different, smaller and shifted, 
set of cursor locations

Fig. 2  Human learning. a The thick, bright red line shows human 
subject 9’s unsigned error versus shot number, averaged over all 24 
test blocks. The thinner, dark red line shows the shot-by-shot errors 
averaged across all 12 subjects; small vertical lines along this curve 
show standard errors of the mean, across subjects. b Red dots show 
the same subject’s errors on the 100-shot long block. The thick, bright 
red line is a running average of those errors, with a nine-shot sliding 
window. The thinner, dark red line is the mean running average across 
all subjects. We take each subject’s average error over shots 51–100 
(pale gray interval) as a measure of their long-term accuracy
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them match the long-term accuracy of their humans. 
Each human had three doppelgängers—a zeroth, a first, 
and a second-order learner—and each of these doppel-
gängers was optimized to learn its task as well as possible 
(given the response variability and initial performance it 
took from its human), so that if it lost to its human then 
the contest would be decisive. For instance, if people out-
perform the best zeroth-order learner then they cannot 
be relying on zeroth-order learning alone, but must be 
using first or second-order mechanisms.

First and second-order doppelgängers had Gauss-
ian variability added to their motor responses so they 
matched the long-term accuracy of their humans (see 
“Methods” section). Without this added variability, these 
doppelgängers achieved near-perfect accuracy, very 
unlike human subjects, whereas with human-level vari-
ability, they showed much more human-looking perfor-
mance, leveling off at nonzero error levels, as in Fig.  3. 
Zeroth-order doppelgängers had no variability added, 
because we wanted to show conclusively that humans 
outperform zeroth-order learners, even when the latter 
have the advantage of perfect precision.

Figure 3 shows subject 9′s error curve from Fig. 2a (the 
thick, bright red line), together with data from all three 
of this subject’s doppelgängers. All humans and doppel-
gängers did the same 24-block experiment, with the same 
24 joystick-cursor mappings and the same sequences 
of 15 targets within each block. But the doppelgängers 
repeated the experiment one million times, their results 
varying because, for instance, the random perturbations 
used in the zeroth-order learning algorithm (see “Meth-
ods” section) varied from repetition to repetition. The 
thin, black line running near the top of Fig. 3 is the mean 

error curve for the zeroth-order doppelgänger, and the 
gray region around it marks plus and minus one stand-
ard deviation. The thin, blue line near the bottom of the 
figure represents the second-order doppelgänger in the 
same format. And the brown line in between, roughly 
coinciding with the human curve, represents the first-
order doppelgänger.

Humans versus zeroth‑order learners
To compare humans and doppelgängers, we first exam-
ined each subject’s error curve (averaged across the 
24 test blocks, as in Figs.  2a, 3) and recorded the mean 
height of this curve across the five shots 3 through 7—
the pale gray interval in Fig.  3. This mean value we call 
the subject’s early error. We based our analysis on shots 
3 through 7 because this is a period in which the three 
orders of learning algorithm are very distinct. At the start 
of each block all three have identical errors, and late in 
the block the slower algorithms are catching up to the 
faster ones, whereas over shots 3–7 the three orders are 
clearly separated.

Figure  4 compares all 12 human subjects’ early errors 
with those of their doppelgängers. Pink bars (leftmost 
bars in each cluster of four) show the human values. Pale 
gray bars (second from the left in each cluster of four) 
show the early errors on the same task for the zeroth-
order doppelgängers. Again, each doppelgänger did the 
same experiment as the humans, but repeated it one 
million times. The thick black horizontal line at the top 

Fig. 3  One human versus algorithms of all three orders of complex-
ity. The thick, bright red line is the error curve for subject 9, reproduced 
from Fig. 2a. The thin, black line at the top of the graph is the mean 
curve for this subject’s zeroth-order doppelgänger, and the surround-
ing gray region shows its standard deviation. The thin, blue line at the 
bottom of the graph shows the same data for the subject’s second-
order doppelgänger. The brown line that roughly coincides with the 
human curve represents the first-order doppelgänger. In most of our 
analyses, we compared the different learners’ mean errors on shots 3 
through 7, the pale gray interval in the figure

Fig. 4  All humans versus algorithms of all orders. For each of the 
12 subjects there is a cluster of four bars depicting, from left to right, 
results for the human (in pink), the zeroth-order doppelgänger (in 
light gray), the first-order (in light brown), and the second-order (in 
light blue). The thick, red horizontal line at the top of each pink bar 
show that human’s mean early error across the 24 test blocks. The 
thick horizontal line at the top of each doppelgänger bar shows its 
mean early error across one million repetitions of the whole 24-block 
experiment. The thin vertical line shows the range of results achieved 
by the doppelgänger over those million repetitions. The graph shows 
that humans outperformed zeroth-order doppelgängers, achieving 
smaller early errors; i.e., the leftmost, pink bar in each cluster is shorter 
than the adjacent, light gray bar. And humans learned worse than 
second-order doppelgängers, while contests with first-order dop-
pelgängers yielded mixed results



Page 4 of 10Kim et al. BMC Neurosci  (2017) 18:50 

of each gray bar is the doppelgänger’s mean early error, 
averaged across the million repetitions. The thin verti-
cal black line shows the range of early errors across those 
million tries. Comparing these ranges with the pink bars 
shows that for subjects 3 through 11, none of the million 
repetitions yielded an early error as small as the human’s, 
i.e., these nine humans significantly outperformed their 
zeroth-order doppelgängers, with p values <10−6. This 
brute-force method of computing p is more robust than 
t-tests or even most nonparametric tests, as it makes 
fewer assumptions about data distributions. The remain-
ing subjects (1, 2, and 12) were occasionally surpassed by 
their zeroth-order doppelgängers, but only 208 times out 
of one million tries for subject 1, 4558 out of a million 
for subject 2, and once for subject 12, i.e., their p values 
were 2.08 ×  10−4, 4.558 ×  10−3, and 10−6, respectively. 
These results show that all 12 humans significantly out-
performed their zeroth-order doppelgängers.

As one would expect, given these individual statistics, 
humans also outperformed zeroth-order doppelgängers 
when tested as a group. That is, we repeated the experi-
ment one million times on all the zeroth-order doppel-
gängers and for each repetition we computed the mean 
early error averaged across those 12 doppelgängers, 
and compared that value to the humans’ mean early 
error, averaged across the 12 subjects. The doppelgäng-
ers achieved a lower value than the humans’ in none of 
those million tries; i.e., the p value was less than 10−6. We 
conclude that the humans’ learning did not rely solely on 
zeroth-order mechanisms.

Humans versus first and second‑order learners
When we compared humans to first-order doppelgängers 
(Fig. 4, light brown bars, the third bar in each cluster of 
four), the results were mixed and not statistically signifi-
cant. Six of the 12 humans outperformed their doppel-
gängers, three of them with p values less than 0.01. The 
other six lost to their doppelgängers, and again three of 
them had p < 0.01. As a group, humans did not differ sig-
nificantly from these doppelgängers (p = 0.421). In short, 
we found no significant difference between humans and 
first-order doppelgängers. In particular, we found no evi-
dence for the one result that would have had clear impli-
cations for the order-of-complexity question: our humans 
did not defeat their optimized first-order doppelgängers, 
and therefore we cannot say whether human learning 
incorporates second-order mechanisms.

Compared to second-order algorithms (light blue bars, 
rightmost in each cluster of four), humans learned sig-
nificantly worse. Eleven of the 12 subjects lost to their 
second-order doppelgängers, and no subject significantly 
outperformed the doppelgänger. Specifically, subjects 1, 
2, and 6–12 lost to their second-order doppelgängers, 

with p values ranging from 0.0008 to less than 10−6. Sub-
jects 4 and 5 also performed worse than the mean of their 
second-order doppelgängers, though not significantly, 
with p values of 0.24 and 0.15. Subject 3 learned better 
than the mean of his doppelgänger, but not significantly, 
with p = 0.26. As a group, humans learned more slowly 
than second-order doppelgängers, with a p of less than 
10−6.

Other tests
When we analyzed male and female subjects separately, 
they showed the same pattern. They both defeated their 
zeroth-order doppelgängers, in both cases with p values 
less than 10−6; and they both lost to the second-orders, 
both again with p values less than 10−6.

We found no evidence of meta-learning during our 
experiment. Comparing early errors in the first six ver-
sus the final six test blocks, we found no difference, with 
p =  0.569 by the signed rank test. There was improve-
ment between the six warmup blocks and the final six 
test blocks, with p = 0.0004 by the signed rank test, but 
the warmup blocks were not included in the analysis. 
In any case, our experiment was designed so that meta-
learning, even if it had occurred, would not have affected 
our conclusions, because the doppelgängers already had 
all the advantages that humans might gain through meta-
learning (see “Discussion” section).

We tested the robustness of our main results by look-
ing at two possible sources of variation. First, our analy-
ses in Figs. 3 and 4 were based on early error, over shots 
3 through 7. We chose that interval for a good reason, as 
described above, but was that choice critical? Specifically, 
do our findings change when we redo the analyses sepa-
rately for each shot after the first, checking, for instance, 
whether humans achieve significantly lower errors than 
zeroth-order doppelgängers on shot 2, on shot 3, and so 
on? Second, in Figs. 3 and 4 we added variability to our 
first and second-order doppelgängers so they matched 
the long-term accuracy of their humans, but our esti-
mates of human long-term accuracy may not have been 
exact. How do our findings change when we alter dop-
pelgänger variability?

In these tests of robustness, the zeroth-order results 
were perfectly consistent. Zeroth-order doppelgäng-
ers lost significantly to humans (with p values less than 
10−4) in all 14 tests, at every shot from 2 through 15. 
Second-order results were also consistent. Second-order 
doppelgängers defeated their humans at every shot from 
2 through 15, and did so significantly, with p  <  0.01, at 
shots 2 through 11. At shot 12, p was 0.044, and at shot 
15 it was 0.156, rising, as one would expect, because 
the difference between second-order and slower algo-
rithms shrinks as the slower ones catch up, later in the 
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block. And second-order doppelgängers still defeated 
the humans over shots 3 through 7 even when each 
doppelgänger’s variability was increased by 35%. (At 
shot 11 and beyond, these highly variable doppelgäng-
ers lost resoundingly to the humans, with p’s of 10−3 or 
less, as one would expect, because their added variability 
made their long-term accuracy markedly worse than the 
humans’). In short, our zeroth and second-order results 
were robust.

Comparisons of humans and first-order doppelgäng-
ers yielded mixed and inconclusive results in Fig. 4, and 
they did so again in our tests of robustness. For example, 
first-order doppelgängers lost to their humans at shots 2, 
3, and 5, but defeated them at all other shots. And they 
were more sensitive to variability than were the second-
order learners; e.g., when we raised their variabilities by 
20%, they defeated their humans on only 2 shots out of 
14. In brief, these comparisons were again inconclusive, 
and in particular they yielded no evidence that humans 
outlearned optimized, first-order doppelgängers.

Discussion
The terms zeroth, first, and second-order come from opti-
mization theory, of which the theory of learning algo-
rithms is a branch. Second-order algorithms are ones 
that compute the second derivative of the error (or loss or 
risk, whatever we call the quantity to be minimized) with 
respect to the learner’s adjustable parameters. First-order 
methods compute the first but not the second derivative. 
And zeroth-order methods compute neither.

A simple way to distinguish zeroth-order mechanisms 
from the other classes is that zeroth-order methods work 
with an unsigned, scalar error signal, rather than a signed 
error, e.g., distance from cursor to target, rather than 
signed distance. Signed errors of course carry more infor-
mation than unsigned errors, but exploiting that infor-
mation requires more complex processing. Therefore, 
zeroth-order learning is simpler than the other kinds, and 
easier to implement in neural networks. It requires only a 
single scalar feedback signal, which can be “broadcast” to 
all the neurons in a network [9], whereas in first or sec-
ond-order algorithms, feedback is vectorial and is usually 
distributed in more complicated ways [16–18]. Many of 
these distribution schemes have been deemed biologi-
cally implausible [17–23], though others are feasible [11, 
13, 24, 25].

Zeroth-order methods are attractive also because they 
require fewer assumptions. That is, they need less prior 
information about the structure of the neural network, its 
neurons, and the environment.

And finally, zeroth-order methods are interesting 
for motor learning, specifically, because they provide 
an easy solution to the distal teacher problem, which is 

central to motor control [13, 14, 26]. The issue here is 
that, in most artificial neural networks, there is a sim-
ple, known relation between the network’s output y and 
the error signal e that guides its learning, e.g., we might 
have e = y − y*, where y* is desired output. But in motor 
learning, the output of the network is motoneuron fir-
ing, u, while error signals are sensory; e.g., you see or feel 
that your hand came down to the left of its target. The 
relation between u and e depends on many intervening 
factors, such as sensor properties and the mechanics of 
joints and muscles. To learn in this setting, derivative-
based mechanisms (i.e., first or second-order algorithms) 
must know the derivative of e with respect to u, and get-
ting that knowledge calls for additional mechanisms or 
assumptions [13, 14, 26, 27]. But zeroth-order algorithms 
do not need to know ∂e/∂u. They simply try out ran-
dom parameter changes, monitor the results, and accept 
those changes that improve performance. In other words, 
zeroth-order mechanisms need no additional circuitry to 
operate in a motor-control setting.

But our results show that humans outperform opti-
mized zeroth-order doppelgängers, and therefore human 
visuomotor learning cannot rely on zeroth-order mecha-
nisms alone. Of course zeroth-order processes may still 
be operating in the brain, but they cannot be the sole 
mechanism of learning. First or second-order mecha-
nisms must be contributing as well.

Compared to second-order algorithms, we found that 
humans learned worse. This finding shows that humans 
do not use perfectly optimized second-order methods, 
but leaves open the possibilities that they used subopti-
mal or approximate second-order mechanisms, or a mix 
of second and lower-order elements.

Comparisons of humans and first-order doppelgängers 
yielded results that were mixed and inconclusive. In par-
ticular, if our humans had outperformed their optimized, 
first-order doppelgängers, then we could have con-
cluded that human learning incorporates second-order 
mechanisms; but given our results, that remains an open 
question.

Overall, then, our results show that visuomotor learn-
ing uses at least first-order mechanisms. That finding is 
consistent with numerous papers in the literature which 
posit first-order (i.e., gradient-based) learning mecha-
nisms in the brain, e.g., [11–15].

We found no evidence of meta-learning during our 
experiment. And in any case, meta-learning, even if it had 
occurred, would not have affected our analysis or conclu-
sions, as it would not have given the humans any advan-
tage over their doppelgängers. Meta-learning would 
mean that subjects improved their joystick precision, 
their hyperparameters such as the learning rate parame-
ter η, or their hypothesis spaces (i.e., they got accustomed 
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to the ranges of the joystick-cursor relations used in the 
experiment). But the zeroth-order doppelgängers were 
already optimized in all these respects: they had perfect 
precision, optimized hyperparameters, and hypothesis 
spaces (see “Methods” section) ideally suited to the task. 
First and second-order doppelgängers did not have per-
fect precision, but their precision was matched to the 
human data, and so any improvement in the humans 
would have been passed on to those doppelgängers.

Our key finding is that human learning is not purely 
zeroth-order. We ruled out pure zeroth-order learning 
in just one, extremely simple visuomotor task, but that is 
enough to show that at least some human learning incor-
porates first or second-order mechanisms. And purely 
zeroth-order methods are even less likely in complex, 
nonlinear, high-dimensional tasks than in simple ones, 
because they get slower and slower, relative to first and 
second-order mechanisms, as the number of adjustable 
parameters grows [1, 24].

Conclusion
Human visuomotor learning does not rely on zeroth-
order mechanisms alone, but uses at least first-order 
mechanisms and maybe second-order as well.

Methods
Human subjects
Subjects were 12 healthy volunteers, six male and six 
female, aged 20–29.

Joystick
Subjects shot at targets using a joystick—a Thrustmaster 
T.16000M (Guillemot Corporation, France), for which 
the range of hand motion was 13.6 cm both horizontally 
and vertically, though in our experiments only horizon-
tal motion affected the motion of the cursor on the com-
puter screen. Rightward motion of the joystick moved 
the cursor to the right on the screen, and leftward motion 
moved it left.

Target and cursor
The target was a yellow disk of diameter about 3 mm, or 
0.3° of visual angle, on a computer screen 55 cm from the 
subject’s face. The subject tried to steer a cursor to the 
target and then press a trigger to “shoot”. The cursor was 
invisible except that after each shot it appeared for 0.5 s, 
in the form of a cyan disk about 0.25° across. Then the 
cursor disappeared again and the target jumped to a new, 
random location (chosen from a distribution described 
below). The invisible cursor did not jump anywhere—it 
was always in whatever location was determined by the 
joystick. The cursor was programmed to ignore vertical 
motion of the joystick, so that it stayed on a horizontal 

line centered on the computer screen, and the target also 
appeared always on that same line. If the subject did not 
shoot within 1.5  s of the target appearing then the tar-
get blinked, as a reminder to keep up a quick pace; mean 
response time varied from subject to subject, ranging 
from 0.74 to 1.28  s. All software for the experiments, 
data recording and analysis was written in Matlab by the 
authors.

Blocks
Each subject performed 30 blocks of 15 shots each: six 
warmup blocks followed by 24 test blocks which we used 
in our analysis. Between the 14th and 15th test blocks, 
each subject performed one long block of 100 shots. Sub-
jects were not told that any of the blocks were warmups; 
they simply did twenty 15-shot blocks, one 100-shot 
block, and another ten 15-shot blocks.

Joystick‑cursor mapping
For each new block, the program chose a new, random 
mapping relating joystick to cursor. Specifically, joystick 
position determined cursor position (not velocity) by 
a magnification factor m chosen from the range 4/7 to 
4, and a shift s from the range −1 to 1 (the reasons for 
these ranges, and the procedure for randomly selecting 
m’s and s’s, are described below, under Policy). Therefore 
cursor location c was related to joystick position j by the 
equation c = mj +  s. Here s =  0 meant that the cursor 
was at the center of the screen when the joystick was at 
the center of its range, and m =  1 meant that a maxi-
mal, 13.6-cm motion of the joystick, from its leftmost to 
its rightmost extreme, moved the cursor 10.6 cm on the 
computer screen; i.e., from −1 to 1 in the screen coordi-
nates defined below.

Doppelgängers
We compared our humans to simulated learners pro-
grammed in Matlab. We call these simulations doppel-
gängers to emphasize that they were duplicates of our 
individual humans, in three respects. First, each dop-
pelgänger underwent the same testing as its human: 
the same sequence of 24 joystick-cursor mappings, and 
the same sequences of 15 targets in each block. Sec-
ond, each doppelgänger went into each block with an 
initial hypothesis about the joystick-cursor mapping 
that matched the initial errors of its human. From each 
human’s 24 first-shot errors, we computed an initial 
weight and bias, w0 and b0, such that doppelgängers 
that began each block with w =  w0 and b =  b0 showed 
the same mean, unsigned error on shot 1 as that human; 
e.g., in Fig. 3, subject 9’s doppelgängers all show the same 
initial error as their human. Finally, some doppelgäng-
ers (the first and second-order ones) were programmed 
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with a response variability so they matched the long-term 
accuracy of their humans (see “Response variability” sec-
tion, below).

Optimization
In these ways, each doppelgänger was matched to its 
human. But in all other ways it was optimized to learn its 
task as well as possible. Doppelgängers were optimized 
in three ways. First, of the many algorithms in each class 
(zeroth, first, and second-order), they used the fastest 
one, based on our own tests and the literature: for zeroth-
order, they used node perturbation [3]; for first-order, 
the LMS algorithm [4, 5, 28]; and for second-order, RLS 
[6, 28, 29]. Second, each doppelgänger used the hyper-
parameters (see below) that yielded the smallest mean 
end-of-block error on its task. So each doppelgänger was 
optimally suited to this task in every detail—the ranges 
of mappings and targets, the number of shots per block, 
and its own response variability. It is very unlikely that 
humans’ learning networks are so perfectly suited to this 
specific task. Third, each doppelgänger was equipped 
with an optimal hypothesis space. Here the idea is that no 
learner can learn every possible pattern. There is always 
some limited repertoire, or hypothesis space [30]. If you 
have a larger repertoire then you can learn more patterns, 
but you learn more slowly because you have to search 
through a larger set of possibilities [30]. For the best 
results on any one task, you want the smallest hypoth-
esis space that nonetheless contains all the patterns you 
will have to learn. Accordingly, our doppelgängers had 
hypothesis spaces that allowed only magnify-and-shift 
mappings, with a magnification factor m in the range 
4/7–4 and a shift s in the range −1 to 1—much narrower 
than any human’s repertoire, and coinciding perfectly 
with the shifts and magnifications used in the task. These 
design choices weighted the human-doppelgänger con-
tests in favor of the doppelgängers.

Policy
Owing to their optimized hypothesis spaces, all dop-
pelgängers of all orders knew that the joystick-to-cursor 
mapping had the form c = mj + s. Therefore, they knew 
that the optimal policy (i.e., the rule for choosing a joy-
stick position j to make cursor location c match target 
location x) was j =  (x − s)/m. But of course the specific 
m and s used in each block were random and unknown to 
the doppelgänger, as they had been to its human counter-
part. Therefore, doppelgängers of all orders used policies 
of the form j = wx + b, where w and b were an adjust-
able weight and bias which the doppelgänger adjusted 
by learning, trying to drive w toward 1/m and b toward 
−s/m. In other words, for each block there was an opti-
mal weight w* =  1/m, and an optimal bias b* = −s/m, 

and the learning algorithms tried to drive w to w* and b 
to b*. For each block, the computer running the experi-
ment chose w* randomly from a uniform distribution 
over the range 0.25–1.75, and b* from a uniform distribu-
tion over −0.25 to 0.25, and from those values computed 
the m and s factors for the block (and as a result, m and s 
varied over the ranges 4/7–4 and −1 to 1).

All our doppelgängers had policies of this form, with 
only two adjustable parameters, w and b. Each doppel-
gänger can therefore be represented as a very simple 
“network”, of just a single neuron, receiving a single input 
(the target location x) and applying a weight and bias to 
compute a motor command of the form j = wx + b. (The 
complete equations for these networks’ learning rules are 
laid out in the three sections, Zeroth, First, and Second-
order simulations, below.) Human brains, in contrast, 
are huge, deep networks. Does this fact give the humans 
an advantage; i.e., could a zeroth-order learner match or 
defeat a human after all, if it computed j using a large, 
multilayer network?

It could not. Larger networks do not learn our mapping 
task any faster or more accurately than small ones. Large 
networks, with many adjustable parameters, are inher-
ently slower learners than small networks, because they 
have to search through a higher-dimensional space of 
possible parameter settings [1, 5, 30]. The fastest learning 
is achieved by using the simplest network that is capable 
of representing the patterns to be learned. That is why 
our doppelgängers have exactly two adjustable parame-
ters, w and b, rather than millions, and are capable of rep-
resenting only magnify-and-shift mappings. The complex 
networks in human brains actually put us at a slight dis-
advantage in this task. Our complexity is of course hugely 
advantageous for other tasks, and it makes us versatile—
able to learn a wide array of motor skills. But if the only 
things we ever had to learn were one-dimensional mag-
nify-and-shift mappings, then a single neuron with two 
adjustable parameters would be best. So it is very unlikely 
that any more-complex zeroth-order learners could 
outperform our simple, optimized ones on this task. 
We have confirmed that fact with simulations of more-
complex doppelgängers (not shown), though these sim-
ulations also confirm that large networks, appropriately 
structured, are only slightly slower than simple ones on 
our task (e.g., early error is about 1.5% higher in zeroth-
order learners with 100 or 1000 neurons instead of one).

It is also true that the brain has mechanisms—such as 
pruning, axon growth, attention, and habituation—which 
let it simplify and reshape its large networks, or perhaps 
focus their processing on smaller subnetworks, and so 
mitigate the problem that large nets learn more slowly 
than small ones. These mechanisms are important in real 
brains and absent from our doppelgängers, but again they 
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do not affect our conclusions, i.e., they do not put the 
doppelgängers at a disadvantage relative to the humans. 
The reason, as in our earlier discussion of meta-learning, 
is that the advantages provided by these mechanisms are 
built into the doppelgängers from the beginning. That is, 
pruning, attention, and other processes can simplify neu-
ral networks, but our doppelgängers are provided from 
the start with the simplest possible network architecture 
compatible with their learning task.

Screen coordinates
We defined the leftmost joystick position as j  =  −1 
and the rightmost as j =  1. Given that cursor location 
c = mj + s = (j − b*)/w*, and that the minimum values of 
w* and b* were 0.25 and −0.25, it follows that the maxi-
mum possible c in the experiment was (jmax − b*min)/w*
min = (1 − (−0.25))/0.25 = 5, and the minimal c was −5. 
Therefore we adopted a coordinate system for the 53-cm 
wide computer screen in which the leftmost edge was −5 
and the rightmost was 5.

Target distribution
We ensured that all targets appeared within a cen-
tral region of the computer screen, small enough that 
every target in every block was reachable by the cursor, 
regardless of that block’s magnification and shift. Fur-
ther, we used the same target range in all blocks, regard-
less of the current m and s, so that the target locations 
offered the subject no clues about w* and b*. Given that 
c = (j − b*)/w*, and the maximum possible values of j, w*, 
and b* in the experiment were 1, 1.75, and 0.25, it follows 
that the rightmost target location x that is reachable by 
the cursor when both w* and b* are maximal is x = (jmax 
− b*max)/w*max = (1 − 0.25)/1.75 = 0.4286. Similarly, the 
leftmost x that is always reachable, regardless of w* and 
b*, is −0.4286. Therefore all targets for all blocks were 
chosen randomly from a uniform distribution over the 
range −0.4286 to 0. 4286 in screen coordinates. This tar-
get range spanned 4.56 cm at the center of the screen, or 
about 4.75° of visual angle. So it was small, but clearly vis-
ible, and none of our subjects reported any difficulty with 
it; and once again, if any subjects had experienced diffi-
culty with the target range or any other aspect of the task, 
it would not have weakened our conclusions, because if 
anything it would have impaired human performance, not 
given the humans an advantage over their doppelgängers.

Zeroth‑order simulations
Zeroth-order doppelgängers used a node perturba-
tion learning algorithm [3]. The learner produced, for 
each shot, a motor response j = wx + b + g, where j was 
joystick position, x was the target location, and g was a 
random, Gaussian perturbation with a mean of 0 and 

standard deviation σg. The signed error for that shot was 
e = c − x = mj + s − x, and the squared error or loss was 
L = e2. The doppelgänger updated its w and b after each 
shot by the learning rules w ←  w −  η(L −  Lprev)gx and 
b ← b − η(L − Lprev)g, where η was the learning rate con-
stant, and Lprev was the loss on the previous shot. Then, 
also after every shot, the doppelgänger readjusted its w 
and b, if necessary, to keep them in the correct ranges, 
0.25–1.75 and −0.25 to 0.25, respectively. In other words, 
the learner used its prior knowledge of the ranges of w* 
and b* to improve its estimates.

Hyperparameters
Before testing the doppelgänger against its human, we 
used the Nelder–Mead algorithm to find its optimal 
hyperparameters σg and η; i.e., the values that yielded the 
smallest mean error on shot 15, at the end of the block, 
given all the details of the visuomotor task: the ranges of 
mappings and targets, the number of shots per block, and 
the start-of-block accuracy of that doppelgänger’s human. 
These optimal σg’s and η’s were used in the simulations in 
Figs. 3 and 4. We also tested zeroth-order doppelgängers 
with three optimized hyperparameters: σg and two sepa-
rate learning rate constants, ηw and ηb, and learning rules 
w ← w − ηw(L − Lprev)gx and b ← b − ηb(L − Lprev)g, but 
the results (not shown) were virtually identical, with the 
doppelgängers again losing to their humans with p < 10−6.

Response variability
Human joystick responses were highly variable, as is evi-
dent in Fig.  2b, and this variability limits the accuracy 
that human subjects can attain in our visuomotor task. 
Doppelgängers, in contrast, can be programmed to have 
perfect precision, but doing so gives them an unphysi-
ological advantage over the humans, letting first and 
second-order doppelgängers quickly achieve mean errors 
very near zero. We therefore added human-level variabil-
ity to those doppelgängers, as described below.

First‑order simulations
Each first-order doppelgänger had a Gaussian random 
variable r added to its motor outputs; i.e., j = wx + b + r, 
where r had a standard deviation σr, set so that the dop-
pelgänger’s median unsigned error over the final 50 shots 
of a 100-shot long block matched that of its human under 
the same conditions—the same 100-shot block with the 
same w* and b* and targets. The mean σr, averaged across 
subjects, was 0.0705; the range, 0.0481–0.0942. (As we 
have seen, zeroth-order doppelgängers also had a random 
variable, g, that affected j, but those g’s were perturbations 
deliberately applied to j and used in the zeroth-order 
learning algorithm, and their standard deviation σg was 
chosen to optimize learning, whereas each first-order 
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doppelgänger’s random variable, r, represented response 
variability, and its σr was chosen to match the behavior 
of its human—it was not set to the value σr =  0, which 
would have optimized learning.)

First-order doppelgängers learned using the least 
mean squares, or LMS, algorithm [5]. It is not possible 
to use LMS directly to adjust the weight and bias w and 
b, because you cannot compute the relevant derivatives 
unless you already know w* and b*. (And of course our 
human subjects and doppelgängers did not know these 
things initially—the whole point of their learning was to 
find w* and b*. This difficulty with using LMS directly on 
the policy parameters w and b is a consequence of the dis-
tal teacher problem, described briefly in our Discussion 
and in depth elsewhere [13, 26]). The solution was to have 
the doppelgängers run LMS on the magnification and 
shift variables m and s. Each doppelgänger began each 
block with an initial estimate of the magnification for that 
block, mest =  1/w0, and an initial estimate of the shift, 
sest = −b0/w0, where w0 and b0 were the individualized 
initial weights and biases described earlier. Then, after 
each shot, it adjusted those estimates by the LMS learn-
ing rule, mest ← mest − ηmej and sest ← sest − ηse, where 
ηm and ηs are learning rate constants and e is the signed 
error, e = c − x. Based on these estimates, it then updated 
its weight and bias, w = 1/mest and b = −sest/mest. And 
like the zeroth-order learners, these first-order ones then 
adjusted w and b, if necessary, to keep them in the correct 
ranges, and made corresponding corrections to mest and 
sest. For first-order as for zeroth-order doppelgängers, we 
found the optimal η’s using the Nelder–Mead algorithm.

Second‑order simulations
Second-order doppelgängers, like first-orders, had Gauss-
ian variability added to their motor commands to give 
them the same long-term accuracies as their humans. 
They learned using the recursive least squares, or RLS, 
learning algorithm [6], which involves a hyperparameter 
μ in the range 0–1, and several new variables: vectors y, 
v, and k, and a matrix P initialized to the identity, P = I. 
After each shot, these doppelgängers computed y = (j, 1)T, 
v = Py, k = vT/(μ + yTv), P ← P − vk, mest ← mest + ek1, 
sest ← sest + ek2, w = 1/mest, b = −sest/mest. For each dop-
pelgänger, we used the Nelder–Mead algorithm to find 
the hyperparameter μ that was optimal for its task.
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