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ABSTRACT
Background  MRI allows a detailed assessment of 
brain structures in preterm infants, outperforming 
cranial ultrasound. Neonatal MR-based brain volumes 
of preterm infants could serve as objective, quantitative 
and reproducible surrogate parameters of early brain 
development. To date, there are no reference values for 
preterm infants’ brain volumes at term-equivalent age.
Objective  Systematic review of the literature to 
determine reference ranges for MRI-based brain volumes 
of very preterm infants at term-equivalent age.
Methods  PubMed Database was searched on 6 April 
2020 for studies reporting MR-based brain volumes 
on representative unselected populations of very 
preterm and/or very low birthweight infants examined 
at term equivalent age (defined as 37–42 weeks mean 
postmenstrual age at MRI). Analyses were limited to 
volumetric parameters reported in >3 studies. Weighted 
mean volumes and SD were both calculated and 
simulated for each parameter.
Results  An initial 367 publications were identified. 
Following application of exclusion criteria, 13 studies 
from eight countries were included for analysis, yielding 
four parameters. Weighted mean total brain volume was 
379 mL (SD 72 mL; based on n=756). Cerebellar volume 
was 21 mL (6 mL; n=791), cortical grey matter volume 
140 mL (47 mL; n=572) and weighted mean volume of 
unmyelinated white matter was 195 mL (38 mL; n=499).
Conclusion  This meta-analysis reports pooled data 
on several brain and cerebellar volumes which can 
serve as reference for future studies assessing MR-
based volumetric parameters as a surrogate outcome 
for neurodevelopment and for the interpretation of 
individual or cohort MRI-based volumetric findings.

INTRODUCTION
Preterm birth is a major contributor to the global 
burden of disease.1 Neurodevelopmental outcome 
after preterm birth ultimately determines quality of 
life; however, the determinants of this outcome are 
still subject to research.2–5

Impaired neurodevelopmental outcome may be 
present without overt intracerebral lesions detect-
able by neonatal cranial ultrasound.6 In order to 
identify valid biomarkers that facilitate the predic-
tion of neurocognitive long-term outcome and, at 
the same time, establish early surrogate endpoints 
for clinical studies aimed at improving perinatal 
care, various parameters have been studied on cere-
bral MRI in preterm infants in the last decades. 
Of these, advanced methods yielding quantitative 
parameters (such as volumetric MRI, diffusion 

MRI, 1H-MR spectroscopy and resting-state func-
tional connectivity) seem to be most promising for 
providing objective, predictive and sensitive values.7

This systematic review focuses on volumetric 
MRI, aiming at identifying reference ranges for 
cerebral and cerebellar volumes in unselected very 
preterm/very low birthweight (VLBW) infants at 
term-equivalent age. There is evidence suggesting 
that reduced brain tissue volumes in preterm 
infants are associated with impaired neurocogni-
tive outcomes.8–13 Reduced cerebral and cerebellar 
tissue volumes may result from loss of immature 
oligodendrocytes which are vulnerable to inflam-
mation and fluctuations in haemodynamics and 
oxygenation eventually resulting in altered cerebral 
development and impaired function.8 14–17

METHODS
To identify all published studies reporting brain 
volume measurements of very preterm or VLBW 
infants, PubMed was searched on 6 April 2020 
using the following systematic search strategy: 
(‘infant, premature’ (MeSH) OR ‘infant, low 
birth weight’ (MeSH)) AND ‘magnetic resonance 
imaging’ (MeSH) AND (volum*(All Fields)). The 
term ‘brain’ was intentionally not included in the 
search strategy to avoid omitting studies focusing 
on, for example, cerebellar/hippocampal volume 

What is already known on this topic?

	⇒ Very preterm and very low birthweight infants 
show smaller brain volumes compared with 
term born infants.

	⇒ Smaller cerebral volumes in preterm infants 
are associated with impaired neurocognitive 
outcome.

	⇒ No systematic reference data are available to 
date regarding brain volumes of very preterm/
very low birthweight infants examined at term.

What this study adds?

	⇒ A systematic search for studies reporting MR-
based brain volumes on preterm infants at term 
equivalent age was performed and weighted 
means were calculated.

	⇒ These could serve as reference data for future 
studies examining cerebral volumes in preterm 
infants at term.
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measurements. The process of reviewing and assessing studies 
was based on the guidelines established by Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA).

Articles were selected for data extraction if they fulfilled all of 
the following criteria:

	► Reporting volumetric data of the brain or its anatomical 
structures acquired by structural MRI.

	► Examining very preterm infants (ie, born at a gesta-
tional age  <32 weeks) or VLBW infants (ie, with birth 
weight <1500 g).

	► Reporting MRI data acquired at term-equivalent age (ie, if 
the mean postmenstrual age (PMA) at scan was between 37 
and 42 weeks).

	► Including representative populations (ie, studies reporting 
preselected subpopulations were excluded).

	► Published in English.

	► Accessible (either online, via interlibrary loan, or by directly 
contacting the authors).

Further,
	► If several manuscripts reported data from the same popula-

tion, only the study including the largest number of infants 
was included in this review. If there was only a small overlap 
between patient populations (<25%), both studies were 
included.

	► Only brain imaging outcome parameters reported in  >3 
studies were included in the meta-analysis.

First, title and abstract of all articles identified with the search 
strategy were reviewed manually (by JR and CA) with regard 
to the above-mentioned inclusion and exclusion criteria, and 
studies not satisfying these criteria removed. In potentially 
eligible studies, the full text of each article was reviewed. The 
bibliography of each eligible full-text article was hand-searched 
for additional studies. If studies reported concurrent popula-
tions of term-born infants, brain volume data were extracted 
and reported, too.

The following quality criteria were assessed and reported 
for all eligible studies: Were the infants representative of the 
underlying population? Was the reliability of image processing 
methods tested?

Cohorts of included studies were assessed regarding the 
following characteristics: criteria for inclusion and exclusion in 
the MRI study, site and time period of recruitment, mean birth 
weight, mean gestational age at birth, proportion of small for 
gestational age (SGA) infants, use of antenatal and postnatal 
steroids, proportion of infants with bronchopulmonary dysplasia 
(BPD), persistent ductus arteriosus (PDA) and intraventricular 
haemorrhage (IVH), postmenstrual age (PMA) at MRI scan and 
type of MRI scanner.

Statistical analyses
All volumes are reported in millilitres. Gestational age at birth 
and PMA at MR scan are reported in weeks. In case data had 
been reported by subgroups, the weighted mean for the overall 
study population was calculated based on all subgroups.

Meta-analysis of volumetric data was performed in two ways:
(A) Weighted mean values and weighted SD were calculated, 

the latter on the basis of total variance using SAS statistical soft-
ware version 9.4:

Total variance: ‍s
2
total‍ = ‍

1
nΣ

M
i=1ni ∗ s

2
i ‍ +‍

1
nΣ

N
i=1wi ∗

(
xi − x∗

)2
‍

(B) Data from all studies for a given parameter were simulated 
using the Matlab random number generator (The MathWorks, 
Natick, Massachusetts, USA): Based on the mean (SD) of a partic-
ular study, a total of n populations with normally distributed 
100 000 data points each were generated, with n corresponding 
to the number of subjects included in the original studies. These 
synthetic populations of all studies were combined by means of 
histogram analyses to yield a final population. To this new popu-
lation (representing all contributing populations in accordance 
with their original size), we fitted a Gaussian distribution from 
which a final population mean and SD, as well as a goodness-
of-fit parameter was reported.

Linear regression for brain volumes in relation to mean age at 
scan was calculated and visualised using Python V.3.7 (https://
www.python.org/).

Registration
This review was not registered. A review protocol was prepared, 
but not published.

Figure 1  Flow diagram for systematic review of retrieved studies. 
PMA, postmenstrual age.

https://www.python.org/
https://www.python.org/
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RESULTS
Using our initial search criteria, a total of 367 studies, published 
between 1992 and 2019, were retrieved. After review for inclu-
sion and exclusion criteria, 13 were included (see figure  1). 
Hand-searching the bibliographies yielded two additional 
studies meeting the inclusion criteria.18 19 However, both could 
not be included because volume data were reported as median 
(IQR) and least-squares means, respectively. This left 13 articles 
for inclusion in the meta-analysis.

We identified potential overlap in populations between 
studies.20–25 In these cases, for each volumetric parameter, only 
the study with the largest population was included for the respec-
tive analysis. A small overlap in the population of two studies8 25 
resulted in 29 infants being included twice.

Characteristics of the included study populations are listed 
in table 1. Studies indicated the following reasons for exclusion 
of subjects: Major congenital anomalies (stated in 9 out of 13 
studies) and low-quality MR images (stated in 5 out of 13 studies). 
All studies excluded infants with missing parental consent. Three 
studies additionally excluded infants with congenital infection 
(no further definition given).26–28

Only one study tested representativeness of its study popu-
lation, and there were no differences between included and 
excluded subjects regarding gender, multiple birth, gestational 
age, IVH and BPD.25 Some studies indicated recruitment 
rates in relation to eligible subjects, which varied considerably 

(90%/80%,8 73%,21 100%,29 66%,24 94%30). Most studies 
(10/13) were single-centre cohorts from level III academic 
centres in highly developed countries.

All studies reported MRI postprocessing and segmentation 
methods. Except for one study,31 all studies specified reliability 
testing for their technique. Studies employed manual, semiauto-
mated and in three studies,20 21 29 automated segmentation tech-
niques (see table 1).

Brain volume measurements
The following volumetric parameters were reported in  >3 
studies: total brain volume (TBV; n=756), cerebellar volume 
(CV; n=791), volume of cortical grey matter (CGM; n=572) 
and volume of unmyelinated white matter (UMWM; n=499). 
Brain volumes are presented in table  2. Figure  2 displays the 
relation between volume measurements and mean PMA at scan. 
Simulated populations and fitted Gaussian distribution are 
depicted in figure 3.

Four studies8 25 29 31 also reported MRI-based brain volum-
etry in contemporary samples of term-born infants. Results are 
summarised in online supplemental table S1 and indicate that 
CGM and UMWM volumes might be reduced by about 25% in 
preterm compared with term infants.

Based on the simulated population data, an online supple-
mental MS-excel spread sheet is provided converting MRI brain 
volumes of preterm infants into z-scores.

Table 2  Brain volume measurements (and weighted means) in preterm infants at term-equivalent age

N

PMA at scan 
(weeks)
Mean (SD)

Total brain volume 
(mL)
Mean (SD)

Total cerebellar 
volume (mL)
mean (SD)

Cortical grey matter volume 
(mL)
Mean (SD)

Unmyelinated white 
matter volume (mL)
Mean (SD)

Blok et al, 201420 36 41.4 (0.8) 391 (34) N/A 167 (23)*
(overlap with Moeskops et al21

161 (21)*
(overlap with Moeskops 
et al21)

Ekblad et al, 201030 209 † 397 (51.2) 24.2 (5.1) N/A N/A

Hansen-Pupp et al, 201122 51 40.1 (0.6) 396 (46.3)*
(n=46, overlap with 
Hansen-Pupp et al23)

21.3 (2.7) N/A 191 (25)*
(n=46, overlap with 
Hansen-Pupp et al23)

Hansen-Pupp et al, 201323 49 40.1 (0.6) 393 (50.9) 21.1 (3.5)*
(overlap with Hansen-
Pupp et al22)

N/A 190 (25)

Inder et al, 20058 119 40.2 (0.3) 406 (57) N/A 178 (41) 202 (41)

Kamino et al, 2018 28 44 37.7 (3.0) N/A 16.7 (5.3) 107.6 (40.2) 151 (20.1)

Moeskops et al, 201521 85 41.1 (0.5) N/A N/A 107 (13) 171 (19)

Parikh et al, 201329 122 38.5 (2.2) 270 (41.5) 16.1 (4.2) 105 (19.1) N/A

Steinhorn et al, 201524 192 ‡ 395 (63.2)* (overlap 
with Thompson et al25)

21.4 (4.5) 159 (41)*
(overlap with Thompson et al25)

N/A

Stiver et al, 2015 26 105 41.9 (2.0) N/A 23.9 (5) N/A N/A

Tam et al, 201127 68 39.5 (1.3) N/A 20.4 (5) N/A N/A

Thompson et al, 2007 25 202 40.1 (1.7) 395 (64) N/A 159 (41) 212 (32)

Vasu et al, 2014 31 19 40.2 (3.1) 462 (12.8) N/A N/A N/A

Aggregate data all studies
Weighted mean (√(Total variance))

379 (72); n=756 21 (6); n=791 140 (47); n=572 195 (38); n=499

Aggregate data all studies
Mean (SD) by simulation

391 (67)§ 19 (5)§ 135 (68)§ 192 (38)§

Aggregate data excluding reference29

Weighted mean (√(Total variance))
399 (57) n=634 22.3 (5.3) n=669 149.2 (47.8) n=450 N/A

*Not included in the meta-analysis.
†According to personal communication with the author: ‘MRI were performed at term (SD 5 days) in 93% of infants. The time between term age and imaging day was at most 29 
days (in one infant).’ Out of 232 total MRI scans, 209 were successfully performed and analysed.
‡Between 38 and 42 weeks.
§Adjusted R2 for TBV 0.9850, for CV 0.9965, for CGM 0.8822, for UMWM 0.9906.
CGM, cortical grey matter; CV, cerebellar volume; N/A, not available; PMA, postmenstrual age; TBV, total brain volume; UMWM, unmyelinated white matter.

https://dx.doi.org/10.1136/fetalneonatal-2021-322846
https://dx.doi.org/10.1136/fetalneonatal-2021-322846
https://dx.doi.org/10.1136/fetalneonatal-2021-322846
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DISCUSSION
For this systematic review, we identified 13 studies reporting 
MRI-based brain volume measurements in very preterm infants 
at term-equivalent age. For TBV, CV, CGM and UMWM, suffi-
cient data were available for this meta-analysis.

All studies included infants with neonatal complications such 
as BPD, PDA and IVH. Since exclusion criteria of the studies 
were limited to missing parental consent, ‘congenital anomalies’ 
and low-quality MRI images and recruitment rates were ≥67% 
(reported in six studies), we can assume these study populations 
to be representative of very preterm infants. However, most 
studies included single-centre cohorts from academic level III 
centres in highly developed countries, limiting generalisability 
to some extent.

In one study, inclusion was restricted to infants ≤1000 g birth 
weight29; consequently, mean birth weight was lower than in the 
other study populations. Mean TBV, CV and CGM volume all 
were considerably lower in this cohort compared with the other 
preterm populations. This discrepancy can partly be attributed 
to the fact that the timepoint of MRI measurements in this 
study (mean PMA at scan: 38.5±2.2 weeks) was rather early 
compared with the other studies. Another explanation might be 
that ELBW infants (i.e. birthweight < 1000g) are more prone 
to impaired brain growth than VLBW infants; these hypotheses 

should be tested in future studies or individual patient data meta-
analyses. A number of studies (including that of Parikh et al29) 
found smaller brain volumes in IUGR/SGA infants.8 22 25 29 32 33 
Notably, Parikh et al also found brain volumes of contempo-
rary term born infants to be markedly smaller compared with 
those reported by other studies. Thus, a systematic measurement 
bias could also have contributed to the observed differences. For 
reference purposes, we also provide the weighted mean and SD 
values excluding Parikh’s study for TBV, CV and CGM volume.

Figure  2 visualises the variance of measured brain volumes 
among the studies, highlighting the need of large study groups 
and pooled data. Additionally, linear regression was calculated 
for brain volumes by PMA at scan showing the best fit for a linear 
relation for CV. Measurements of CV could be more reliable due 
to clear anatomical boundaries, resulting in the lower variability. 
Furthermore, studies reporting CV were well dispersed for PMA 
at scan. According to Gui et al,34 the cerebellum shows one of 
the highest growth rates around term, which could explain why 
a growth trend can be illustrated here. For the other parame-
ters, variance in this restricted time frame is too high to deduce 
growth trends from the data.

This systematic review and meta-analysis has several limita-
tions: Only one database (PubMed) was searched and only arti-
cles in English were included. However, only a very small number 

Figure 2  Brain volumes by postmenstrual age (PMA) at MRI scan. CV, cerebellar volume; CGM, cortical grey matter volume; TBV, total brain volume; 
UMWM, unmyelinated white matter volume. Panels showing mean cerebral volumes according to mean PMA at MRI scan (with horizontal error 
bars indicating SD for PMA at MRI scan and vertical error bars indicating SD for volume). Sample size for each study is represented by the size of the 
symbol. Linear regression lines were calculated for each parameter taking sample size into account.
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(5/367) of initial articles were not published in English and the 
likelihood that any neonatal volumetric MRI study would not 
be indexed in PubMed was considered low. Hand-searching the 
bibliography of all eligible articles also reduced the probability 
of missing relevant studies.

The number of included studies was relatively low13 compared 
with the number of initially retrieved studies (367). This is due 
to a combination of relatively strict inclusion criteria and a 
broad search strategy which retrieved numerous studies in older 
subjects. Furthermore, studies deviating from our definition of 
‘term equivalent age’ (mean PMA at scan between 37 and 42 
weeks) were excluded.

Studies excluding infants with brain lesions (eg, Padilla et al35) 
were not included since our intention was to report on represen-
tative preterm infant cohorts. In contrast to our study, Padilla et 
al35 showed higher mean values in their cohort regarding CGM 
(171,2 mL) and the CV (26,6 mL). This is consistent with the 
findings of other studies.36–38

Another limitation is that included cohorts ranged from 
1998 to 2013, and by our predefined criteria no more recent 
cohorts were selected, possibly causing bias since both imaging 
and clinical treatment have evolved. Among the included 
studies, however, no secular trend could be seen. Furthermore, 

considerable variability in image acquisition and processing was 
recognised. For brain volume extraction, tissue segmentation 
into grey and white matter and cerebrospinal fluid (CSF) is the 
crucial step.39 Of the included studies, five used a manual, five a 
semiautomatic and three an automatic approach (cf. table 1). All 
but one study31 reported internal validation of their segmenta-
tion process. While a congruent approach would of course have 
been preferable, this (incidentally rather well-balanced) compo-
sition makes a substantial bias resulting from our data processing 
approach unlikely.

Despite heterogeneity concerning study procedures and 
reporting practices, relatively congruent brain volumes were 
reported, apart from the ELBW study.29 In total, a substantial 
number of infants could be included in the meta-analysis. It is 
also reassuring that both methods used to combine the values 
across populations, despite taking very different approaches, also 
yielded very similar values (cf. table 2). Thus, the resulting mean 
values and SDs presented in this review can serve as reference 
data for future volumetric MRI studies among preterm infants 
and can be consulted when interpreting individual or cohort 
brain volume measurements in VLBW/very preterm infants. As 
online supplemental data, we provide a calculator embedded 
within an Excel worksheet for easy comparison of individual 
versus these group values.

Ultimately, brain volumes of term born infants should serve 
as reference for regular, intrauterine brain growth. However, 
despite all efforts, there is still a gap between cohorts of term 
born and very preterm infants. In 4 of 13 studies included in 
this review, concurrent cohorts of term infants were scanned 
around term-equivalent age, and significantly smaller total brain 
tissue volumes were demonstrated for preterm infants in all four 
studies.8 25 29 31 According to Thompson et al25 and Inder et al,8 
this reduction is driven by smaller CGM and DGM volumes. 
Furthermore, all four studies revealed significantly increased 
total CSF volumes in preterm infants, likely reflecting loss or 
inadequate growth of cerebral tissue (ie, grey or white matter).

Although brain growth of term born infants should be the ulti-
mate goal, brain volume data of unselected very preterms are 
required when planning interventional studies aiming at opti-
mising brain growth on a realistic basis.

As mentioned above, several studies found an association 
between birth weight and brain volumes at term. Additionally, 
male sex25 32 40 and higher gestational age at birth8 22 were found 
to be associated with larger brain volumes. While it would have 
been interesting to separate out brain volumes with regard to 
these factors, the respective data were not available in suffi-
cient detail to allow for their inclusion in multivariate analyses. 
Future studies on MRI brain volumes in VLBW/very preterm 
infants should aim at further identifying relevant factors that 
influence early brain volume growth after preterm birth and, if 
possible, at quantifying their impact. In this context it would be 
of special interest to address those factors that are not predeter-
mined (such as sex) but can be modified by optimised neonatal 
intensive care (such as nutrition, oxygenation, etc). Further 
studies are also needed that investigate the long-term predictive 
value of individual MR-based brain volume measurements at 
term with respect to neurocognitive outcome in childhood and 
beyond.

In conclusion, in this meta-analysis of 13 studies including data 
from more than 900 very preterm infants, with the exception 
of one study,29 rather similar results for TBV, CV and UMWM 
volumes were found at term-equivalent age. These weighted 
mean volumes may serve as reference for individual patient data 
and future studies.

Figure 3  Meta-analysis by simulation studies. CV, cerebellar volume; 
CGM, cortical grey matter volume; TBV, total brain volume; UMWM, 
unmyelinated white matter volume. Panels in the left column depict 
individual synthetic populations (according to simulations described in 
the Methods section), right column depicts summarising histograms and 
fitted Gaussian distributions. Resulting means, SDs and R2s are reported 
in table 2. Figure with permission and created by MW.

https://dx.doi.org/10.1136/fetalneonatal-2021-322846
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