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Brain metastases are the most common intracranial neoplasm and are seen in upwards of
10-30% of patients with cancer. For decades, whole brain radiation therapy (WBRT) was
the mainstay of treatment in these patients. While WBRT is associated with excellent rates
of intracranial tumor control, studies have demonstrated a lack of survival benefit, and
WBRT is associated with higher rates of cognitive deterioration and detrimental effects on
quality of life. In recent years, strategies to mitigate this risk, such as the incorporation of
memantine and hippocampal avoidance have been employed with improved results.
Furthermore, stereotactic radiosurgery (SRS) has emerged as an appealing treatment
option over the last decade in the management of brain metastases and is associated with
superior cognitive preservation and quality of life when compared to WBRT. This review
article evaluates the pathogenesis and impact of cranial irradiation on cognition in patients
with brain metastases, as well as current and future risk mitigation techniques.

Keywords: brain metastases, cognition, radiation therapy, radiosurgery, whole brain radiation therapy,
neurosurgery, neuro-oncology, radiation oncology
INTRODUCTION

Current estimates indicate that roughly 200,000 patients are diagnosed with brain metastases
annually in the United States, and 10-30% of patients with cancer receive a diagnosis of brain
metastases during their disease course (1–4). These estimates may be conservative, as the true
incidence is likely higher, due to a multitude of factors, such as undiagnosed brain metastasis
identified on autopsy and underreporting with national registries (e.g. The National Cancer
Database and Surveillance, Epidemiology, and End Results) (5, 6). Historically, patient prognosis
was poor with a median overall survival of 3-4 months in patients who did not undergo surgical
intervention (7). However, advancements in systemic therapy, surgery, and radiation therapy have
resulted in survival advantages across multiple malignancies, thus less common and aggressive
histologies are increasingly metastasizing to the brain (e.g., gastrointestinal primary cancers) (1, 8–
13). Additionally, the widespread availability of MRI imaging has enhanced detection of
subclinical disease.
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Whole-brain radiation therapy (WBRT) is a treatment modality
that has been used since the 1950s for patients with brain metastases
(14). It is commonly delivered to a total dose of 30 Gy over 10
sessions. Clinicians traditionally favoredWBRT due to its efficacy in
providing palliation and ability to target unknown microscopic
intracranial disease. WBRT has been shown to result in improved
intracranial tumor control in multiple randomized trials; however,
WBRT has also been shown to result in significant cognitive decline,
which has been observed in up to 50% of patients following
treatment (15–20). These patients can present with one or
multiple cognitive domains affected, such as executive function,
learning and memory, processing speed, and verbal fluency. As the
prognosis in patients with brain metastases continues to improve,
treatment has increasingly focused on preservation of quality of life
(QOL) and cognitive function. Multiple studies have suggested that
there is a correlation between neurocognitive functioning and QOL
(21, 22). In recent years, the addition of memantine and
hippocampal avoidance to WBRT have demonstrated significant
preservation of cognitive sequelae and, in the setting of hippocampal
avoidance, better preservation of patient-reported QOL, and now
represent current standard of care in appropriately selected patients
(17, 23, 24).

Moreover, the efficacy of brain-directed radiotherapy in
providing adequate palliation has come under question in
recent years. In 2016, the QUARTZ trial, which randomized
538 patients with non-small cell lung cancer brain metastases
and poor prognosis, to dexamethasone with WBRT or
dexamethasone with supportive care alone was published (25).
This trial concluded that WBRT did not offer any benefit in QOL
or survival (median survival in both arms was approximately 2
months) over supportive care, thus calling into question the
efficacy of brain-directed radiotherapy in this setting. However,
while broad, indiscriminate use of WBRT has fallen out of favor,
it continues to be a commonly used modality in patients with a
high intracranial burden of brain metastases (26, 27).

Another important advancement in the treatment of brain
metastases is stereotactic radiosurgery (SRS), which is defined as
the delivery of a high dose of very conformal radiation in 1-5
fractions with marked sparing of nearby healthy tissues (28). SRS
has been shown to result in fewer cognitive side effects than
conventional WBRT (15, 16, 18). However, WBRT has been
shown to provide superior rates of intracranial control, especially
by decreasing the risk of development of new brain metastases,
when compared to SRS (15, 16, 18, 29). As a result, there is some
controversy regarding the use of SRS in patients with large
numbers of brain metastases (30, 31). Multiple studies have
reported a lower risk of cognitive decline with SRS than
conventional WBRT; studies comparing SRS to contemporary
WBRT with neuroprotective strategies, such as memantine and
hippocampal avoidance remain ongoing (32, 33).

In this article, we review the pathogenesis, diagnosis, and
evaluation of cognitive decline following cranial irradiation.
Additionally, we review the role of SRS, hippocampal avoidance,
and memantine as risk mitigation strategies in patients
undergoing cranial irradiation for brain metastases.
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PATHOGENESIS OF COGNITIVE DECLINE
FOLLOWING RADIATION THERAPY

Despite evidence showing that radiation causes cognitive
impairment, the pathophysiological understanding of this
common clinical scenario is poorly understood. The cause is
believed to be multifactorial with changes in brain vasculature,
stem-cell depletion, and changes to the brain’s microenvironment
all being implicated. While damage to the hippocampus has been
implicated in cognitive decline following cranial irradiation, recent
evidence suggests that damage to white matter and other cortical
territories, such as the frontal cortex also play a significant role
(34–37).

Cerebrovascular Damage
Vascular pathology has been associated with many
neurodegenerative diseases. It is hypothesized that one of the
contributing mechanisms to Alzheimer’s Disease is the
weakening of blood vessels due to the accumulation of
amyloid-beta plaques in vessel walls (38). Similarly, radiation
therapy can cause damage to vascular endothelial cells (39–41).
In a rodent model, 10 weeks following completion of cranial
irradiation to 40 Gy (5 Gy twice weekly over 4 weeks) notable
changes were observed in blood vessel length and density (42).
These findings suggest that ionizing radiation has the potential to
cause persistent vascular damage which is frequently observed in
neurocognitive diseases.

Radiation therapy can also cause blood brain barrier disruption
with resultant edema (43). This can lead to abnormalities in the
brain’s microenvironment and microvasculature, which have been
implicated in the pathogenesis of cognitive decline (43–45). This
process is largely due to apoptosis in response to increased
ceramide production (46). Studies have demonstrated that
radiation doses as low as 5 Gy result in the production of
ceramides (46–48). Additionally, experiments using murine
models have demonstrated that ionizing radiation can lead to
cerebrovascular damage within in the hippocampus, which
persists following completion of treatment (49, 50). These
findings suggest that ionizing radiation can lead to permanent
dysfunction of angiogenesis in the hippocampus, which is the
primary brain region responsible for learning and memory.

Neuroanatomical Changes
Alterations in neuronal morphology and structure has been
linked to both neurological and psychiatric disorders as well as
to normal aging (51). The morphology of neuronal dendritic
spines, which serve as the site of synaptic transmission, are
believed to play a role in neuropsychiatric disorders, as well as
cognition (52, 53). Dendritic spines also contain N-methyl-D-
aspartate (NMDA) glutamate receptors, which allow for
calcium influx into cells, and play a major role in learning
and memory. Thus, dendritic spine morphologies with greater
surface area contain a higher concentration of NMDA
receptors, resulting in greater synaptic strength (54, 55).
Multiple studies have demonstrated that dendritic spine and
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neuronal architecture play an integral role in normal aging, as
well as multiple neurologic diseases and developmental
disorders (56–60).

Several studies have demonstrated that ionizing radiation
alters dendritic spine density and morphology, as well as
neuronal architecture (61–63). In 2013, a study by Parihar et al.
utilizing a murine model demonstrated significant reductions in
dendritic spine complexity (>50%), frequency (20-35%), and
density (40-70%) on hippocampal neurons of the dentate gyrus
in response to cranial irradiation in a dose-dependent manner
(63). In 2018, a study by Duman et al. using a murine model
demonstrated that the administration of memantine prior to
cranial irradiation can prevent radiation-induced synaptic
remodeling (64). Taken together, these findings suggest that
ionizing radiation can alter neuronal anatomy and NMDA
receptor density, both of which are associated with cognitive
decline. Additionally, memantine may play a protective role in
this setting.

Impairment of Neurogenesis
The anatomical components of the hippocampus include the
dentate gyrus, CA3, and CA1 regions, and the subventricular
zone. The subgranular zone of the dentate gyrus is the site of
hippocampal neurogenesis (65, 66). This process is an integral
component of cognition and memory (67, 68). In 2013, a study
by Boström et al. demonstrated that the delivery of 8 Gy to the
brain of young mice resulted in decreased density of neural stem
and progenitor cells, while the vasculature normalized over time
(69). These findings suggest that ionizing radiation leads to
decreased hippocampal neurogenesis. While the exact
mechanism of neural stem cell death is not fully understood, it
has been hypothesized that it occurs via apoptosis due to JNK
pathway activation (70).

Neuroinflammation
Cranial irradiation activates astrocytes and microglia leading to
neuroinflammation and reactive gliosis (71). Upregulation of pro-
inflammatory chemokines, including CCL2, IL-6, IL-18, IL-1a,
TNF-a; reactive oxygen species; and nitric oxide, in response to
cranial irradiation play a major role in activation of these CNS cell
types (72–74). Additionally, microglia, which normally aid in
neuroprotection and synapse integrity, will release neurotoxic
factor which induces neuronal cell death and contributes to
cerebral edema (75, 76). Increased TNF-a activity has been
shown to lead to blood brain barrier breakdown and immune cell
activation (77). In 2012, a study by Belarbi et al. demonstrated that
anti-TNF-a agents were able to restore neuronal function and
reverse cognitive deficits due to chronic neuroinflammation in
rats (73). A subsequent study demonstrated that inhibition of
microglia mediated neuroinflammation in response to cranial
irradiation in mice results in improved cognitive function (78).
These findings suggest that neuroinflammation in response to
cranial irradiation plays a key role in the pathogenesis of
cognitive decline following treatment.
Frontiers in Oncology | www.frontiersin.org 3
PATIENT PRESENTATION

It is important to note that patients with brain metastases typically
have cognitive impairment at baseline before radiotherapy: a phase
3 trial with prospective cognitive testing found greater than 90% of
patients had impairment on one of more cognitive tests at baseline
(20). Following completion of radiotherapy, patients can present
with cognitive decline as early as 1- to 6-months following
treatment. Symptom presentation during this time window is
potentially reversible and is believed to be due to transient
demyelination (43). Patients who present at 6-months or later
generally have irreversible cognitive dysfunction with multiple
affected cognitive domains. These patients frequently present with
deficits in attention, information processing, executive function,
and learning and memory. Multiple radiographic findings, such as
white matter abnormalities and changes in fractional anisotropy
on diffusion tensor MRI have shown an association with cognitive
decline (79–91). Consultation with neuropsychologists can be very
helpful in quantifying and trending cognitive changes.
Additionally, it is essential for clinicians to rule out other
possible causes, such as dementia, delirium, metabolic and
endocrinologic disturbances, and disease progression.
NEUROCOGNITIVE ASSESSMENT

The diagnosis of neurocognitive decline following cranial
irradiation requires neuropsychological assessment. Earlier
clinical trials utilized the screening test, the Mini-Mental Status
Exam (MMSE); however, its use in this setting has fallen out of
favor due to its limited sensitivity in diagnosing cognitive
impairment (92). More commonly, clinical trials now employ
neuropsychological testing that assesses multiple cognitive
domains, such as executive function, learning and memory,
verbal fluency, and attention. Commonly utilized cognitive
assessments on randomized phase 3 clinical trials are presented
in Table 1.
TREATMENT STRATEGIES TO MITIGATE
THE RISK OF COGNITIVE DECLINE

Stereotactic Radiosurgery
The delivery of conventional WBRT typically involves the use of
two opposed lateral radiation fields resulting in the entire brain
receiving the prescription radiation dose, as shown in Figure 1A.
The ability to reduce dose to areas that play a central role in
neurocognition is an effective strategy to mitigate the risk of
cognitive decline following irradiation. Stereotactic radiosurgery
allows for the treatment of an intracranial target while largely
sparing healthy surrounding tissues and, for brain metastasis, has
demonstrated excellent rates of local tumor control and
improved neurocognition following treatment when compared
June 2022 | Volume 12 | Article 893264
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TABLE 1 | Phase 3 Studies Utilizing Stereotactic Radiosurgery or Memantine/Hippocampal Avoidance in Patients with Brain Metastases Incorporating
Neuropsychological Testing.

Study Treatment
Arms

Treatment Details Cognitive Domains/
Tests

Cognitive Outcomes

MDACC
(2009)
(18)

SRS +
WBRT
(n = 28)

SRS: Dose based on
tumor diameter as
per 90-05 (93)
• < 2 cm: 20 to 24

Gy
• 2-3 cm: 18 Gy
• 3-4 cm: 15 Gy

WBRT: 30 Gy in
12 fractions

Attention: WAIS-III Digit
Span
Processing speed: WAIS-
III Digit Symbol, TMT-A
Learning and memory:
HVLT-R
Verbal fluency: COWA
Executive function: TMT
Part B
Upper extremity fine
motor dexterity: Lafayette
Grooved Pegboard

Significant drop in HVLT-R Total Recall at 4 months (mean posterior probability of decline
of 52% for SRS + WBRT vs 24% in SRS alone group), which was persistent at 6 months
(28% vs 8%)
Significant drop in HVLT-R Delayed Recall for SRS + WBRT vs SRS alone (22% vs 6%)
and HVLT-R Delayed Recognition (11% vs 0%), respectively at 4 months
Significant drop in executive function (COWA, TMT B) in the SRS + WBRT group
compared to SRS alone group

SRS
(n = 30)

RTOG
0614
(2013)
(17)

WBRT +
Memantine
(n = 256)

WBRT: 37.5 Gy in 15
fractions
Memantine:
• Week 1: 5 mg

PO QD
• Week 2: 5 mg

PO BID
• Week 3: Morning

dose increased
to 10mg

• Target dose for
weeks 4 through
24: 10mg BID

Learning and Memory:
HVLT-R
Processing speed: TMT-
A
Executive function:
TMT-B
Verbal fluency: COWA
MMSE

Less decline in HVLT-R Delayed Recall in memantine arm but not statistically significant at
8 weeks (p = 0.069) and at 24 weeks (p = 0.059)
Less decline in HVLT-R Delayed Recall (raw and standardized scores; p = 0.0149,
p = 0.0115), MMSE (raw scores, p = 0.0093) at 24 weeks in memantine arm
Less decline in COWA (2 SD decline; p = 0.0015) at 8 weeks in memantine arm
Time to cognitive failure, defined as the first cognitive failure on any of the neurocognitive
tests, favored memantine arm (p = 0.01)
Rate of cognitive decline over time slowed by 4 months after WBRT in both arms, but
more so in memantine arm

WBRT
(n = 252)

N0574
(2016)
(16)

SRS +
WBRT
(n = 102)

SRS: 18-22 Gy
WBRT: 30 Gy in 12
fractions

Learning and immediate
memory: HVLT-R IR
Upper extremity fine
motor dexterity: Lafayette
Grooved Pegboard
Verbal fluency: COWA
Processing speed: TMT-
A
Executive function:
TMT-B

Less cognitive deterioration (defined as a decline of greater than 1 SD from baseline on at
least 1 of the 7 cognitive tests) at 3 months after SRS alone (63.5% vs. 91.7%;
p < 0.001)
Significant decline for HVLT-R Total Recall SRS + WBRT vs SRS alone (30.4% vs 8.2%;
p = 0.004), HVLT-R Delayed Recall (51.1% vs 19.7%; p < 0.001), and COWA (18.6% vs.
1.9%, p = 0.01), respectively

SRS
(n = 111)

SRS: 20-24 Gy

N107C
(2017)
(15)

Surgery +
SRS
(n = 98)

SRS: 12 to 20 Gy
(volume-based)
• < 4.2 cm3: 20

Gy
• 4.2-7.9 cm3: 18

Gy
• 8.0-14.3 cm3:

17 Gy
• 14.4-19.9 cm3:

15 Gy
• 20.0-29.9 cm3:

14 Gy
• ≥30.0 cm3 (up to

5 cm diameter):
12 Gy

Learning and immediate
memory: HVLT-R IR
Upper extremity fine
motor dexterity: Lafayette
Grooved Pegboard
Verbal fluency: COWA
Processing speed: TMT-
A
Executive function:
TMT-B

Median cognition-deterioration-free survival longer after SRS to surgical cavity than after
WBRT (3.7 vs 3.0 months; p < 0.0001)
At 6 months, patients in the SRS arm had less overall cognitive deterioration (52% vs
85%; p = 0.00031)

Surgery +
WBRT
(n = 96)

WBRT: 30 Gy in 10
fractions or 37.5 Gy
in 15 fractions

NRG
CC001
(2020)
(23)

HA-WBRT +
Memantine
(n = 261)

WBRT: 30 Gy in 10
fractions
Memantine: Same
dosing schedule as
RTOG 0614

Learning and memory:
HVLT-R
Verbal fluency: COWA
Processing speed: TMT-
A
Executive function:
TMT-B

Time to cognitive failure (defined as cognitive decline determined by reliable change index
on at least one of the cognitive tests) significantly lower in HA-WBRT + memantine arm
compared with WBRT + memantine arm (p = 0.03)
HA-WBRT + memantine arm less likely to have deterioration in TMT-B (p = 0.01), HVLT-R
Total Recall (p = 0.049) and HVLT-R Delayed Recognition (p = 0.02) at 6 months

WBRT +
Memantine
(n = 257)
Frontiers in
 Oncology | ww
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BID, twice daily; COWA, Controlled Oral Word Association; Gy, gray; HVLT-R, Hopkins Verbal Learning Test - Revised; LINAC, linear accelerator; MMSE, mini-mental state exam; PO, by
mouth; QD, once daily; SRS, stereotactic radiosurgery; TMT-A, Trail Making Test Part A; TMT-B, Trail Making Test Part B; WAIS-III, Wechsler Adult Intelligence Scale-Third Edition; WBRT,
whole-brain radiation therapy; HA-WBRT, hippocampal avoidance whole-brain radiation therapy.
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to conventional WBRT in the randomized setting (15, 16, 18)
(Figure 1B). The details of several of these trials are presented
in Table 1.

In 2009, Chang et al. published a randomized phase 3 trial
conducted at the MD Anderson Cancer Center (18). Patients
with 1-3 newly diagnosed brain metastases were randomly
assigned to receive SRS alone or SRS + conventional WBRT.
All patients underwent formal neuropsychological assessments.
With a median follow-up 9.5 months, the trial was closed early
due to a 95% probability that patients in the SRS + conventional
WBRT arm were more than twice as likely to experience learning
and memory deficits at 4 months versus the SRS alone arm. In
2016, Brown et al. published the results of a multicenter phase 3
trial conducted across 34 institutions in North America (16).
This study randomized 213 patients with 1-3 brain metastases to
receive SRS + conventional WBRT or SRS alone. With a median
follow-up of 7.2 months, the rate of cognitive deterioration at 3-
months was 63.5% versus 91.7% (p < 0.001), favoring the SRS
arm. Additionally, no difference in overall survival were
observed. Taken together, the findings of these trials suggest
that in patients with 1-3 brain metastases, the use of SRS alone
may be the preferred treatment strategy, as it minimizes
cognitive decline with no detriment to patient survival.

The impact of SRS and conventional WBRT on
neurocognition has also been evaluated in the adjuvant setting.
In 2017, Brown et al. published the results of the N107C trial,
which was a phase 3 study that randomized 194 patients across
48 North American institutions with a single resected brain
metastasis to receive adjuvant SRS or conventional WBRT (15).
Patients in the SRS arm experienced superior median cognitive-
deterioration-free survival compared to the conventional WBRT
arm (3.7 months vs. 3.0 months; p < 0.001). No survival
Frontiers in Oncology | www.frontiersin.org 5
difference was observed. Additionally, overall cognitive
deterioration was higher in the conventional WBRT arm (52%
vs. 85%; p = 0.00031). At 12-months, surgical bed control rates
were 60.5% vs. 80.6% (p = 0.00068), favoring the conventional
WBRT arm. This may be due to a large proportion of patients
(40% in each arm) having a resection cavity diameter > 3 cm.
These findings suggest that in the adjuvant setting, SRS results in
improved cognitive preservation as compared to conventional
WBRT. Furthermore, in the setting of larger surgical cavities or
larger intact metastases, fractionated radiosurgery may be a
viable alternative to maximizing local control while preserving
neurocognition (94–96).

While SRS has been associated with lower rates of cognitive
decline, multiple randomized controlled trials have demonstrated
that SRS alone is associated with inferior local and distant brain
control compared to therapeutic strategies incorporating WBRT
(15, 16, 18). On the N0574 trial, time to intracranial failure was
significantly shorter in the SRS compared to the SRS +
conventional WBRT arm [hazard ratio (HR): 3.6; 95%
confidence interval (CI): 2.2-5.9; p < 0.001]. Additionally, at 6
months, the local control rates were 81.6% versus 92.6%, favoring
the SRS + WBRT arm (p = 0.034). Distant brain control rates at 6
months were 76.7% versus 94.7%, favoring the SRS +
conventional WBRT arm (p < 0.001) (16). Similar findings were
observed in the adjuvant setting on the N107C trial, where the 6-
month surgical bed control was 80.4% versus 87.1%, favoring the
conventional WBRT arm (p < 0.001) (15). Distant brain control
rates at 6 months were 72.1% versus 94.6%, favoring the
conventional WBRT arm (p < 0.001). Thus, conventional
WBRT is associated with improved intracranial tumor control
compared to SRS, which is likely due to irradiation of
subclinical disease.
FIGURE 1 | (A) Whole Brain Radiation Therapy Treatment Plan. Treatment plan for a 65-year-old woman with metastatic non-small cell lung cancer. She had a large
burden of intracranial disease and was treated with WBRT to a dose of 30 Gy in 10 fractions. In WBRT, the entire brain including areas that play a major role in
neurocognition receive the prescription radiation dose. The patient received memantine during and after treatment based on dosing from RTOG 0614. (Gy, gray;
RTOG, radiation therapy oncology group; WBRT, whole brain radiation therapy). (B) Stereotactic Radiosurgery Treatment Plan. Treatment plan overlaid on simulation
CT scan for a 50-year-old man with a history of BRAF wild-type metastatic melanoma who developed a left occipital lobe metastasis. He was treated with single
fraction SRS to a dose of 20 Gy. (Gy, gray; SRS, stereotactic radiosurgery). (C) Whole Brain Radiation Therapy with Hippocampal Avoidance Treatment Plan.
Treatment plan for a 60-year-old woman with metastatic breast cancer who was treated with HA-WBRT and memantine to 30 Gy in 10 fractions. Areas in red
received the prescription dose, while areas in green and blue represent lower dose areas. Note the sparing of the bilateral hippocampi. (Gy, gray; HA-WBRT,
hippocampal avoidance whole brain radiation therapy).
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Memantine
Memantine is an antagonist of the NMDA receptor, which is a
voltage-gated glutamate receptor that allows calcium entry into cells.
It is presently FDA approved for use in moderate to severe
Alzheimer dementia. In 2013, Brown et al. published the results
of RTOG 0614, which was a phase 3 trial that randomized 508
patients with brain metastases to receive WBRT with or without the
addition of memantine (17). Memantine was administered over the
course of 24 weeks with the following dosing: (1) Week 1: 5 mg PO
in the morning; (2) Week 2: 5 mg PO in the morning and 5 mg
PO in the evening; (3) Week 3: 10 mg PO in the morning and 5 mg
PO in the evening; and (4) Weeks 4-24: 10 mg in the morning and
10mg in the evening. Patients completed formal neuropsychological
testing and MMSE at regular follow-up intervals. The primary
endpoint was whether memantine preserved cognitive function at
24 weeks measured by the Hopkins Verbal Learning Test – Revised
(HVLT-R) Delayed Recall. The median follow-up was 12.4 months.
At 24 weeks, there was less cognitive decline in the memantine arm
compared to placebo; however, this was not statistically significant
(p = 0.059). This was likely due to there only being 149 patients
analyzable at 24 weeks, lowering the statistical power to detect a
difference to 35%. Time to cognitive failure, which incorporated
multiple cognitive domains was statistically significant and favored
the memantine arm (HR: 0.784; 95% CI: 0.621-0.988; p = 0.01).
There were no statistically significant differences in grade 3-4
toxicities, progression-free survival, or overall survival between the
study arms.

While the primary endpoint was not statistically significant,
these results need to be interpreted in a modern context. First,
these patients were treated between 2008-2010, this was prior to
the advent of immune checkpoint inhibitors, which have
markedly improved survival in multiple advanced malignancies
(97–101). As a result, patients treated today would be more likely
to live longer and would therefore be able to complete follow-up
cognitive assessments. Second, the dominant benefit in time to
cognitive failure was not apparent until approximately 3 months
after completing WBRT. Therefore, patients with shorter follow-
up times likely had poorer baseline prognostic factors and
experienced early disease progression. This suggests that
memantine is likely more beneficial in patients with a better
prognosis and life expectancy. Third, the primary endpoint only
accounted for cognitive decline as measured by a decrease in
delayed recall on the HVLT-R Delayed Recall. Therefore, time to
cognitive failure, which was a composite endpoint that accounted
for multiple cognitive domains is likely more clinically
meaningful and did show a significant benefit with the
addition of memantine to WBRT. Taken together, the findings
of RTOG 0614 suggest that memantine has the potential to
reduce cognitive decline in patients undergoing WBRT without
an increased risk of toxicity and is therefore considered standard
of care in patients receiving WBRT.

When prescribing memantine, clinicians should discuss
the potential side effects, such as headache, confusion,
dizziness, nausea, and agitation. Additionally, caution should
be exercised when patients have a history of liver and
renal impairment.
Frontiers in Oncology | www.frontiersin.org 6
Hippocampal Avoidance

Due to the role the hippocampus plays in learning and memory,
there has been a great deal of interest in sparing this region of the
brain during WBRT (23, 24, 102). In 2014, Gondi et al. published
the results of RTOG 0933, which was a phase 2 multi-institutional
study where patients with brain metastases outside a 5 mm margin
around the hippocampi received WBRT with hippocampal
avoidance to a dose of 30 Gy in 10 fractions (Figure 1C) (24).
There were 100 patients enrolled and all underwent formal
neuropsychological testing. Enrolled patients were compared to
the control arm of PCI-P-120-9801, which was a phase 3 study
utilizing WBRT with identical eligibility criteria to RTOG 0933
(103). At 4 months, the mean relative decline in the modified
HVLT-R Delayed Recall compared to baseline was 7%, which was
significantly improved from the historical control (p < 0.001). In
addition, cognitive results were comparable to what had been
observed in prior studies of SRS (18). Similar to the findings of
RTOG 0614, the benefits in cognitive preservation were seen in
patients who were able to complete neuropsychological testing at 4
months. Thus, hippocampal avoidance is likely more beneficial in
patients with a better baseline prognosis and life expectancy.

In 2020, Brown et al. published the results of NRGCC001, which
was a phase 3 trial where patients with brain metastases were
randomized to: (1) hippocampal avoidance WBRT with
memantine; or (2) WBRT with memantine (23). There were 518
patients enrolled with a median follow-up of 7.9 months. All
patients completed neuropsychological testing at regular intervals.
The primary endpoint was time to cognitive failure, as shown in
Table 1. The risk of cognitive failure favored the hippocampal
avoidance arm (HR: 0.76; 95% CI: 0.60-0.98; p = 0.03). Additionally,
at 6-months patients in the hippocampal avoidance arm had less
memory complaints (p = 0.01), fewer cognitive symptoms (p = 0.01),
and less symptom interference (p = 0.008). At 6-months,
approximately 80% of patients in each arm died. This suggests
that patients with a better baseline prognosis and life expectancy are
likely to benefit the most from hippocampal avoidance. However,
not all patients with brain metastases were eligible for inclusion on
NRG CC001, such as patients with ventricular system distortion or
hydrocephalus, the presence of leptomeningeal disease, and brain
metastases arising from primary germ cell tumors, small cell
carcinoma, an unknown primary or lymphoma. In 2021, a phase
2 randomized trial conducted in China compared WBRT with or
without the use of hippocampal avoidance in patients with brain
metastases (104). This trial demonstrated that hippocampal
avoidance as associated with better memory preservation at 6-
months compared to conventional WBRT.

Taken together, these trials suggest that in patients undergoing
WBRT, the use of memantine and hippocampal avoidance reduces
the risk of cognitive decline following WBRT. Additionally, these
benefits are the most apparent in patients with a better baseline
prognosis and life expectancy. However, not all patients are eligible
for hippocampal avoidance, as no metastases are permitted within
5 mm of the bilateral hippocampi. Furthermore, hippocampal
avoidance requires the use of advanced planning methods, such
as intensity modulated radiation therapy and volumetric
June 2022 | Volume 12 | Article 893264
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modulated arc therapy. Similarly, SRS requires specialized planning
techniques, as well as specialized radiosurgery platforms to deliver
treatment. Therefore, not all centers may have the necessary
technical capabilities to deliver these treatments, particularly in
underserved areas.
FUTURE DIRECTIONS

Preserving neurocognition in patients undergoing cranial
irradiation continues to be a major area of research focus. In
patients with small cell lung cancer (SCLC), prophylactic cranial
irradiation (PCI) is frequently administered to a dose of 25 Gy in
10 fractions in patients with no detectable brain metastases (105–
107). PCI was historically administered using conventional
WBRT techniques; however, recent studies have assessed
incorporating hippocampal avoidance in this setting. In 2021,
the PREMER study was published, which randomized 150
patients with SCLC to standard or hippocampal avoidance PCI
across 13 institutions in Spain (108). At 3-months the
investigators observed that the decline in memory favored the
hippocampal avoidance arm (5.8% vs. 23.5%; p = 0.003).
However, in 2021, a phase 3 trial conducted in the Netherlands
did not observe a lower probability of cognitive decline in the
hippocampal avoidance PCI arm (109). The NRG CC003 trial is
presently investigating this hypothesis in North America and will
be completing accrual later this year (110).

While there is strong evidence supporting the role of SRS in
the management of limited numbers of brain metastases (15, 16,
18), the use of SRS remains controversial in the management of
larger numbers of lesions. In 2020, a study by Rinna et al.
observed that in patients undergoing Gamma Knife ® SRS that
10 or more metastases, and metastases in close proximity to the
hippocampi were at an increased risk for excessive hippocampal
dosing (111). In 2021, a study published by Burgess et al.
evaluating 60 SRS plans with a median distance to the
hippocampus of 2.4 cm observed that patients can undergo
replanning to decrease the hippocampal dose by > 50%
without compromising target coverage (112). Taken together,
these findings suggest that limiting dose to the hippocampus
Frontiers in Oncology | www.frontiersin.org 7
during SRS may further decrease the risk of cognitive decline in
these patients.

CCTG CE.7 is an ongoing phase 3 trial that is randomizing
patients with 5-15 brain metastases to SRS or WBRT with the
addition of memantine and hippocampal avoidance (33). There is
ongoing prospective investigation into the role that regions outside
of the hippocampus play in cognitive decline following cranial
irradiation (113). There is presently a trial underway at Johns
Hopkins University investigating neurocognitive functioning with
sparing of the genu of the corpus callosum duringWBRT for brain
metastases (114). Another study underway at the University of
California San Diego is investigating sparing of white matter tracts
during SRS for brain metastases (115).

In recent years, brain metastasis velocity, which describes the
recurrence rate of new brain metastases following treatment with
SRS had become a validated prognostic metric (116). NRG
BN009 is a phase 3 trial comparing salvage SRS to SRS with
hippocampal avoidance WBRT with the addition of memantine
in patients with a first or second distant relapse following upfront
SRS and a brain metastasis velocity of 4 or higher (32).
CONCLUSION

Cognitive decline is a common clinical manifestation observed in
patients who undergo WBRT for brain metastases. Strategies,
such as SRS and the addition of memantine and/or hippocampal
avoidance to WBRT are excellent treatment options to mitigate
this risk. Studies are underway that will allow for further
application of these treatments, as well as defining the role that
other brain regions play in the pathogenesis of cognitive decline
following cranial irradiation.
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