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Abstract. The tumor suppressor gene overgrown he- 
matopoietic organs- 31 (oho31) of Drosophila encodes 
a protein with extensive homology to the Importin pro- 
tein of Xenopus (50% identity), the related yeast SRP1 
protein, and the mammalian hSRP1 and RCH1 pro- 
teins. A strong reduction in the expression of oho31 by 
a P element inserted in the 5' untranslated region of the 
oho31 transcript or a complete inactivation of oho31 by 
imprecise P element excision leads to malignant devel- 
opment of the hematopoietic organs and the genital 
disc, as shown by their growth autonomy in transplanta- 
tion assays. We have cloned the oho31 gene of Dro- 
sophila melanogaster and determined its nucleotide se- 
quence. The gene encodes a phosphoprotein of 522 
amino acids made of three domains: a central hydro- 
phobic domain of eight repeats of 42-44 amino acids 
each, displaying similarity to the arm motif found in 
junctional and nucleopore complex proteins, and 

flanked by two hydrophilic NH2- and COOH-terminal 
domains. Immunostaining revealed that the 0H031 
protein is supplied maternally and rapidly degraded 
during the first 13 nuclear divisions. Thereafter, the 
0H031 protein is predominantly expressed, albeit at 
reduced levels, in proliferating tissues. During the in- 
terphase of early embryonic cell cycles, the 0H031 
protein is present in the cytoplasm and massively accu- 
mulates in the nucleus at the onset of mitosis in late in- 
terphase and prophase. The nuclear import of 0H031 
is, however, less pronounced during later developmen- 
tal stages. These results suggest that, similar to Impor- 
tin, 0H031 may act as a cytosolic factor in nuclear 
transport. Moreover, the cell cycle-dependent accumu- 
lation of 0H031 in the nucleus indicates that this pro- 
tein may be required for critical nuclear reactions oc- 
curring at the onset of mitosis. 

T 
HE potential to genetically dissect tumorigenesis 
constitutes one of the major reasons to study this 
process in Drosophila. Genetic analysis of this or- 

ganism has led to the identification of >50 genes in which 
homozygous mutations cause tumors in tissues such as the 
imaginal discs, the brain, the hematopoietic organs, or the 
germ line (Gateff and Schneiderman, 1969, 1974; Gateff, 
1978; Gateff and Mechler, 1989; Mechler, 1990; Mechler 
and Strand, 1990; T6r6k et al., 1993b; Watson and Bryant, 
1993; Mechler, 1994). Anatomical and histological exami- 
nation of the mutant larvae have shown that the pattern of 
growth abnormalities is locus specific, with tumor forma- 
tion taking place recurrently in the same organs. With the 
exception of tumors in the germ line, which cause sterility 
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but no other deleterious effect, tumors occurring in other 
organs give rise to massive tissue overgrowth during larval 
development and lead to the death of the animals as late 
larvae or pupae. In Drosophila, most of the mutations af- 
fecting genes controlling tissue overgrowth are selected by 
their recessive lethal effect. Since the normal allele is dom- 
inant over the mutant allele, these genes are designated as 
tumor suppressor genes. 

Molecular investigations of several tumor suppressor 
genes in Drosophila have shown that tumorigenesis may 
result from the disruption of distinct regulatory pathways. 
Based on the presumed function of the encoded protein, 
which in many cases has been inferred by virtue of se- 
quence similarities with proteins of known function, the 
Drosophila tumor suppressor genes fall into five catego- 
ries (Watson and Bryant, 1993; Mechler, 1994). These 
genes encode (a) cell surface proteins, which may control 
cell adhesion (Mahoney et al., 1991); (b) junctional pro- 
teins, which may mediate signal transduction (Woods and 
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Bryant, 1991, 1993; Boedigheimer and Laughon, 1993); (c) 
cytoskeletal proteins, which may play a direct role in the 
cell architecture and may, in addition, mediate a signaling 
pathway in the cytoplasm (Mechler et al., 1985; Jacob et 
al., 1987; Strand et al., 1994a,b); (d) cytoplasmic proteins 
involved in vesicular trafficking and, thus, regulating inter- 
cellular transfer of signals (Chen et al., 1991; Van der 
Bliek and Meyerowitz, 1991); and (e) ribosomal proteins, 
which may act as regulators of translation (Watson et al., 
1992; Stewart and Denell, 1993). 

In Drosophila, mutations in >25 genes can cause over- 
growth of hematopoietic organs during larval develop- 
ment (Gateff and Mechler, 1989; Watson et al., 1991; 
Ttirrk et al., 1993b). Hematopoietic organs are formed by 
five to seven pairs of glandular structures (the lymph 
glands) located along the dorsal heart vessel behind the 
brain hemispheres and produce hemocytes by a stem cell 
mechanism. In wild-type larvae, the hemocytes are re- 
leased into the hemolymph at the end of the third larval 
instar (Rizki, 1978; Shrestha and Gateff, 1982). In mutants, 
the growth and differentiation of these cells are disrupted, 
giving rise to overgrowth of the hematopoietic organs. 
This overgrowth can be accompanied bY a premature re- 
lease of hemocytes into the hemolymph. In turn, the circu- 
lating hemocytes can proliferate in the hemocoele, either 
invading the entire body cavity and destroying all other or- 
gans or forming secondary masses, which may ultimately 
become melanized. One example of the latter category is 
the mutation lethal(2)144/1, which was recovered in a ge- 
netic screen designed for identifying genes located on the 
second chromosome of Drosophila melanogaster control- 
ling cell proliferation and tumorigenesis (Trrrk et al., 
1993b). On the basis of its mutant phenotype, the gene was 
renamed overgrown hematopoietic organs-31 ( oho31). 

In this study, we have cloned and sequenced the oho31 
gene of D. melanogaster. We found that the predicted pro- 
tein sequence is remarkabiy similar to the sequence of 
four recently identified proteins forming a growing family 
of structurally related proteins, namely: (a) the Importin 
protein of Xenopus, which has been identified as a cyto- 
solic factor involved in nuclear protein import (Grrlich et 
al., 1994); (b) the yeast SRP1 protein, a suppressor of tem- 
perature-sensitive RNA polymerase I mutations (Yano et 
al., 1992), which was found to interact directly with two 
nuclear pore proteins NUP1 and NUP2 (Belander et al., 
1994); (c) the mammalian SRP1 proteins (Cortes et al., 
1994); and (d) the mammalian RCH1 proteins (Cuomo et 
al., 1994). Both mammalian proteins were identified through 
their interaction with the RAG-1 recombination-activating 
protein in a yeast two-hybrid assay. These proteins as well 
as the 0H031 protein contain a central region made of 
eight degenerate 42-amino acid repeats. This reiterated 
motif, known as the arm motif, was first identified in the 
Drosophila segment polarity gene armadillo (Riggleman 
et al., 1989) and recently found in several proteins with di- 
verse cellular functions (Peifer et al., 1994). Analysis of the 
spatio-temporal expression of 0H031 during Drosophila 
development showed that the protein is essentially ex- 
pressed in dividing tissues and displays a dynamic intracel- 
lular distribution. During the entire cell cycle, the 0H031 
protein is predominantly present in the cytoplasm with the 
exception of prophase when it becomes associated with 

nuclei. This is the first example of a tumor suppressor gene 
involved in nuclear protein import. 

Materials and Methods 

Drosophila Strains, Culture Conditions, and Analysis 
of the Larval Lethal Phenotype 
The y w; oho31144/1CyO P(y+) flies contain a CyO P[y+] balancer chromo- 
some carrying a P(y+) insertion, which was kindly provided by Allen 
Shearn (The Johns Hopkins University, Baltimore, MD). The y+ marker 
is particularly useful for selecting homozygous oho3114¢1 larvae. The fly 
cultures were reared at 25°C on standard cornmeal-yeast-agar medium 
with or without addition of molasses-soya flour-malt extract. Since the le- 
thal tumorous phenotype of the oho31 larvae was the same on both me- 
dia, no distinction was made in the text in this respect, oho31 homozygous 
larvae survive for a long period of time as late third instar larvae and die 
without puparium formation (TiSrSk et al., 1993b). As the overgrowth 
phenotype develops gradually during the prolonged survival period, y 
oho31-mutant larvae were selected and kept on fresh medium in a humid- 
ified atmosphere. The overgrowth phenotype of the different organs was 
examined by dissecting the aged larvae, usually 15-20 d after egg laying, in 
Ringer's (Becker, 1959) under a stereomicroscope. For the examination of 
cell nuclei, dissected tissues were fixed in 0.5% glutaraldehyde for 30 min, 
and then stained for 15-20 min with 2.5 ixg/ml HOECHST 33258 (Sigma 
Chemical Co., St. Louis, MO) dissolved in Ringer's. The stained tissues 
were examined under a Leitz fluorescence microscope (Leica Vertrieb 
GmbH, Bensheim, Germany). 

Isolation of Deletions by Imprecise Excision 
of the P Element 
The PlacW insert at position 31A was remobilized by crossing y w/Y; 
oho31144/S/CyO Ply+] males to y w; A2-3 Sb/TM6 Ubx females. In the F0 
generation, y iv/Y; oho31/÷; A2-3 Sb/+ "jumpstarter" males were col- 
lected and crossed with y w; Sco/CyO P[y+] females. In the F1 generation, 
y w/Y; oho31Of(?)/CyO Ply+] males were crossed with y w; Sco/CyO P[y+] 
females. From the F2 generation, stocks were established by crossing y w; 
oho31°f(~)/CyO Ply+] males and females together. Lines that did not pro- 
duce y Cy + flies in the subsequent generation were likely carders of defi- 
ciencies in oho31. 

Transplantation of Tumorous Tissues 
Tumorous larvae were surface sterilized with 70% ethanol for 10 min and 
dissected in sterile Ringer's. The tumorous tissues were cut into ~10-20- 
~m fragments and injected into the abdominal cavity of young egg-laying 
females by using glass needles ~20 p,m in diameter. The host flies were 
kept on fresh medium, which was changed every 3-4 d when the flies were 
examined. Hosts carrying a successfully growing implant were recognized 
by their bloated abdomen. The flies were dissected and the implants ex- 
amined under a compound microscope. 

Nucleic Acid Procedures 
Unless otherwise indicated, DNA isolation, cloning, and analysis were 
performed according to standard protocols (Sambrook et al., 1989). Ge- 
nomic DNA fragments from both sides of the P element insertion were re- 
covered by plasmid rescue. DNA from heterozygous oho31 z44/z CyO flies 
was digested with EcoRI or BamHI, ligated, and transformed into XL-1 
blue-competent cells. The rescued clones were analyzed by restriction di- 
gestion and Southern hybridization with pUC18 and P element inverted 
repeat specific probe. Genomic fragments without a P element sequence 
were then used to screen a genomic library in EMBLA-k phages. Two 
probes, as defined in Fig. 2 c (probes A and B), were used to screen two 
cDNA libraries made with polyA+RNa extracted from 0-9-h-old embryos 
in kZapII (Stratagene Corp., La Jolla, CA), made by I. TrrSk, or 0-16-h- 
old embryos in hgtl l ,  kindly provided by L. Kauvar (Poole et al., 1985). The 
inserts of the k gt l l  phages were subcloned into Bluescript SK + vector, 
and the inserts from hZAPII  phages were recovered by in vivo excision. 
cDNA inserts and genomic clones were sequenced by using the ExoIII de- 
letion procedure (Henikoff, 1984). Sequencing was carded out with double- 
or single-stranded DNA templates and conventional T3, T7, and universal 
primers. The insertion site of the P element in the genomic sequence was 
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determined by sequencing the rescued plasmids with an oligonucleotide 
(18-mer) primer located inside the inverted repeat of the P element at 10 
nucleotides from its extremity. PolyA+RNA was isolated, electropho- 
resed, and transferred to nitrocellulose filters (Schleicher & Schuell 
GmbH, Dassel, Germany), or Hybond-N filters (Amersham, Bucking- 
hamshire, UK), as described in TSr/Sk et al. (1993a). Probes were either 
generated by random priming or made of specific antisense single- 
stranded DNA synthesized by asymmetric PCR using T3 or T7 primers 
and [32p]ct-dCTP, according to the procedure of Patel and Goodman 
(1992). 

Whole-Mount in situ Hybridization 
Developmentally staged embryos were prepared and fixed as described in 
Tautz and Pfeifle (1989). Brain and discs from wild-type Oregon R or 
oho31144/1 homozygous mutant third instar larvae were dissected in PBS 
and fixed in 4% formaldehyde in PBS at room temperature for 20 rain. 
Hybridization and staining procedures were made according to Tautz and 
Pfeifle (1989). Digoxygenin-labeled RNA probes were synthesized in 
vitro by using subclones from the 3' or 5' noncoding ends of the cDNAs in 
Bluescript SK + vector and T3 or T7 RNA polymerases. Before hybridiza- 
tion, the RNA probe was reduced in size by mild alkaline hydrolysis. 
Digoxygenin-labeled single-stranded DNA probes were made by asym- 
metric PCR synthesis according to Patel and Goodman (1992). 

In Vitro Translation 
In vitro translation was performed by using the TNT transcription-transla- 
tion-coupled reticulocyte lysate system (Promega Biotec, Madison, WI) 
and the cDNAs subcloned in pBluescript SK ÷ vector (Stratagene Corp.). 

Preparation of OH031 Antibodies 
Antibodies directed against the 011031 protein were prepared using two 
distinct hybrid proteins as immunogens. The first fusion protein contains 
301 residues from the central domain (amino acid positions 123-423) of 
0H031 fused to a his-tag peptide in a pET-15b expression vector 
(Novagen, Madison, WI). The second fusion protein contains the COOH- 
terminal 244 residues (amino acid positions 279-522) of 011031 fused to 
glutathion S-transferase in a pGEX-2T expression vector (Pharmacia Inc., 
Piscataway, N J). The hybrid protein expressed from plasmid pET-15b was 
induced with I mM isopropyl-13-D-thiogalactoside (IPTG) in BL-21 (DE3) 
Escherichia coli bacteria and purified to near homogeneity on a His.Bind 
resin column (Novagen). The hybrid protein expressed from plasmid 
pGEX-2T was similarly induced with IPTG and purified on a glutathion- 
Sepharose 4B column as indicated in the instructions provided by the 
manufacturer (Pharmacia Inc.). The purified hybrid proteins were used to 
immunize rabbits. Polyclonal antibodies were purified by a two-step affin- 
ity chromatography procedure, using first a protein A-agarose colum 
(Boehringer Mannheim GmbH, Mannheim, Germany) and then either a 
OH031 his'tag or a OH031 gtutathi°n tranfe~e Sepharose 4B column. Finally, the 
affinity-purified anti-OH031 antibodies were preadsorbed on proteins 
extracted from homozygous oho31TM lethal larvae deficient for the major 
part of the oho31 coding sequence. 

Immunohistochemistry 
Embryos were dechorionated in 3% bleach (Roth GmbH, Karlsruhe, 
Germany) and washed extensively in 0.1% Triton X-100 and deionized 
H20. Fixation was performed by shaking the embryos in 4% formalde- 
hyde in PEM buffer (100 mM Pipes [pH 6.9], 2 mM EGTA, 1 mM 
MgSO4) with an equal volume of heptane. The embryos were deviteilin- 
ized by vigorous shaking in 1:1 heptane/methanol and rehydrated in PBS 
containing 0.1% Triton X-100 (PBT) 1. Brain-disc complexes were dis- 
sected in PBS, fixed in 4% formaldehyde in PBS for 20 min at room tem- 
perature, and extensively washed in PBT. The brain-disc complexes were 
then blocked overnight in PBT containing 5 % normal goat serum and 1% 
BSA. Anti-OH031 antibodies were diluted 1:50 in the blocking solution 
and incubated with the embryos or the dissected tissues overnight at 4°C 
in a humidified chamber. After three washes in PBT, the embryos and the 

1. Abbreviations used in this paper: AED, after egg deposition; CIAP, calf 
intestine alkaline phosphatase; ORF, open reading frame; PAP, potato 
acid phosphatase; PBT, PBS plus Triton X-100; PVDF, polyvinylidenfluo- 
ride. 

tissues were incubated for 2 h at room temperature with biotinylated goat 
anti-rabbit antibodies. HRP staining was performed with the Vectastain 
Elite ABC Kit (Vector Laboratories, Inc., Burlingame, CA) according to 
the manufacturer's instructions. After three washes with PBS, the 
embryos and tissues were transferred on slides and mounted in Kaiser's 
glycerin gelatin (Merck GmbH, Darmstadt, Germany). For double fluo- 
rescence labeling experiments, the embryos were first incubated with anti- 
0H031 antibodies, as described above. Goat anti-rabbit antibodies con- 
jugated with FITC (Jackson ImmunoResearch Laboratories, Inc., West 
Grove, PA) were first preadsorbed on fixed embryos in a 1:5 dilution in 
PBT at 4°C, and then applied to the anti-OHO31-1abeled embryos as a 
mixture at a 1:400 dilution. DNA was stained after RNaseA treatment 
(400 i~g/ml for 2 h in PBS) with 5 p,g/ml propidium iodide for 30 min at 
room temperature and washed overnight at 4°C in PBS. The embryos 
were mounted in Vectashield embedding medium (Vector Laboratories, 
Inc.) and inspected under a Leitz fluorescence microscope, (Leica Ver- 
trieb GmbH) or a coufocal laser scanning Zeiss microscope (Carl Zeiss 
Jena GmbH, Jena, Germany). 

Western Blot Analysis, Immunoprecipitation, and 
Phosphatase Treatment 
Protein extracts from different stages of Drosophila development were 
prepared by homogenizing I g tissue in 4 ml cracking buffer (0.125 M Tris 
[pH 6.8], 5% 13-mercaptoethanol, 2% SDS, 4 M urea) using a motor- 
driven homogenizer at 4°C. Aliquots containing equal amount of proteins 
were diluted 1:1 in 2x Laemmli sample buffer and boiled for 5 min. The 
proteins were separated on 7 or 10% SDS-polyacrylamide gels. After 
electrophoresis, proteins were electrotransferred to Immobilon-P polyvi- 
nylidenfluoride (PVDF) membranes (Millipore Corp., Bedford, MA) us- 
ing a Multiphore semidry transfer apparatus (LKB Instruments, Inc., 
Bromma, Sweden). Secondary antibodies for Western blotting were cou- 
pled to alkaline phosphatase as provided in the Tropix system (Serva 
Feinbiochemica GmbH, Heidelberg, Germany) and used as recom- 
mended by the manufacturer. For immunoprecipitation analysis, the em- 
bryos were homogenized at 4°C in RIPA buffer (50 mM Tris, pH 8.5, 300 
mM NaC1, 1% NP-40, 0.5 % sodium deoxycholate, 0.1% SDS, and 2.5 mM 
EDTA) containing the following proteinase inhibitors: 1 Ixg/ml leupeptin, 
1.4 I~g/ml pepstatin, 0.1 mg/ml Tosyl-L-phenylaianin-chloromethylketon, 
10 ixg/ml soybean trypsin inhibitor, 5 Ixg/ml aprotinine, and 0.1 mg/ml 
PMSF. After clearing of the extracts at 13,000 g for 15 min at 4°C, the su- 
pernatants were incubated with 15 v,g affinity-purified anti-OH031 poly- 
clonal antibodies and 50 I~1 protein A-Sepharose (Boehringer Mannheim 
GmbH) for 2-4 h on rotating wheel at 4°C. The Sepharose beads were 
washed three times in RIPA buffer and either boiled in 2× Laemmli load- 
ing buffer or used for phosphatase treatment. Phosphatase treatment was 
performed as described by Suter and Steward (1991). The immunoprecip- 
itates were further washed in RIPA/PAP (potato acid phosphatase) buffer 
(1:1) and then resuspended in PAP buffer (1 mM Pipes, pH 6.0, 150 mM 
NaCl). The immunoprecipitates were then incubated with either 0.5-1 U 
PAP in the same buffer or 5 U calf intestine alkaline phosphatase (CIAP) 
in 50 mM "Iris (pH 8.5) and 300 mM NaC1 for 20 min at 37°C. The reac- 
tions were stopped by adding an equivalent volume of 2× Laemmli load- 
ing buffer, boiled, and loaded onto 7 or 10% SDS-polyacrylamide gels. 
After gel electrophoresis, the proteins were transferred to Immobilon-P 
PVDF membranes and probed with anti-OH031 antibodies using the 
Tropix chemiluminescence system. 

Results 

Genetic Localization and Phenotype 

The mutation 144/1 resulted from the insertion of a single 
P-lacW(Pw+-LacZ) transposon (Bier et al., 1989) inte- 
grated within the chromosomal region 31A on the second 
chromosome (TSr~k et al., 1993b). Homozygous mutant 
larvae showed a typical class II air lethal phenotype (Wat- 
son et al., 1991) with abnormal development of the he- 
matopoietic organs (lymph glands), the occurrence of nu- 
merous masses of hemocytes dispersed all over the body 
cavity, and the formation of melanotic tumors (Fig. 1 A). 
Confirmation that the P element insertion was the cause of 
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Figure 1. Morphology of wild-type and mutant oho31 larvae and tissues. (A) Homozygous oho31 and wild-type (arrow) larvae. Multiple 
melanized hemocytic tumors are apparent in the mutant larvae. Whole-mount lymph glands of wild-type (B) and oho31 (C) larvae were 
stained with HOECHST 33258; position of the aorta (ao) and lymph glands (/) are indicated. The cells of oho31 lymph glands are visibly 
more scattered than in wild-type lymph glands. (D) Brain and hypertrophied lymph glands of an older surviving oho31 larva showing 
three initial foci of melanization (arrows). Positions of aorta (ao) and brain (br) are indicated. (E) Lamellocytes from a partially dissoci- 
ated oho31 hemocytic tumor. (F) Melanotic masses of hemocytes associated with the midgut (a) and the Malpighian tubules (b) of an 
oho31 homozygous larva. In the tumor associated with the Malpighian tubules, the melanized core is surrounded by a nonmelanized 
layer of hemocytes (arrow). (G) oho31 mutant (a) and wild- type (b) testes. Spermatogonial cysts are visible in b. (H) Partially disrupted 
oho31 (a) and wild-type (b) testes, identical to those shown in G. Spermatogonial cysts of different sizes poured out of the wild-type tes- 
tis, while the mutant testis contained single ceils of uniform size. Imaginal rings in whole-mount salivary glands from wild-type (/) and 
oho31 (L) mutant third instar larvae. The number of diploid nuclei of the imaginal rings and the areas (solid lines) they cover are obvi- 
ously larger in the mutant. (J) Wing imaginal discs from oho31 mutant and wild-type (arrow) late third instar larvae. The mutant discs 
display a reduced size and an abnormal folding pattern. (K) Female genital discs of oho31 mutant (a) and (b) wild-type late third instar 
larvae. Bars: (A, D, and H) 500 ixm; (G, J, and K) 100 txm; (B, F, and L) 50 ~m; (E) 5 ~m. 

the mutan t  pheno type  was ob ta ined  by reversion of the 
muta t ion  to wild type after  remobi l iza t ion of the P-lacW 
t ransposon (T6r6k et al., 1993b). On the basis of the over-  
growth of the hematopoie t ic  organs and the localization of  
the P e lement  insert,  we named  the gene overgrown he- 
matopoietic organs-31 (oho31). 

In wild-type third instar  larvae, the hematopoie t ic  or- 
gans consist typically of four  to seven small pa i red  lobes 
arranged along the dorsal  aor ta  and made  of tightly associ- 
a ted  cells (Fig. 1 B). In oho31 third instar  larvae, the 
lymph glands at first look apparent ly  normal ,  while in 
o lder  surviving larvae, they increase considerably in size 
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forming loose masses of aggregated hemocytes associated 
with the aorta (Fig. 1, C and D) or almost completely dis- 
appearing with the formation of secondary nodules of 
hemocytes dispersed in the entire body cavity. As shown 
in Fig. 1 C, the cells in the lymph glands of young third in- 
star mutant larvae appear to be loosely attached and tend 
to dissociate from each other upon manipulation, whereas 
in normal lymph glands (Fig. 1 B), the cells are more 
tightly bound to each other and form compact organs. In 
surviving mutant larvae, that is, older than 4 d, small nod- 
ules of aggregated hemocytes can be found in the body 
cavity, and their number and size increase with time. 
These amorphic masses are made of loosely attached 
hemocytes, which, upon dissection and manipulation, tend 
to dissociate into single elongated cells (Fig. 1 E). In aging 
larvae, some of these nodules increase in size, becoming 
more compact and punctated with small loci of mela- 
nization (Fig. i D), which eventually spread over the en- 
tire hemocytic mass (Fig. 1 F). Although the location of 
these melanotic tumors varies, we found them frequently 
around the digestive tube in the vicinity of the midgut- 
hindgut boundary and/or associated with the Malpighian 
tubules (Fig. 1 F). 

In addition to abnormalities in the lymph glands, some 
other organs show overgrowth. The most frequently af- 
fected organs are the gonads, particularly the testes, which 
may increase two to two and half times in diameter (Fig. 1 
G). By comparison to wild type, the mutant testes are de- 
void of spermatogonial cysts but filled up with small uni- 
form single cells (Fig. 1 H). In very old mutant larvae, the 
size of the imaginal rings of the salivary glands is also con- 
sistently larger than normal (Fig. 1, I and L). Despite the 
large increase in cell number, the epithelial structure of 
this tissue is maintained. 

In oho-31 third instar larvae, most of the imaginal discs 
(wing, leg, haltere, eye/antenna) remain smaller than nor- 
mal, with a fully distorted shape and abnormal folding pat- 
tern (Fig. i K), although these discs may occasionally be- 
come overgrown in very old larvae. By contrast, the genital 
disc is consistently much larger than normal (Fig. 1 J). The 
brain organization displays abnormalities, which are more 
pronounced in old mutant larvae. The hemispheres are 
smaller than normal, with an elongated shape, and the 
ventral ganglion is often longer than normal, (data not 
shown). No other gross abnormalities can be observed in 
the remaining organs. The polytenic larval tissues, includ- 
ing the ring gland, exhibit an apparently normal morphol- 
ogy, albeit with a somewhat reduced size. In conclusion, 
the oho31 mutation exerts a pleiotropic effect on several 
presumptive adult tissues during the larval development, 
with the most dramatic effect being on the hematopoietic 
organs, the genital disc, the gonads, and the imaginal rings 
of the salivary glands. 

A series of 20 nonviable w- revertants were generated 
by imprecise excision of the P element after remobiliza- 
tion. Their molecular analysis showed that two of them 
had small deficiencies removing the presumptive oho31 
transcription unit (vide infra). Animals homozygous for 
the deficiencies, or transheterozygous animals combining 
the original 144/1 mutation with one of the deficiencies, 
display in all respects a phenotype similar to that of the 
144/1 homozygotes. These results indicate that the original 

144/1 mutation can be genetically considered as a null al- 
lele of the oho31 gene, and the phenotype described above 
results from a complete or nearly complete absence of 
oho31 function. 

Transplantation o f  Mutan t  Tissues 

Fragments of overgrown tissues from oho31144/1 larvae 
were transplanted into the abdomen of wild-type female 
hosts to test for autonomous growth. Two types of tissues 
were tested: the hemocytic tumors present in the body cav- 
ity of oho31 larvae and the overgrown genital discs. Trans- 
planted fragments of these tissues gave rise to tumorous 
outgrowth in 4% (3/71) of the hemocytic tumors and in 
13% (5/34) of the genital discs. Among the three success- 
ful hemocytic transplants, two produced nonmelanized 
hemocytic masses similar to the starting larval tumorous 
material, whereas the third transplant gave rise to a large 
tumor, which subsequently became fully melanized. The 
five genital disc fragments, which were able to grow in the 
host, formed amorphic masses of folded epithelium. Hosts 
carrying a successfully growing implant were recognized 
by the bloating of their abdomen. After dissection, we ob- 
served that the abdominal cavity was essentially filled by 
the growing implants, and the host ovaries were consider- 
ably atrophied. Implanted fragments of other tissues, such 
as the imaginal rings of the salivary glands or the imaginal 
wing discs, did not give rise to any visible growth in the 
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Figure 2. Map of the oho31 region at 31A in D. melanogaster. (a) 
A composite map of ,-~30 kb of DNA from the oho31 region is 
shown with the coordinate scale above the map. Coordinate 0 is 
chosen arbitrarily and lies at the left end of the cloned Dro- 
sophila DNA segment. The exact location of the P-lacW insertion 
was mapped by DNA sequencing, as indicated in Fig. 3. (b) Over- 
lapping array of Drosophila inserts found in recombinant phages 
isolated from an Oregon R EMBL4-h library. (c) Enlargement of 
the map around the site of the P-lacW insertion with localization 
of the genomic fragments pr.A, pr.B, and pr.C used for transcrip- 
tional mapping of the oho31 locus. Below the map is depicted the 
exon organization of the oho31 transcript as determined from se- 
quence analysis of five cDNAs (see Fig. 3). The coding sequences 
are indicated by solid boxes and the noncoding transcribed re- 
gions by open boxes. (d) Interstitial deletions D3 and D14 within 
the oho31 gene that have been induced by imprecise excision of 
the P-lacW element. Restriction sites: BamH1 (B); EcoRI (E); 
HindlII (/4); Kpnl (K); Sail (S). 
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host abdomen. These results show that not all the im- 
planted fragments were able to grow, and indicate that 
only certain cells or regions of the dissected tumors have 
retained a potential for autonomous growth. 

Isolation of  Genomic and cDNA Clones 

D N A  flanking both sides of the P-lacW element located at 
position 31A were cloned by plasmid rescue. The recov- 
ered genomic D N A  fragments were used to obtain k phage 
clones from a wild-type genomic library. These clones were 
found to cover a chromosomal segment of ~ 3 5  kb around 

the P insertion site (Fig. 2). A transcript map for a region 
flanking ,-~10 kb on each side of the P element insertion site 
was generated by using subfragments of the h phage clones. 
Probes A and B located on one side of the P element hy- 
bridized to a 2.8-kb p o l y A + R N A  present in early embryos, 
pupae, and adult flies as shown in Fig. 3, whereas probe C 
located on the other side of the insert recognized several 
po lyA+RNAs  ~2 ,  4, and 7 kb in size and present in late 
embryos, larvae, and pupae (data not shown). 

The assumption that oho31 encodes the 2.8-kb R N A  is 
based on three lines of evidence. First, Southern blot analy- 
sis revealed that 2 of the 16 lethal w-  revertants obtained by 

-188 tgtatacactaacaaaatactaagttact taaaaatgtagtaataattatgtgtatatataaaatt tacattat t t t tctctacgcgccgttgtccgaagttaacagca~gataacatqc 
112" r P - 2 ~ - ' c  

-68 gatattaggcacctacgttcacactg~caccaaatttcgataactgac~aagatcgatagccatctgcGTTTCGTTCGCCA~T~GGCTTG~TTTT~T~CGGT~TTCTGGCG 
K4* Elects* 

53 GCG~C`~GCAG~ATTGACTC~TTT~GCATCGATTA~GA~A~TA~TGTCTACGTTT~TCTACAGTTTCAC~G~ACACATTCAGCGTGCT~CAC~CTCGAC~TTCTCGTGCTCGC 

171 G~TCGTTAGGGAACGATAAAAATTGTGTAAAAATTCAG~AAAGTGAA~T~CCATCC~AAGCCAGCAC~CGCATTCAAAAGGGCAAAGGTA~AAAGgtaagt~gtgt~ta~tCttt 

291 tc t t cc t t t t cgc~ t t t t t cccac tgc t t t t tac tagcg t tca tcaa t t tgaccgcc tc t t cg t~a tc tcc tc t t cgc~ t tcccc tc t t t ccgcgaa tcggcaaa t~c~gc t~ t~ca  
411 ~ctgttgc~aaccaaa~gcgtagttcttaactcgcgggggcttgagcgattg~t~ccccttaaaaataatcttgtaaatta~ttggcttat~ttggctaa~acata~gaataacatatc 
531 gagttg~tggcca~aaagaaaacc~ttttttgaactcatggttacgccc~tgttgcacg~c~aaa~gaatataaaagtct~agataaaaaaaaagaa~caagcagccct~g~tt~tgct 
651 ~ct tcctga~at tga~caca~t t tc~t t t t~ag~TTCACACATTTCATCGCAGCAGC~CATCT~CT~T~G~UU~J~CAC~C~C~TC~GT~GGCG 

i ~nt4¢O~ Z ---~ MetSerLyBAla 

771 GATTCTAAcTCACGA~AGGGCTCCTACAAGGCCAACAGCATTAACACGCAGgtaatgtaca~aagatcctccgca~aactgcgttcggaactaacctcactttttgccctagGACTCACG 
5 AspSerAsnSerArgGlnGlySerTyrLysAlaAsnSezileAsnThrGlDt--- 4~%~ ZI 4~tz~ IX ~spSerAr 

891 CATGCGCCGCCATGAGGTGACCATCGAGCTGCGCAAGTCCAAAAAGGAGGACCAGATGTTCAAGCGGCGCAACATCAACGACGAGGATCTAACGTCGCCGCTCAAAGAGCTCAATGGCCA 
24 g•etArgArgHisGluVa1ThrI•eGluLeuArgLysSerLysLysG•uAspG•nMetPheL•sArgArgAsnIleAsnAspG•uAspLeuThrSe•Pr•LeuLysG•uLeuAsnGlyG• 

1011 GTCGCCGGTG•AGCTGTCCGTGGACGAGATAGTGGCGGCCATGAACAGCGAGGATCAGGAGCGCCAGTTCCTGGGCATGCAGTCTGCCCGCAAGATGCTCAGTCGGGAACGCAATCCACC 
64 n•e•P••Va•G•nLeuSerVa•AspG•u••eVa•A•aA•aMetA•n•erG•uA•pG•nG•uArgG•nPheLe•G•y•etG•n•••A•aArgLysMetLe•SerArgG••ArgAsnPr•Pr 

1131 CATCGACCTGATGATCGGCCATG~TATTGTG~CCATTTGCATACGCTTCCTGCAGAATACCAACAAgtga~tagtggctttagaatgttgatgagagcattattgaatatcccctgattc 
104 oIleAspLeuMetIleGlyHisGlyIleValProIleCysIleArgPheLeuGlnAsnThrAsnAs~---- ~tE~ ZZI 

1251 gcg~taca~TCAATGCTGCAGTTTGAGGCCG~TTGGGCGCTTACCAACATCGCCTCTGGCACATCCGACCAAACGCGCTGCGTTATCGAACACAATGCTGTGCCGCATTTCGTGGCTCT 
126 ~Se~e~LeuG~nPheG1~A~aA~aTr~A~aLeuThrAsn~eA~aSerG~yThrSe~AspGlnThrArgCysValI~eG~uHisAsnA~aValPr~HisPheVa~AlaLe 

1371 GCTCCAGTCCAAGTCCATGAA••TGGC•GAGCAGGCAGTCTGGGCTCTGGGCAACATTGCCGG•GACGGAGCCGCCGCCCGCGACATTGTCATCCACCACAACGTAATTGACGGAATCTT 
163 uLeuG~n~erLy~Ser~etAsnLeuA~aG~uG~nA~aVa~TrpA~aLeuG1yA~n~eA~aG~yA~pG~yA~aA~aA~aArgAspI~eVa~eHisHisAsnVa~I~eA8pG~I~eLe 

1591 GCCACTGATCAACAATGAGACACCGCTCTCTTTTCTGCG•AACAT•GTCTGGCTGATGTCCAACCTGTGCCGAACAAGAATCCATCGCCGCCATTCGATCAGGTGAAGCGGCTGTTGCC 
203 uPr~Leu~eA~nAsnG~uThrPr~LeuSerPheLeuAr~Asn~eva~TrpLeuMet~erA~nLeuCysArgAsnLy~A$nPr~SerPr~Pr~PheA~pG~nVa~Ly~Ar~LeuLeuPr 

1711 CGTCCTGTCGCAGCTTCTGCTTAGTCAGGACATC•AAGTGCTGGCCGACGCCTGCTGGGCTTTGTCCTACGTCACGGACGACGATAACA•CAAGATCCAGGCTGTGGTCGACTCGGACGC 
243 •Va•LeuSerG•nLeuLeuLeuSerG•nAs•••eG•nva•LeuA•aA$pA•aCysTrpA•aLeuSerTyrVa•ThrAspAspAspAsnThrLy•••eG•nA•ava•va•As•SerA•pA• 

1831 AGTGCCGCGCCTGGTCAAACTGCTGCAAATGGACGAGCCGAG•ATTATTGTG•CCGCCCTGCGCAG•G•TGG•AACATTGTGACTGGCACAGATCAA•AG@taggaaacaaatgttttaa 
283 aVa~Pr~Ar~LeuVa~L~sLeuLeuG~nMetAspG~uPr~Ser~e~eVa~Pz~A~aLeuArgSerVa~G~yA~nI~eVa~ThrG~yThrA~pG~nG~n~----~z~mIv 

1951 tccttattgttata~catgcctgacctgttcatttgttttttgttta~CTGACGTTGT.~TTGCATCTGGAGGTTTA~AAGGCTGGGACTCCTTCTACAGCAC~C~GC~ATT 
3 1 7  intZ~ ~ ThrAspValValIleAlaSerGlyGlyLeuProArgLeuGlyLeuLeuLeuGlnHlsAsnLysSefAsnlle 

2071 GTGAAGGAGGCTGCCTGGACGGTCAGCAACATCACAGCAGGTAACCAGAAGCAGATCCAGGCTGTGATTCAGGCCGGCATCTTCCAGCAGCTGCGCACCGTGCTGGAGAAGGGTGATTTC 
341 Va~LysGl~AlaAlaTrpThrVa1Se~AsnIleThrAlaG~yAsnGlnLysG~nIleGl~A~aVa~IleG~A~aGlyI~ePheGlnGlnLe~ArgThrVa~LeuGluLysGlyAs~Phe 

2191 AAGGCTCAAAAAGAGGCTGCCTGGGCGGTGACAAACACCACGACATCTGGCACTCCCGAACAGATCGTCGATCTAATTGAGAAGTACAAAATATTGAAGCCTTTTATCGATTTGCTGGAC 
381 Ly•A1aG1nLysGluA•aA•aTrpA•aVa•ThrAsnThrThrTh•SerG1yThrPr•G•uG1nI•eVa•AspLeuI•eG•uLysTyrLysI•eLeuLysPr•PheI•eAspLeuLeuAsp 

2311 ACAAAGGATCCGCGTACCATTAAGGTGGTGCAGACGGGCCTATCCAATCTGTTTGCC•TGGCGGAGAAACTTGGTGGCACCGAGAACCTATGCTTGATGGTCGAGGAGATGGGCGGTCTA 
421 ThrLy•A••Pr•ArgTh•I•eLy•Va•Va•GlnThrG•yLeuSe•A•nLeuPheA•aLeuA•aG•uLy•LeuG1yG•yThrG1uA•nLeuCysLeuMetvalGluGluMetG•yG•yLeu 

2431 GACAAGCTGGAAACTCTGCAGCAGCACGAGAACGAGGAGGTCTACAAGAAGGCCTACGCCATCATTGACACATACTTCAGCAACGGCGACGACGAGGCCGAGCAAGAGCTCGCACCTCAG 
461 A•pLy•LeuG•uThrLeuG•nG•nHi•G•UA•nG•UG•UVa•TyrLysLysA•aTyrA•aI•eI•eAspThrTyrPheSerAsnG•yA$pA•pG•uA•aG•uGlnGluLeuA•aPr•Gln 

2451 GAGGTCAACGGAGCCCTCGAGTTCAATGCCACCCAGCCCAAGGCTCCCGAGGGTGGCTACACGTTCTAATCGCCCACCCCACACATTCCAAACGCCGCTCACACGCCTTACAAACAACTA 
501 GluValAsnGlyAlaLeuGluPheAsnAla ThrGlnProLysAlaProG1uGlyGlyTyrThrPheEnd 

OF~ 
2571 CACCTTcGACCGCGCTCACACACTATGCCATTGTCAAACATACGCATACTCATCATCACATCTTACAAACATTCGCGTTAGACTAGACCCCAAACACTTTGGAGGTATGCATGGAAACAC 
2691 AAGGCGAATGCATTAGCTTAAAGTCATAATTGAATCGGGTTGGCAAAATCCACTCGCATGAATCCCCATTTAACATACCCGTATTCCTTTCTACAGATTGCAGCATGGATCTTTCTGGCA 

oKI4K4 
2811 GTGTTCCTCGTTCACGATGCAACCGCTCGGGCAGCTGCGCTGGCTGGGATCCGTGGATCATAGTATTTCCAGAATCCGTCTG~ACAGGGGGCA~CTTATGTTTGCGTGTACTAGGCTTTT 
2931 TATTGGATACGTTTCGAGCTCATTTCGGATATATTTTAGGCTGTTTAGTATTTATTTATGTATA•AGGAAACGCTTTTAATCCTCCACCTTCGCGCAAGCATTA•AACAACAACAACAAC 

3051 AACAACAACTCATTCCCT~CACACCAGTGTCCACATTCCCGAATCGCATGTTTATATTC~AATAAATAATG~AA~GA-~TIftt~aatttcatgtgtatttaa~c 
3171 tgtatttgagcattgcgaaaattggagcctatttttgggccttggcatttttttttgtatatttggaatgctatt~gggaatactccgaatc~aatttaaaatgttatcccttct~tgcg 
3291 ctgacgcctttt~tccg~aaatccgcgataaaaagtcatgcagtcaatacatatttttttt~gtattgtacatttaaatcgcatttgggccgtaagcggatagccggaagattaaga~ct 
3411 atctaccgctgcctcgcccactcqagct~cggtggacagcgaccccaaaaaagttccagattaga~ataatgattaaaca~ccgacga~tgagtagtgagtagtagtctactactg~cac 
3531 agaacgcgcaccacgcacaactaatcaagatcagtaatggttgcagtgatccagagggtaagcttaatcagtggtgcgacgacgtcacatcaacaacgatgtccacgtacgatcttgttc 
3651 catcggatqcagtgcgtcgaattc 

Figure 3. Sequence of the oho31 gene and predicted amino acid sequence of its product. Introns and untranscribed sequences are shown 
in lowercase letters; exons are shown in uppercase letters. The first nucleotides of the cDNAs K1, K2, K4, K7, and K9 are indicated by 
an asterisk (*) and the last nucleotides of these cDNAs by an open circle (O) above the nucleotide sequence. The putative polyadenyla- 
tion signal AATAAA is indicated by underlining, and the nanos responsive element GqTGT(Xn)ATI'GTA is boxed. The GenBank/ 
EMBL/DDBJ accession number for the genomic and amino acid sequences of Drosophila oho31 is X85752. 
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P element remobilization resulted in the complete elimina- 
tion of the P element with intragenic deletions removing 
DNA segments of 1.0 and 1.7 kb in the case of D3 and D14, 
respectively. As shown in Fig. 2, one breakpoint of these two 
deletions lies at the site of P element insertion and the other 
within the 2.8-kb transcript. Third, the spatial and temporal 
expression of the 2.8-kb transcript in late third instar larvae 
was similar to the [3-galactosidase expression originating 
from the inserted P element (data not shown). 

Sequence Analysis and P Element Insertion Site 

The nearly full-length sequence of the oho31 mRNA was 
obtained from the cDNA K2. In addition, we have isolated 
and sequenced a total of five cDNAs whose sequences 
perfectly overlap with portions of K2. The nucleotide and 
deduced amino acid sequences of this eDNA (2,544 nu- 
cleotides in length) and the alignment of its nucleotide se- 
quence on the genomic sequence are shown in Fig. 3. To 
determine the exact site of the insertion of the P element, 
we sequenced the genomic DNA flanking the P element 
flanking in clones isolated from the oho31144/1 allele using 
a DNA primer derived from the sequence of the P-lacW 
inverted terminal repeat. On the wild-type genomic se- 
quence, the P-lacW element is inserted 5 bp downstream 
from the 5' end of the oho31 cDNA K2 (Fig. 3). 

Comparison of the eDNA and genomic sequences re- 
vealed five exons separated by four introns of 415, 61, 63, 
and 64 nucleotides, respectively. The sequence contains an 
open reading frame (ORF) of 522 codons initiated by an 
ATG. This ORF encodes a protein with a predicted molecu- 
lar mass of 58 kD. The first ATG in the long ORF is directly 
preceded by a polypurine track varying in length between 15 
A in Oregon R genomic DNA and 23 A in cDNA K2. This 
polypurine track ends a 332-nucleotide AT-rich leader se- 
quence without any ATG-initiated ORF. Although such a 
long A track preceding an ORF is quite unusual, it conforms 
to the Drosophila translation start consensus sequence ANN 
(C/A) A (A/C) (A/C) ATGN (Cavener, 1987). The long 
ORF is followed by an 630-nucleotide AT-rich 3' untrans- 
lated sequence containing a canonical poly(A) addition site 
A A T A A A  located 23 nucleotides from the start of the 
poly(A) tract. This sequence is itself inserted into a motif re- 
sembling the nanos responsive element GTTGT(Xn)AT- 
TGTA, which mediates the repression of translation of 
hunchback and bicoid RNA in response to the nanos gene 
product (Wharton and Struhl, 1991) or regulates cyclin B ex- 
pression (Dalby and Glover, 1992). 

oho31 Gene Is Intensively Expressed during Early 
Embryogenesis and More Moderately during the Larval 
to Pupal Transition Phase 

To determine the expression and abundance of the oho31 
transcript during development, we performed Northern 
blot analysis of polyA+RNA extracted from different de- 
velopmental stages. As shown in Fig. 4, a single 2.8-kb 
polyA+RNA species could be detected. The oho31 mes- 
sage is abundant in preblastoderm embryos (0-2-h old em- 
bryos), and its concentration progressively decreases dur- 
ing blastoderm formation and gastrulation (0-3 and 3-6 h, 
respectively). During germ band extension (6-9 h), the 
oho31 message is again expressed before disappearing al- 

most completely in late embryonic stages, oho31 expres- 
sion resumes in late third instar larvae and becomes in- 
tense in early pupae. The oho31 message is also present in 
adults; it is more abundant in females than in males, indi- 
cating that this message may be intensively produced in 
ovaries. 

To investigate the spatio-temporal pattern of oho31 
RNA expression in Drosphila during embryonic develop- 
ment, we performed in situ hybridization of whole-mount 
embryos using digoxigenin-labeled single-stranded anti- 
sense RNA and DNA probes prepared from the cDNA 
K2. As shown in Fig. 5, oho31 expression shows dramatic 
changes during embryonic development. At the earliest 
stage (0-2 h), when the embryos are undergoing rapid nu- 
clear divisions in a syncytium, maternally derived oho31 
mRNA is present at a high concentration and is homoge- 
neously distributed in the embryos (Fig. 5 A). Between cy- 
cles 10 and 13, the level of the oho31 message decreases 
considerably in the cortical cytoplasm but remains rela- 
tively high in the pole cells (Fig. 5, B-D). Interestingly, 
this decrease is not homogenous but gives rise to a pattern 
of seven weak stripes along the anterior-posterior axis of 
the embryo (Fig. 5 D). At the beginning of gastrulation 
(Fig. 5 E), these stripes become more intense with the first 
stripe located anterior to the cephalic furrow. During germ 
band extension (Fig. 5 F), the oho31 transcripts are essen- 
tially limited to the neuroblasts and the ventral ectoderm, 
where they are distributed in diffuse stripes. Beyond this 
stage (Fig. 5, G and H), oho31 expression becomes limited 
to cells of the ventral nerve cord and to the proliferative 
centers of the brain lobes, where it shows a decreasing ex- 
pression until late into embryonic development. 

In situ hybridization of whole-mount tissues prepared 
from late third instar larvae reveals a high level of oho31 
RNA expression in all imaginal discs (Fig. 6 A) and a more 
moderate expression in the ring gland and the hematopoi- 

Figure 4. Abundance of oho31 transcripts during development. 
This panel shows a developmental Northern blot probed with an- 
tisense single-stranded K2 cDNA. Sequential hybridization with 
antisense single-stranded pr.A and pr.B DNA probes (see Fig. 2) 
gave the same hybridization pattern. PolyA+RNA was quantified 
by hybridization with a B-tubulin probe so that equal amounts 
of polyA+RNA were present in each fraction. Embryonic stages 
(0-2, 0-3, 3-6, 6-9, 9-12, 11-14, 14-17, 17-20, 18-21, and 21-24 h) 
are designated by E, larval stages (1st, 2nd and 3rd) are desig- 
nated by L, pupal stage by P and adult females and males by Ad(S 
and Ad~, respectively. 

Trrrk et al. Tumor Suppressor Involved in Nuclear Protein Import 1479 



etic organs associated with the aorta (Fig. 6 B). A low level 
of oho31 expression can be detected in the brain hemi- 
spheres and the ventral ganglion. Examination of homozy- 
gous oho3P 41I late third instar larvae reveals a similar 
pattern of 13-galactosidase expression in imaginal discs, 
ring gland, and hematopoietic organs and a low expression 
in the brain (data not shown), indicating that the oho31 
promoter drives the expression of the lacZ gene present in 
the p-lacW element inserted in 31A. 

oho31 Encodes a Protein with Extensive 
Homology to the Importin Protein of  Xenopus, 
the Related Yeast SRP1 Protein, and the Mammalian 
SRP1 and RCH1 Proteins 

The OH031 protein shares extensive similarity with a 

family of proteins identified in yeast as well as in verte- 
brates characterized by a central domain of eight degener- 
ate 42-amino acid tandem repeats with no interruptions. 
As shown in Table I, 0H031 is most similar to the Xeno- 
pus Importin (GOrlich et al., 1994) and the mammalian 
RCH1 proteins (Cuomo et al., 1994), and also displays 
similarity with the yeast SRP1 protein (Yano et al., 1992, 
1994) and the mammalian SRP1 proteins (Cortes et al., 
1994). As shown in Fig. 7, the sequence similarity is most 
pronounced in the region of the eight tandem repeats. The 
total length of the repeats accounts for approximately two 
thirds of the size of these molecules. In 0H031, the first, 
third, and last repeats (43, 43, and 44 amino acids, respec- 
tively) differ from the consensus length of 42 amino acids. 
The repeating motif is characterized by the presence of 
strongly preferred amino acids at many positions, as indi- 

Figure 5. Expression of oho31 during embryonic development. Whole-mount embryos were hybridized with an oho31 antisense single- 
stranded RNA probe labeled by incorporation of digoxigenin-ll-dUTP. All embryos are oriented anterior to left and viewed laterally 
unless otherwise indicated. (A) A cleavage stage embryo at the time of pole cell formation, ~80 min after egg deposition (AED), show- 
ing a high and uniform level of oho31 transcripts in the entire embryo. (B) An early syncytial blastoderm embryo (mitotic cycle 12), 
~100-110 min AED, and (C) a syncytial blastoderm embryo (mitotic cycle 13), ~120-130 min AED, showing gradual disappearance of 
oho31 transcripts from the yolk and concentration in the cortical cytoplasm. (D) A cellular blastoderm embryo, ~140-170 min AED, 
showing a low level of oho31 transcripts with a subtle anterior-posterior banded pattern and a concentration of transcripts in the pole 
cells. (E) Dorsal view of an embryo during formation of cephalic folds, ~170--180 min AED, showing distribution of oho31 transcripts in 
seven diffuse stripes along the anterior-posterior axis of the embryo, with a higher level of transcripts in the pole cells. (F) A germ band 
extending embryo, ~260-320 min AED, showing higher levels of transcripts in neuroblasts and ventral ectoderm, where they are dis- 
tributed to diffuse stripes. (G) Lateral and (H) dorsal views of embryos during germ band shortening, ~560-620 min AED, showing 
oho31 transcripts in the supraesophageal ganglions and along the ventral chord. 
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Figure 6. Expression of oho31 RNA in tissues of third instar lar- 
vae. Whole-mount preparations of brain with associated imaginal 
discs and hematopoietic organs were hybridized with a single- 
stranded antisense eDNA probe labeled with digoxigenin-11- 
dUTP. (A and B) High expression of oho31 transcripts is de- 
tected in the imaginal discs (id), and a more moderate expression 
is seen in the ring gland (rg) and the lymph glands (lg) associated 
with the aorta (ao), Low level of oho31 expression can be seen in 
the brain hemispheres (br) and the ventral ganglion (vg). B shows 
a higher magnification of the ring gland and the lymph glands 
than in A. Bars: 50 ~xm. 

cated in Fig. 7. This motif  is also shared by a series of  other 
proteins (Peifer et al., 1994) and was originally identified 
in the Drosophila segment polarity gene product arma- 
dillo (Riggleman et al., 1989). Thus, the central domain of 
0 H 0 3 1  spanning amino acids 114-454 consists of  eight re- 
peats almost identical in size and probably similar in struc- 
ture. Furthermore, these eight repeats are relatively rich 
in hydrophobic amino acids. By contrast, the NH2- and 
COOH-terminal regions flanking the central domain are 

Table L Comparison of Protein Sequences Sharing Extensive 
Similarity with oho31 

0H031 RCH-1 mSRP1 SRP1 IMP 

0H031  50.8 45.2 42.1 49.7 
RCH-1 69.3 46.6 45.7 62.6 
mSRP1 64.9 64.7 52.7 45.4 
SRPI 62.8 62.8 70.9 49.7 
IMP 70.0 76.8 66.4 70.0 

Above the diagonal is reported the percentage sequence identity; below the diagonal 
is indicated the percentage sequence similarity if conservative substitutions are 
counted. IMP, lmportin. 

1 M DNGTDSSTSKFV PEYR RTNFKNKG RFSA DE~--~DT~QVE~--~EAL~----~FI p SRP1 

1 ........ M SKADSNS RQG S yKANS - I NTQ O S~_~H EVTI E~_y~._~E DQMP~_~_~N I N D OH031 

61 

50 

55 

52 

52 

PTDGA D- SDEEDESSVSADQQFYSQLQQELPQMTQQLN- -SD--DMQ ..... EQ- LSATVKFRQI SRPI 

.... AT- AEEETEEEVMS DGG FHEA -Q I NNMEMAPGGVI TS DMTD M I FS NS PEQQLSATQKFRKL MSR~ 

F PD DAT- S P ~ENRN NQG%~INW ...... SVDD[VKGI N- - SS - -NVE - - q - -NQ- LQATQAARKL RCHI 

L PEEL I LS PEKNAMQSVQV P pL ...... S LEEIVQGMN- -SG- -DPE ..... NE- LRCTQAARKM IMP1 

- -EDLT- S ?LKE- LNGQS PVQL ...... SVDEIVAAMN- - SE- -DQE ..... RQ- FLGMQSARKM OHO~ 

514 DAVDEq%IAPQNAGN .... TFGFGSNVNQQFNFN 542 

510 D---SSIApQVDLSQQQYIFQQCEAPMEGFLQ- 538 

502 ED--QNVVPET~EGy--TFQVQDGAPGTFNF- 529 

505 DD--IALEPEMGKDAY--TFQVPNMQKESFNF- 52S 

491 EAEQEL-APQEVNGALEFNATQPKAPEGGYTF- 522 

I Q I II I D I E IS 

Consensus L G Q D ---VV - GLL9 LL LL E V .... DA WAIGN 

repeat W v VT 

115 LSREHRpPIDV- - - VIQ -AGVVpRLV~FMRENQ PEMLQL - - - EAAWALTN SRPI 

110 LSKEPNPPI DE- - -V INTPGVVARFVEFLKRKENC TLQF - - - ESAWVLTN MSRP1 

103 LSREKQPPIDN-- - I I R -AGLI pKFVSFLGRTDCS PIQF- - -ESAWALTN RCH1 

111 LSRERNPPLND- - - I IE-AGLI PKLVEPLSRHDNSTLQp- - - EAAWALTN I MPI 

97 LERERNPPI DL- - -MIG-HGIVPIC I RFLQNTNNEMLQF - - - EAAWA LTN OH031 

158 I A~GTSAQTKV- - -WD -A DAVP LF I Q LLYTGSVEirKE .... QAIWALGN SRPI 

154 IASGNSLQTRN- - -VIQ -AGAVPIF IELLSSEFEDVQE .... QAVWALGN MSRP1 

146 I ASGTSEQTKA - - -V~D-GGAI pAFISLLASPHAH ISE .... QAVWA LGN RCH1 

154 IASGTSDQTKS - - -WD-GGAIPAFISLI SS PHLH ISE .... QAVWALGN IMP1 

140 IASGTSDQTRC - - -VI E - H NAVPHFVA L LQS KSMN LAE .... QAVWALGN 0H031 

200 VAGDSTDYRDY - - -VLQCNAMEP I LGLFNSNKP - S L I R .... TATWTLS N SRPI 

196 I AGDSTMCR DY - - - VLNC - I L pPLLQLFSKQNRLTMTR .... NAVWALSN MSRPI 

I~9 IAGDGSVFRDL - - - V I KYGAVDPLLALLAVPDMSS LACG YLRNL~/'WTLSN RCH1 

196 I AGDG PLYRDA - - - LINCNVI PPLLAL- - VNPQTPL- -Gy LRNITWMLSN IMP1 

182 IAGDGAAAR DI - - -V IHHNVI DG I LPLINNETPLSFLR .... NIVWLMSN 0H031 

242 LCRGKKPQPDW- - - EVV - SQAL pTLAK LI YS MDTETLV .... DACWAISY ERP1 

239 LCRGKSPPPEF-- - AKV - S PC LNVL EWLLFVSDTDVLA ..... DACWALSY MSRPI 

235 LCRNKNPA P PI - - - DAV - EQI LPTLVR LLHH CDPEVLA .... DTCWA I SY RCHI 

239 LCRNKNPYPPM- - -SAV - LQI LpVL~LMHHDDKD r LS .... DTCWAMSY IMP1 

225 LCRNKNPS P PF- - - DQV- KRLLPVLEQLLLEQDIQVLA .... DACWALSY 0H031 

284 LSDGPQEAIQA - - -VI D -VRI PKRLVELLSHESTLVQT .... PALRAVGN ERPI 

281 LSDGPNDK I QA - - - V I D -AGVCRR L~rELLMHNDYKtalS - - PALRAVGN MSRPI 

2 ?7 LTDGPNERIGM- - - VVK - TGVVPQLVKLLGASEL P I VT .... PALRA IGN RCHI 

281 LTDGSNDRI DV - - -VVK-TGIVDRLIQLMYS PELS IVT .... PSLRTVGN IMP1 

267 VTDDDN~IQA- - -WD - EDAVPRLVKLLQMDEPS I Iv .... PALRSVGN 0H031 

326 I V~NDLQTQV - - -VIN - AGVLPALRLLLSS pKENIKK .... EACWTI SN SRPI 
323 IVTGDDIQTQV- - - I LN-CSALQ~LLHLLSSPKES IKK .... EACWTISN MSRP1 

319 I V~TDEQTQV- - - V I D - AGALAVF PS LLTN pKTN I QK .... EATWTMSN RCHI 

323 I VTGTDKQTQA- - -AID -AGVLSVLPQbLRHQKPE IQK .... EAAWAI SN IMP1 

309 IVTGTDQQTDV - - - VIA -SGGLPRLGLLLQHN}fSNI VK .... EAAWTVSN OH031 

368 I TAGNTEQI QA ~ - - V I D-ANLI P pLVK LLEVAEYKTK K .... EACWAISN SRP1 

365 I TAGNRAQIQT- - -VI D - ANMFPAL I S r LQTAEFRTR K .... EAAWA I TN MSRPI 

361 I TAGRQDQIQQ- - - WN - HGLVPFLVS VLSKADFKTQK .... EAVWAVTN RCH1 

365 IAAGPAPQIQQ- - - M I T - CGLLS pLVDLLNKGDFKAQK .... EAVWAVTN IMP1 

351 I TAGNQKQI QA -~ -V I Q -AGI FQQLRTVLEKGDFKAQK .... EAAWAVTN 0H031 

410 AESGGLQRPDI IRYLVE -QGC IK PLCDLLEIADNR IIE .... VTLDALEN SRP1 

407 ATEGG ~ - SAEQIKYLVE-LGC IKPLCDLLTVMDAKIVQ .... VALNGLEN MERPI 

403 YTSGG - -TVEQIVYLVH-CGI IEPLN~qLLTAKDTK I I L .... VILDAISN RCHI 

407 YTSGG - - TVEQWQLVQ - CGVLE PLLNLLTI KDSKTI L .... VILDAISN IMPI 

393 T~'PSG - - TPEQ IVDLIEKYKI LKPFI DLLDTKDPRTI K .... VVQTG LSN OH031 

455 I bKMGEADKEARG LN I NENADFI EKAGGMEK I FNCQQNENDKI YEKAYK I I ETYFG -EEE SRPI 

450 ILRLGF;QEAKRNGSGINPYCADIEEAYGLDKIEFLQSHENQEIYQKAFDLIEHYFGTEDE MERP1 

447 I~AAEKLGETEKLS I . . . . .  MI EECGG LDK IEA LQNH ENESVYKASLS L I EKYFSVEEE RCH1 

450 I FLAAEKLGEQEKL ..... C L LVEE LGGLEK I EALQTHDNHMVYHAA LAL I EKYFEGEEA IMP1 

437 LFALAEKLGGTENL ..... CLMVEEMGGL DK LETLQQHENEEV YKKAYA I I DTYFSNG DD 0H031 

SRP1 

MER PI 

RCH1 

IMP1 

OH031 

Figure 7. Amino acid sequence comparison of the Drosophila 
0H031 protein with the yeast SRP1 protein, the Importin pro- 
tein of Xenopus, and two mammalian homologues, mSRP1 and 
RCH1. Alignment of these proteins was performed by using the 
BESTFIT and MULTIALIGN programs. Gaps indicated by dots 
were introduced to facilitate alignment. The eight internal arm 
repeats are also aligned, and a consensus sequence for the inter- 
nal repeat structure based on the repeats from the five proteins is 
depicted. A cluster of conserved basic residues forming a poten- 
tial bipartite nuclear targeting sequence is boxed in the NH2-ter- 
minal region of these proteins. 
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highly hydrophilic, with several clusters of acidic and basic 
amino acids. In particular, there are 6 acidic and 14 basic 
amino acids in the first 50 residues covering the NH2-ter- 
minal region, whereas the COOH-terminal region be- 
tween residues 437 and 522 contains 18 acidic and 6 basic 
amino acid residues. No obvious secretory signal sequence 
is present, suggesting that the 0 H 0 3 1  protein may act in- 
tracellularly. 

Characterization o f  An t i -OH031 Antibodies 

To analyze the expression of the OH031 protein, we 
raised antibodies against a bacterially produced 0 H 0 3 1  
fusion protein. We purified anti-OH031 antibodies by af- 
finity chromatography and preadsorption to protein ex- 
tracts of homozygous lethal oho31 m4 larvae in which the 
coding sequence of oho31 is partially deleted. The specific- 
ity of the recovered anti-OH031 antibodies was analyzed 
by immunoblotting experiments. As shown in Fig. 8 A, the 
anti-OH031 antibodies reacted exclusively with a single 
58-kD protein in a protein extract of brain and imaginal 
discs of wild-type late third instar larvae. A protein of sim- 
ilar size was only weakly detected in an extract of homozy- 
gous oho311441 mutant larvae, and no protein was found in 
an extract of homozygous oho31 °14 larvae. Without pread- 
sorption, the anti-OH031 antibodies gave rise to a similar 
staining pattern, albeit detecting additional faint bands in 
all three protein extracts (data not shown). These results 
demonstrate that the anti-OH031 antibodies are specific 
for the 0 H 0 3 1  protein; no cross-reaction with other pro- 
teins is evident. They also confirm that the insertion of the 
P element reduces considerably the expression of 0 H 0 3 1  
in the oho31144~ mutant. 

Developmental Pattern o f  Expression and 
Phosphorylation o f  the OH031 Protein 

In vitro translation of the cDNA K2 in a coupled tran- 
scription-translation reticulocyte lysate system using T3 
RNA polymerase produced a single [35S]methionine- 
labeled polypeptide with an apparent molecular mass of 
~58 kD corresponding to the calculated molecular weight 
of the OH031 protein (Fig. 8 B). By contrast, immunoblot 
analysis revealed that the OH031 protein observed during 
different stages of Drosophila development can be re- 
solved into at least two species by SDS-PAGE: a faster 
and a slower migrating species (Fig. 8 B, lanes IP and b.IP, 
and C, b). The faster migrating species displayed a similar 
size as the in vitro translated OH031 protein. Although 
the level of faster migrating protein varied dramatically 
during development, it was seen during all developmental 
stages. High levels of this protein were detected in early 
embryos and ovaries; moderate levels were found in all the 
other developmental stages with the exception of larval 
development, where the OH031 protein was only present 
at a very low level and would have remained virtually un- 
noticed if we were not examining brain and imaginal disc 
preparations as shown in Fig. 8 A. By contrast, the slower 
migrating species was only detected in ovaries and pre- 
blastoderm embryos, where it reached a similar level of 
expression as the faster migrating species. 

Since slower migration of proteins in SDS-PAGE is of- 
ten observed with the phosphorylated forms of polypep- 

Figure 8. OH031 protein expression in various genotypes and 
throughout development in wild-type animals, and phosphatase 
treatment. (A) 0H031 protein expression in larval tissues of dif- 
ferent genotypes. Proteins extracted of brain and imaginal discs 
from wild-type (lane 1), homozygous oho31144/1 (lane 2), and ho- 
mozygous oho31 D14 (lane 3) third instar larvae were resolved on a 
7% polyacrylamide gel and transferred to a PVDF membrane. 
The protein blot was probed with affinity-purified anti-OH031 
antibodies. The amount of proteins in the different lanes was first 
equalized by comparing aliquots in a Coomassie blue-stained gel. 
(B) Phosphatase treatments of 0H031 protein. Immunoprecipi- 
tation of 0H031 proteins extracted from wild-type embryos (0-3 
h AED) was performed using anti-OH031 antibodies and pro- 
tein A--Sepharose. One third of the immunoprecipitated sample 
was treated with PAP (IP+PAP), another third was treated with 
CIAP (IP+CIAP), and the last third was treated identically to 
the PAP-treated sample except that the enzyme was omitted 
(IP). The immunoprecipitated proteins were resolved on a 7% 
polyacrylamide gel. On the same gel (b.IP), total embryonic pro- 
teins were also separated, as well as (in vitro tr.) [35S]methionine- 
labeled 0H031 protein translated in an in vitro transcription- 
translation coupled reticulocyte system with oho31 K2 cDNA as 
template. After gel electrophoresis, the proteins were transferred 
to a PVDF membrane. The protein blot was sequentially exposed 
to an autoradiogram, first for detecting the in vitro translated 
0H031 protein, and then probed with affinity-purified anti- 
0H031 antibodies for detecting the 0H031 proteins. Positions 
of Ig heavy chain and underphosphorylated and hyperphosphor- 
ylated forms of 0H031 are indicated by IgH, oho-31, and oho- 
31P, respectively. (C) Developmental profile of 0H031 protein 
expression. Immunodetection of 0H031 proteins in extracts 
from embryonic (E of 0-3, 3-6, 6-9, 9-12, and 12-24 h AED), lar- 
val (L) and pupal (P) stages, adult males (Am), adult females 
(Af), and ovaries of 3-d-old females (Or). Proteins were sepa- 
rated on a 7% polyacylamide gel and transferred to a PVDF 
membrane, which was probed with affinity-purified anti-OH031 
antibodies using the Tropix chemoluminescence system, b shows 
a longer exposure of the immunoblot displayed in a. 
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tides, we tested whether the changes in mobility were due 
to the presence of phosphate on 0H031 protein. Immu- 
noprecipitated 0H031  proteins extracted from early em- 
bryos were treated with acidic and alkaline phosphatases. 
As shown in Fig. 8 A, treatment with PAP caused all of the 
0H031 protein to comigrate as a single species with a rel- 
ative molecular mass equivalent to that of the faster mi- 
grating form, whereas treatment with CIAP converted 
only a portion of the slower migrating form into the faster 
migrating form. Addition of orthophosphate to the 0H031 
immunocomplexes inhibited the phosphatase-mediated 
shift in molecular mass (data not shown). These data indi- 
cated that the polypeptides with a slower migration rate 
were phosphorylated forms of the 0H031 protein. 

Similar to the results of the developmental Northern 
blot analysis, the immunoblotting data showed that the 
expression of 0H031 proteins was at its highest during 
early embryogenesis. The high level of OH031 proteins 
found in early embryos should represent the accumulation 
of maternally synthesized proteins as judged by the high 
level of 011031 protein found in ovaries as well as embry- 
onic proteins synthesized from maternally produced tran- 
scripts (Fig. 5). Furthermore, the rapid reduction in the 
levels of 0H031 protein during early embryogenesis sug- 
gests that 0H031 decay is correlated with mitotic activity 
in the embryo. 

During Early Embryogenesis the OH031 
Protein is Accumulating in the Nucleus in a 
Cell Cycle-dependent Fashion 

To monitor the temporal changes in 0H031 distribution 
during embryogenesis, we performed immunochemical 
staining using a color reaction that allowed us to visualize 
the relative amount of 0H031  in different regions of the 
embryos or in different subcellular compartments. 

As expected from the high level of 0H031 proteins 
seen on immunoblots, an intense immunostaining signal 
was detected in preblastoderm embryos (Fig. 9). In the 
majority of the examined embryos, the distribution of 
0H031 appears uniform, and its level remains constant 
during the early syncytial cell cycles (mitoses 1-8). When 
the nuclei migrate to the periphery, the 0H031 protein is 
predominantly located in the periplasm (Fig. 9 C), and its 
level declines progressively during the subsequent nuclear 
cycles (mitoses 9-13), so that by early gastrulation, the 
0H031 protein is present but only at a low level. 

However, in a minority of embryos, ~5%, we noticed a 
spotted pattern of anti-OH031 staining that we attributed 
to a transient accumulation of the 0H031 protein in the 
nuclei. This accumulation could be seen in preblastoderm 
embryos with the energids more stained than the ooplasm, 
as shown for mitoses 3, 8, and 9 in Fig. 9, B-D, respectively. 
The nuclear staining then became more visible during the 
syncytial blastoderm stages when the nuclei are aligned un- 
der the cortical surface and are thus more accessible to op- 
tical examination (Fig. 9, D-/). Additional changes in 
0H031 distribution can also be noticed during the syncy- 
tial blastoderm. The staining appears graded from poste- 
rior to anterior, with almost no staining at the anterior end 
and the strongest staining at the posterior end of the em- 
bryo, where it forms a cap underlying the pole cells. How- 

ever, the pole cells are themselves devoid of OH031 pro- 
teins despite the relatively high abundance oho31 mRNA 
present in these cells, as shown in Fig. 5. In these cells, inhi- 
bition of the translation of oho31 mRNA may result from 
the presence of a nanos-responsive element at the 3' end of 
the mRNA (Wharton and Struhl, 1991; Dalby and Glover, 
1992). During gastrulation and germ band extension, the 
0H031 protein was essentially present in the ventral ecto- 
dermal neurogenic region, as shown in Fig. 9 J, and in the 
ventral chord (data not shown) and was diffusely distrib- 
uted in the cytoplasm of these tissues. 

OH031 Protein Accumulates in the Nucleus at the 
Onset of  Mitosis 

To study the mitotic behavior of the 0H031  protein dur- 
ing the cell cycle, we further stained whole-mount prepa- 
rations of early wild-type embryos with propidium iodide 
to visualize DNA and FITC-conjugated antibodies to visu- 
alize the OH031 protein and examined the embryos with 
a confocal laser scanning microscope. 

As shown in Fig. 10, the intensity of the nuclear staining 
for the OH031 protein varied during the cell cycle, with 
maximal staining occurring at the onset of mitosis during 
prophase. Then the nuclear staining regressed dramati- 
cally with the progression of mitosis. In anaphase, the level 
of nuclear staining was comparable to that of the cyto- 
plasm. At the end of mitosis, the level of nuclear staining 
increased moderately and then remained constant during 
interphase up to the onset of the next mitosis. 

Although the level of nuclear staining for 0H031 in- 
creased with chromatid condensation, 011031 remained 
apparently free from a direct association with the chromo- 
somes, as indicated by the pattern of nuclear staining for 
0H031,  which is complementary to the pattern of DNA 
staining. In addition, the OH031 protein was not concen- 
trated at the nuclear periphery, as can be seen for nuclear 
envelope proteins, such as lamins (Fuchs et al., 1983; 
Smith and Fisher, 1984; Frasch et al., 1988; data not 
shown). 

The strong regression of nuclear staining for OH031 
during anaphase and telophase, resulting in a faint shadow 
over the condensed chromosomes and the equatorial 
plate, suggests that the 0H031 protein is either degraded 
in the nucleus during metaphase, redistributed in the cyto- 
plasm as the nuclear membrane is ruptured, or inaccessi- 
ble to the antibodies. However, the rate of disappearance 
of anti-OH031 staining during the 13 nuclear divisions 
taking place during early embryogenesis appeared to in- 
crease with the cumulative number of mitoses, indicating 
that the degradation of 011031 may be an active nuclear 
process. 

Discussion 

We have identified a component involved in the regula- 
tion of cell proliferation by cloning the oho31 gene, whose 
inactivation in Drosophila leads to the malignant transfor- 
mation of the hematopoietic organs and the genital disc. 
Our analysis of the distribution of the OH031 protein in 
wild-type embryos revealed that the intracellular localiza- 
tion of this protein changes dramatically during the cell cy- 
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cle. During the first 13 mitotic cycles that occur synchro- 
nously in a shared cytoplasm, we found that the OH031 
protein is basically localized in the cytoplasm but accumu- 
lates transiently in the nucleus at the beginning of mitosis, 
a key transition point of the cell cycle. The relocalization 
of OH031 in the nucleus indicates that this protein may 
play a direct role in the regulation of cell division, al- 
though the exact nature of this mechanism remains to be 
determined. Taking into account the recent finding that 
the Importin protein of Xenopus acts as a carrier for the 
import of karyophific proteins into the nucleus (G/Srlich et 
al., 1994), we propose that the OH031 protein, which is 
closely related to Irnportin, exhibits a similar function. 
Thus the oho31 gene encodes the first example of a tumor 
suppressor involved in nuclear protein import. 

Tumors Arise f rom Inactivation o f  the oho31 Gene 

The most dramatic effect resulting from the inactivation of 
the oho31 gene in Drosophila is certainly the overgrowth 
of a series of imaginal organs. Our molecular analysis 
shows that both the strong hypomorphic mutation induced 
by the P element insertion in the promoter region of the 
oho31 gene and the two amorphic mutations caused by the 
imprecise excision of this P element give rise to lethal lar- 
vae displaying an identical phenotype. Based on this crite- 
rion, the oho31 gene can be classified as a true tumor sup- 
pressor gene. 

Inactivation of the oho31 gene gives rise to a pleiotropic 
pattern of tissue overgrowth ranging from a moderate hy- 
perplasia of the imaginal rings of the salivary glands, 
whose size increases but whose structure remains appar- 
ently normal, to malignant neoplasia of the hematopoietic 
organs and the genital disc. These two tissues expand mas- 
sively and, after transplantation into adult hosts, can grow 
autonomously. However, the low rate of growth of the im- 
plants suggests that the malignant potential of the tumor- 
ous oho31 cells may revert during the growth of these 
cells. In particular, we found that the hemocytic tumors 
and the successfully growing implants derived from them 
consist of well-differentiated hemocytes. We can thus infer 
that the uncontrolled growth of the hemocytes in oho31- 
mutant animals is a temporary phenomenon occurring at 
an early stage of their differentiation. Successful trans- 
plantation may occur when the implant contains cells at a 
defined, presumably earlier, phase of their differentiation. 
Since we have transplanted cells from relatively large tu- 
morous masses found in old surviving larvae, it is possible 
that the majority of the cells were already too advanced in 
their differentiation to form secondary tumors. Together, 
these data suggest that oho31 inactivation may extend the 

period of cell proliferation in a series of organs bydelaying 
the progression of normal cell differentiation. 

Structural Similarities among OHO3 I-l ike Proteins 

The OH031 protein displays strong structural similarity to 
a family of four proteins including the Importin protein of 
Xenopus, a cytosolic factor in nuclear import (GSrlich et 
al., 1994), the yeast nucleopore complex-associated SRP1 
protein (Yano et al., 1992), as well as the mammalian 
hSRP1 (and mSRP1) (Cortes et al., 1994) and RCH-1 pro- 
teins (Cuomo et al., 1994). The finding that the two mam- 
malian proteins are as distantly related to each other as 
they are divergent from their yeast, insect, and amphibian 
homologues indicates that OH031 is a member of a larger 
family of proteins with related function. This also suggests 
that the yeast and vertebrate relative closest to OH031 
may need yet to be identified. Moreover, on the basis of 
the divergence between the members of the family of 
OH031 proteins, it would not be surprising that further 
homologues may exist in the genome of Drosophila. The 
identification of such homologues and the study of their 
spatio-temporal expression and coordination may provide 
further clues on the function of OHO31-1ike proteins. 

The most conserved region among the OHO31-1ike pro- 
teins is the central domain made of eight degenerate re- 
peats displaying significant homologies with the arm motif 
(Riggleman et al., 1989) ascertained in a number of other 
proteins (Peifer et al., 1994). In addition to the members of 
the OHO31-1ike proteins, arm motifs were found in arma- 
dillo's mammalian homologues, the adhesive junction pro- 
teins [3-catenin (McCrea et al., 1991) and plakoglobin 
(Franke et al., 1989), p120, a protein-tyrosine kinase sub- 
strate present in cell--cell junctions (Reynolds et al., 1992), 
and smsGDS, an exchange factor for Ras-related G pro- 
teins (Kikuchi et al., 1992). Furthermore, the arm motif 
was also identified in the human tumor suppressor ade- 
nomatous polyposis coli (Kinzler et al., 1991; Groden et 
al., 1991). 

Recent findings indicate the arm domains may be the 
site of interaction with other proteins. Genetic evidence 
indicates that the arm repeats of the yeast SRP1 protein is 
the site of interaction with the zinc finger domain of the 
two subunits A190 and A135 of RNA polymerase I, since 
the SRP1 arm repeats contain the mutation suppressing 
the RNA polymerase I temperature-sensitive mutations 
(Yano et al., 1992). Deletion mapping of hSRP1 and 
RAG-1 interacting domains using the yeast two-hybrid 
system showed that a region containing at least four arm 
repeats in hSRP1 is required for interaction with RAG-1 
(Cortes et al., 1994). Further genetic and immunological 

Figure 9. Localization of the OH031 protein during Drosophila embryogenesis. All embryos are oriented anterior to left and ventral 
side down. OH031 proteins were localized by a color reaction after staining with affinity-purified anti-OH031 antibodies. (.4) A pre- 
blastoderm embryo at mitosis 3 showing a high and uniform distribution of OH031, but (B) displaying a more intense staining in the 
four nuclei located in the center of the embryo as examined under a stronger illumination and a reduced field. Preblastoderm embryos 
at mitosis 8 (C) and 9 (D) showing accumulation of OH031 protein in the nuclei. (E) A syncytial blastoderm embryo during interphase 
of cell cycle 10 showing a diffuse and uniform distribution of OH031 protein in the periplasm. (F) A syncytial blastoderm embryo at mi- 
tosis 10. A syncytial blastoderm embryo at mitosis 11 with the plane of focus at the surface (G) or the center (H) of the embryo. (/) An 
embryo at mitosis 12. Insets in both H and I display enlargements of the cortical periplasm where OH031 protein accumulates in the 
mitotic nuclei. (J) Gastrulating embryo showing accumulation of OH031 protein in the cells of the ventral ectodermal neurogenic re- 
gion. Embryos stained with secondary antibodies alone showed no staining (data not shown). 
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Figure 10. Behavior of the OH031 pro- 
tein during early embryonic mitoses. 
Wild-type embryos were double stained 
for DNA (A, C, E, G, I, and K) with pro- 
pidium iodide and for OH031 proteins 
(B, D, F, H, J, and L) with anti-OH031 
antibodies and FITC-conjugated second- 
ary antibodies as described in Materials 
and Methods. Confocal images from em- 
bryos at interphase of nuclear cycle 10 (A 
and B), late interphase of nuclear cycle 11 
(C and D), prophase of nuclear cycle 11 
(E and/9, metaphase of nuclear cycle 12 
(G and H), anaphase of nuclear cycle 10 (I 
and J), and telophase of nuclear cycle 10 
(K and L) showing the transitory nuclear 
accumulation of OH031 during prophase. 
Control embryos stained only with the 
FITC-conjugated secondary antibodies 
showed no staining above background 
level Bar: 10 ~m. 

studies revealed that the binding of SRP1 to nucleopore 
complex proteins NUP1 and NUP2 is mediated through 
the central repetitive domain of these proteins (Belanger 
et al., 1994). These results suggest that SRP1 and its mam- 
malian homologues bind nuclear proteins (Yano et al., 
1992; Cuomo et al., 1994; Belanger et al., 1994; Cortes et 
al., 1994), in a similar way as the junctional proteins con- 
taining arm repeats may link cytoskeletal elements at in- 
tercellular junctions by mediating strong protein-protein 
interaction (for review see Kemler, 1993; Peifer et al., 
1994). 

Although the NH2- and COOH-terminal domains of the 
OHO31-1ike proteins are less conserved, we noticed a seg- 
ment of 24 amino acids RRRR(x)7RKxKK(x)sK1RR con- 
taining 11 basic residues, of which 10 (bold letters) are 
conserved. In 0 H 0 3 1 ,  the row of four arginines present 
in this motif is disrupted by the replacement of a me- 
thionine residue at amino acid position 25 (Ii24MRR- 
HEVTIELRKSKKEDQMFKRR47).  The NH2-terminal 
moiety of this motif is reminiscent of the bipartite nuclear 
localizing sequence KR(x)10KKKK identified in nucleo- 
plasmin (Dingwall et al., 1988) and other nuclear proteins, 
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such as the glucocorticoid and estrogen receptors (Picard 
and Yamamoto, 1987; Picard et al., 1990; Robbins et al., 
1991). The presence of such a basic motif is intriguing be- 
cause a recent model proposes that Importin and a rat pro- 
tein homologous to hSRP1 may act as cytosolic receptors 
for nuclear localizing sequence--containing proteins (Pow- 
ers and Forbes, 1994). Thus, it would be interesting to de- 
termine whether the basic motif conserved in the NHz-ter- 
minal region of the OHO31-1ike proteins may play a direct 
role in their nuclear import. 

Nuclear Import of  0H031  

The OHO31-1ike proteins appear to fulfill analogous func- 
tions in nucleocytoplasmic exchanges of a variety of mac- 
romolecules such as proteins, RNPs, and so on. The recent 
description and cloning of the Importin protein of Xeno- 
pus shed new light on the role of these proteins as cyto- 
solic factors involved in nuclear protein import. Purified 
Importin was shown to elicit binding of karyophylic pro- 
teins to the nuclear envelope of permeabilized cells and to 
mediate nuclear translocation of such proteins in conjunc- 
tion with Ran/TC4 and an energy-regenerating system 
(G0rlich et al., 1994). 

The yeast srpl gene was originally identified as a sup- 
pressor of temperature-sensitive mutations of RNA poly- 
merase I and characterized as an essential gene for cell vi- 
ability (Yano et al., 1992). Inactivation of the srpl gene in 
Saccharomyces cerevisiae results in arrest of transcription, 
breakup of the nucleolus, and defects in both nuclear divi- 
sion and segregation. Immunobiochemical analyses showed 
that the SRP1 protein can be physically and functionally 
associated with the nuclear pore complex (Yano et al., 
1992, 1994; Belanger et al., 1994). In particular, the SRP1 
protein was found to colocalize with the nucleoporin Nupl 
in immunofluorescence microscopy (Yano et al., 1992), to 
interact with NuP1 in a two-hybrid system, and to coim- 
munoprecipitate with nucleoporins Nupl or Nup2 (Be- 
langer et al., 1994). Moreover, the srpl gene was shown to 
interact genetically with the nupl (Belanger et al., 1994) 
and nup2 genes (Yano et al., 1994). Furthermore, the 
SRP1 protein was also recovered in a soluble fraction, in- 
dicating that SRP1 is also dispersed in the cytoplasm 
(Yano et al., 1992; Belanger et al., 1994). The presence of 
SRP1 in both the cytoplasm and nucleus and the pleiotro- 
pic phenotypes of mutations in srpl support the contention 
that SRP1 may play a role in nucleocytoplasmic transport 
similar to that of Irnportin. By analogy, the specific inter- 
action of both hSRP1 and RCH-1 with RAG1 (Cuomo et 
al., 1994; Cortes et al., 1994), which appears to be localized 
at the nuclear periphery and contains a karyophilic se- 
quence, suggests that the two mammalian homologues 
may also participate in nucleocytoplasmic transport. 

Although the exact function of the 0H031 protein re- 
mains to be elucidated, it is possible to infer from our re- 
sults that 0H031 is also involved in nucleocytoplasmic 
transport. We can show that 0H031 accumulates in the 
nucleus during prophase when the nuclear membrane is 
apparently still intact. Since, in syncytial Drosophila em- 
bryos, the nuclear envelope is only partially ruptured at 
the poles at the beginning of metaphase (Stafstrom and 
Staehelin, 1984; Harel et al., 1989; Foe et al., 1993), the nu- 
clear accumulation of 0H031 during prophase may re- 

flect an active transport process requiring intact nuclear 
pores. 

The rapid disappearance of 0H031 from the nucleus 
during metaphase either reflects a passive dispersion of 
this protein in the cytoplasm resulting from the rupture of 
the nuclear envelope or is indicative of a rapid degrada- 
tion taking place in the nucleus. For two reasons, we favor 
the latter hypothesis. First, we noted that the rate of 
OH031 decay follows the cumulative number of mitoses 
occurring during the first 13 nuclear divisions, and second, 
we consistently detected a higher concentration of 0H031 
in the cytoplasm than in the nucleus of embryonic cells af- 
ter cell cycle 14 and larval cells expressing 0H031 at all 
stages of their cell cycle (data not shown). 

The nuclear accumulation of 0H031 that we observe at 
prophase in syncytial embryos may reflect the rapid im- 
port of proteins required for driving the mitoses, which oc- 
cur at relatively short intervals in the syncytial blastoderm. 
This accumulation is consistent with the availability of 
large maternal stockpiles of both 0H031 proteins and 
karyophylic proteins present in the egg, which can be 
readily recruited into the nucleus at the onset of mitosis. 
By contrast, no striking nuclear accumulation of 0H031 
could be noticed at prophase of mitoses occurring during 
larval development (data not shown). The apparent low 
nuclear level of 0H031 during later development may re- 
flect the balance between the availability of 0H031 and/ 
or its rate of decay. A comparatively long prophase in 
imaginal tissues relative to the syncytial blastoderm may 
prevent any detectable nuclear accumulation of 0H031.  

Although inactivation of the oho31 gene causes growth 
inhibition in the ovaries and the developing wing imaginal 
discs, as revealed by mitotic recombination experiments 
(data not shown; Garcia-Bellido, A., and F. Cifuentes, per- 
sonal communication), the absence of the same gene prod- 
uct in the hematopoietic organs and in the genital disc 
causes extensive cell proliferation and tumor formation. 
Thus, the absence of 0H031 protein exerts opposite ef- 
fects at the cellular level, causing either cell proliferation 
or arrest of cell growth. This difference may depend on the 
pattern of tissue differentiation. If the primary role of 
0H031 is to act as a cytosolic factor in nuclear transport, 
then we would predict that the absence of this protein 
would alter the cell cycle, but not necessarily prevent its 
completion, since alternative pathways may be used for 
nuclear protein import. Consequently, the duration of the 
cell cycle would be prolonged, and its extension may either 
delay or block terminal differentiation. For numerous cell 
types, a delay in the progression of differentiation would 
lead to growth arrest or be lethal, whereas for some other 
tissues, such as the hematopoietic organs, alteration in the 
progression of the cell cycle would cause continuous pro- 
liferation. Interestingly, we observe that, in aged tumors, 
the hemocytes become morphologically differentiated and 
have therefore lost their malignancy. 
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Note added in proof. Using a different approach P. Kussel and M. Frasch 
(Mount Sinai School of Medicine, New York) have independently iso- 
lated a sequence corresponding to oho31 and encoding a protein desig- 
nated as Pendulin (Kussel and Frasch. 1995. J. Cell Biol. 129:1491-1507). 
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