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Glioblastoma—a moving target
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Abstract

The slow development of effective treatment of glioblastoma is contrasted by the rapidly advancing research on the molecular
mechanisms underlying the disease. Amplification and overexpression of receptor tyrosine kinases, particularly EGFR and
PDGFRA, are complemented by mutations in the PI3K, RB1, and p53 signaling pathways. In addition to finding effective
means to target these pathways, we may take advantage of the recent understanding of the hierarchical structure of tumor cell
populations, where the progressive expansion of the tumor relies on a minor subpopulation of glioma stem cells, or glioma-
initiating cells. Finding ways to reprogram these cells and block their self-renewal is one of the most important topics for future

research.
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Introduction

Glioblastoma is the most common intracranial malig-
nancy and constitutes about 50% of all gliomas. With
an annual incidence of 3-5 cases per 100,000 indivi-
duals, it is an uncommon type of malignancy, but its
localization in the brain, its invasive behavior, and its
extremely poor prognosis make it one of the most
dreaded forms of cancer. The overall median survival
time is as short as some 15 months despite the
combined therapy of neurosurgery, radiation, and
temozolomide (1). The slow development of an effec-
tive therapy is in bright contrast to the rapidly growing
knowledge of the molecular pathogenesis of the
disease.

Only a quarter of a century ago, molecular neuro-
oncology was a rather neglected research field, which
may be difficult to understand today when a great
number of advanced neuro-oncology papers are
published yearly, often in high-profile journals. In
most cases, experimental research on glioblastoma
in the old days was confined to a few dedicated
and specialized centers under the leadership of

neuropathologists, neuro-oncologists, and neurosur-
geons. Today, research on glioblastoma is more wide-
spread and often pursued by investigators with a
broader interest in tumor biology and tumor genetics.
Permanent glioblastoma cell lines have been avail-
able since the mid-1960s through the work of Jan
Pontén and myself (2,3). Additional glioblastoma
cell lines were later established by other centers,
yielding the Duke (D-) (4), Lausanne (LN-) (5),
and University of California, San Francisco (SF-) (6)
series of cell lines, in addition to the Uppsala (U-)
series. Together, these ‘classical’ cell lines have con-
tributed to our understanding of glioblastoma cell
biology and, importantly, fueled our enthusiasm in
molecular and cellular neuro-oncology. However, I
think it is fair to say that the boom in brain tumor
research during the late 1980s and 190s did not
primarily stem from research on the phenotypic
characteristics of cell lines. My personal view is
that the field became attractive due to a few para-
digmatic findings on brain tumor genetics, which
placed brain tumors in the limelight. Some of these
breakthroughs will be described below.
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Progress of the understanding of the molecular
pathogenesis of glioblastoma

Although Stanley Cohen identified and purified epi-
dermal growth factor (EGF) as early as 1962 (7), it
was only after the discovery of the EGF receptor (8)
that the scientific community in general became aware
of the biological importance of this growth factor. In
1976, during my visit to Stanley Cohen’s laboratory at
Vanderbilt University, we showed that human glioma
cell lines were endowed with EGF receptors in rela-
tively high numbers (Westermark B, Carpenter G,
and Cohen S, unpublished). A few years later we
showed that one of the cell lines responded to EGF
by a profound increase in cell motility (9). However,
the breakthrough in the understanding of the
importance of EGF in glioma biology came through
Joseph Schlessinger and collaborators’ studies on
EGF receptor expression in glioma tissue (10). Sub-
sequent to the cloning of the receptor cDNA,
Schlessinger et al. demonstrated that the increased
expression was due to EGFR gene amplification (11).
Overexpression of wild-type or truncated and consti-
tutively activated EGFR is now considered an impor-
tant event in the pathogenesis of a subset of
glioblastoma. The finding of a high frequency of
EGFR amplification provided an explanation to the
often occurring double minute chromosomes in glio-
blastoma (12); these are known to harbor amplified
DNA segments. In addition to the impact on
our understanding of the biology of glioblastoma,
Schlessinger’s seminal studies contributed to the
increasing interest of the research community in
this particular malignancy. Bert Vogelstein’s contri-
bution to the field is another example. In a survey of
mutations in the TP53 gene, Vogelstein’s research
group found that glioblastoma was among those with
the highest frequency of mutations. Vogelstein’s clon-
ing of GLII from amplified DNA in glioblastoma was
another highlight along the road (13).

Cytogenetic studies performed by Sandra Bigner
and Joakim Mark and collaborators showed that loss
of one copy of chromosome 10 is a common charac-
teristic of glioblastoma (12). The search for a tumor
suppressor gene on chromosome 10 made progress
when PTEN was identified (14) and found to be
frequently mutated in glioblastoma. As an important
inhibitor along the phosphatidylinositol 3-kinase
(PI3K) pathway, PTEN has attracted considerable
general interest and made glioblastoma an interesting
model for further studies.

Structural abnormality in the short arm of chromo-
some 9 is another common cytogenetic finding in
glioblastoma. Mark Skolnick and collaborators
highlighted the importance of this abnormality

when they identified a tumor suppressor locus har-
boring the gene for the cell cycle regulators INK4A
and ARF (15), which are key regulators of the
RB1 and p53 pathways, respectively. Although
Skolnic’s work was primarily performed on melano-
mas, gliomas were also included in the study and
found to have frequent deletions of the tumor sup-
pressor locus.

My own work in the glioblastoma field was initi-
ated during my graduate studies, when I established
human cell lines and analyzed their growth behavior
(3,16). These studies were the theme of my doctoral
thesis in 1973 but also left me with considerable
frustration, because of the phenotypic diversity of
the cell lines and lack of molecular tools for mech-
anistic studies. Already in my very first publication
(17) 1 became aware of the importance of serum-
derived growth factors in growth regulation, thanks
to the work of Holley and Kiernan (18). My simple
and somewhat naive reasoning at this point was that
in order to study seriously the deficient growth
control of cancer cells there is a need for a better
understanding of the growth regulation of normal
cells. To do that, one needs to identify and mech-
anistically study factors that regulate cell prolifera-
tion. At that time, Howard Temin and others had
proposed that transformed cells may stimulate their
proliferation by their own growth factors, later
known as autocrine growth stimulation (19). After
initial studies on EGF and other growth factors, my
colleagues Ake Wasteson, Carl-Henrik Heldin, and I
focused on platelet-derived growth factor (PDGF)
and its protein tyrosine kinase receptor. Parallel to
our work on PDGF, we also characterized a growth
factor produced by osteosarcoma cells. During the
progress of this work, we became increasingly aware
of the similarities of this growth factor and PDGF
(20). Later, the osteosarcoma-derived growth factor
was indeed shown to be a homodimer of PDGF
A-chains (21), while the major part of PDGF
purified from platelets is constituted by PDGF-AB.

During the rapid progress of the work on PDGF, I
slowly lost interest in glioma biology, and at one
point I decided to drop it entirely. Much influenced
by our work on the osteosarcoma-derived growth
factor and its putative role as an autocrine growth
factor, I did one experiment which would bring me
back to the glioblastoma research field. Conditioned
medium from glioblastoma cell cultures was shown
to contain a PDGF receptor-displacing activity,
which through the work of Monica Nistér and
others was shown to be identical to PDGF
(22,23). A clonal derivative of the glioblastoma
cell line U-343 MGa was shown to produce high
amounts of PDGF-AA and was used by Christer



Betsholtz and co-workers to clone A-chain cDNA
(24). Correlative studies on human glioblastoma
biopsies revealed the concomitant expression of
PDGF oa-receptors and PDGF A-chains (25), pro-
viding circumstantial evidence for an autocrine
stimulation of glioma growth.

The finding that the v-sis oncogene of simian sar-
coma virus (SSV) is a retroviral homolog of the PDGF
B-chain gene (26,27) was paradigmatic in the sense
that it helped us understand the molecular mecha-
nisms of oncogene-driven cell transformation in rela-
tion to growth factor-induced cell proliferation (28).
The finding also showed that we might be on the right
track in our studies of PDGF influences on glioma
development.

Most remarkably, Friedrich Deinhardt had previ-
ously found that SSV induced brain tumors similar
to glioblastoma in newborn marmosets (29). This
finding indicated that forced expression of PDGF in
brain cells is indeed oncogenic and thus provided
unequivocal evidence for the pathogenetic role of
autocrine growth stimulation in gliomagenesis.
However, given the widely adopted view that fully
malignant tumors evolve through several genetic
changes in a multistep and multistage process, it
was not simple to envisage how a single growth
factor-encoding gene could induce malignant brain
tumors. We reasoned that the expression of the v-sis
gene might be complemented by secondary changes
in the genome, induced by proviral insertional muta-
genesis (30). Using a PDGF-encoding Moloney
mouse leukemia virus construct (31), Lene Uhrbom
and Fredrik Johansson were able to identify a num-
ber of common proviral insertions in experimental
mouse brain tumors, known oncogenes and suppres-
sor genes as well as novel candidate genes (32). The
functional role of a few of them has been studied by
us and others (33-37).

The experimental evidence described above, in
conjunction with the finding of PDGF a-receptor
gene amplification in human glioblastoma (38),
provides strong support for the role of PDGF as a
driver of tumor growth in a glioblastoma subset.
This view is strongly supported by analyses by the
Cancer Genome Atlas Research Network (39).
Three core pathways were identified, namely the
receptor tyrosine kinase/RAS/phosphatidylinositol
3-kinase, p53, and RB signaling pathways. More
recently, the network published evidence for the
existence of four distinct types of glioblastoma:
the classical, the mesenchymal, the neural, and
the proneural subtype (40). The proneural subtype
is characterized by aberrations in the PDGF
o-receptor pathway, in addition to mutations in
the isocitrate dehydrogenase 1 (IDH1) gene. The
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gliomagenic role of PDGF is further discussed in
this issue (41-43).

Development of future therapy

As mentioned above, the detailed dissection of the
molecular biology of glioblastoma is in striking con-
trast to the lack of advances in therapy. If one looks at
the problem from the bright side, a number of poten-
tial targets have been identified, and we now only
need to find or develop potent inhibitors and use
combinations of them in a clever way. There are,
however, several hurdles along the road: 1) We do
not have effective inhibitors (or agonists) against all
identified targets. 2) Any effective molecule has to
pass the blood-brain barrier in order to reach all
invading cells, including those located at a distance
from the center part of the tumor, the only part of the
tumor where the barrier is disrupted. 3) We still lack
the perfect animal model for treatment studies.
A major problem is that the migrating cells constitute
a major challenge and are literally a moving target.
They blend with the normal tissue, are difficult to
identify and target, and do not elicit an angiogenic
response, making anti-angiogenesis treatment non-
effective or even causing adverse effects; angiogenesis
blockade may potentiate invasion (44). There are,
however, other avenues for the development of effec-
tive glioma therapy which have not yet been fully
exploited.

Only a decade ago, most of us had quite a sim-
plistic view of the development of glioblastoma and
other solid malignancies, much influenced by Peter
Nowell’s clonal evolution theory (45) and Bert
Vogelstein’s concept of sequential acquirement of
mutations in tumor progression (46). These models
proposed a non-hierarchical tumor cell population,
in which any single cell at any given moment could
give rise to a progeny replicating the malignant
properties of the parental tumor, e.g. in the meta-
static process. This view has been challenged by
experiments that show that tumor growth may be
fueled by a minor population of malignant cells with
stem cell properties. Like stem cells, they can
undergo self-renewal but also give rise to a clonal
expansion of a rapidly growing progeny which will
constitute the bulk of the tumor mass but have a
limited replication potential. The former cells may
re-initiate tumor growth, whereas the latter have
lost this capacity (see (47) for an illuminating
review). Experimental evidence for the presence
of cancer stem cells in glioblastoma (or glioma-
initiating cells (GICs)) has been provided by several
authors (see (48) for a recent review). The origin of
these cells is discussed in this issue, (41). In my
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view, the most interesting aspect of the cancer stem
cell concept is that it opens up new avenues for the
development of therapeutic strategies. The self-
renewal capacity of the GICs can be modulated
by extrinsic factors, in which members of the
TGF-B superfamily play important roles. Kohei
Miyazono and collaborators have shown that the
proliferation GICs is sustained by TGF-B, with
Sox4 and Sox2/Oct4 as downstream effectors
(49,50). Blocking the TGF-B pathway leads to
growth inhibition and induces differentiation.
Moreover, BMP4 has been shown to be a GIC
antagonist; pretreatment in vitro of glioblastoma
cells inhibits their tumor-initiating capacity after
injection of the cytokine (51). We have also shown
that growth inhibition can be induced by forced
expression of Sox21 (52), which is a Sox2 antago-
nist (53). Thus, despite all the mutations leading
to aberrant signaling in glioblastoma described
above, the cells are not entirely refractory to
differentiation-inducing and cell cycle-blocking
signals. Identification of small molecules that pass
the blood-brain barrier and target these signals
seems to be one of the most important goals in
the search for future therapy.

When I as a young scientist tried to establish human
glioblastoma cell lines, I found to my disappointment
that only some 20% of the tumor biopsies gave rise
to permanent cell lines (3). In the remaining 80% of
the cases, cells were able to divide and survive in
primary culture only. We know today that the
progressive growth of glioblastoma cells requires
other and more sophisticated culture conditions
(growth factor-containing, serum-free neural stem
cell medium) than we used in the past (Eagle’s mini-
mum essential medium with 10% calf serum). Bovine
serum contains BMP4 (54) and perhaps other, yet
unidentified, factors which may have caused the
apparent irreversible growth inhibition that we
observed. I used to say that the best way to inhibit
the growth of glioblastoma cells is to put them into a
culture dish and feed them with 10% serum. The
same finding that made me disappointed 40 years ago
makes me now look at the future development of
research on glioblastoma with great optimism.
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