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Abstract

E-cadherin is a key cell-cell adhesion molecule but the impact of receptor density and the precise contribution of individual
cadherin ectodomains in promoting cell adhesion are only incompletely understood. Investigating these mechanisms
would benefit from artificial adhesion substrates carrying different cadherin ectodomains at defined surface density. We
therefore developed a quantitative E-cadherin surface immobilization protocol based on the SNAP-tag technique.
Extracellular (EC) fragments of E-cadherin fused to the SNAP-tag were covalently bound to self-assembled monolayers
(SAM) of thiols carrying benzylguanine (BG) head groups. The adhesive functionality of the different E-cadherin surfaces was
then assessed using cell spreading assays and single-cell (SCSF) and single-molecule (SMSF) force spectroscopy. We
demonstrate that an E-cadherin construct containing only the first and second outmost EC domain (E1-2) is not sufficient for
mediating cell adhesion and yields only low single cadherin-cadherin adhesion forces. In contrast, a construct containing all
five EC domains (E1-5) efficiently promotes cell spreading and generates strong single cadherin and cell adhesion forces. By
varying the concentration of BG head groups within the SAM we determined a lateral distance of 5–11 nm for optimal E-
cadherin functionality. Integrating the results from SCMS and SMSF experiments furthermore demonstrated that the
dissolution of E-cadherin adhesion contacts involves a sequential unbinding of individual cadherin receptors rather than the
sudden rupture of larger cadherin receptor clusters. Our method of covalent, oriented and density-controlled E-cadherin
immobilization thus provides a novel and versatile platform to study molecular mechanisms underlying cadherin-mediated
cell adhesion under defined experimental conditions.
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Introduction

E-cadherin is the best-studied member among the calcium-

dependent cell-cell adhesion molecules. Homophilic binding

between E-cadherins from neighboring cells organizes cells into

epithelia which is essential for morphogenetic processes during

embryonic and organ development but also for maintaining tissue

integrity and homeostasis [1]. The adhesive function of E-cadherin

is also required in stem cell renewal [2,3]. Conversely, loss of the

E-cadherin function correlates with tumorigenesis [4], embryonic

lethality [5,6] and loss of pluripotency of embryonic stem cells [7].

To foster firm adhesion the cytoplasmic part of E-cadherin must

be linked to the actin cytoskeleton via b- and a-catenin and

additionally, these cadherin-catenin complexes become clustered

in adherens junctions [8]. Cadherin adhesion has also been

reported to participate in mechanosensing by binding to

plakoglobin and recruiting keratin filaments to sites of tension at

the cell membrane [9].

E-cadherin is a single-pass transmembrane protein consisting of

five extracellular cadherin repeats (ECs). Each EC contains

approximately 110 amino acids, which together form a b-barrel

structure, while the interface between the ECs contains three

calcium binding sites. Calcium binding is required for cell

adhesion because it stabilizes the rod-like conformation of the

cadherin protein and prevents it from proteolytic degradation

[10,11]. While the cadherin structure has been established, the

initial binding mechanisms of cadherins are still a matter of

debate. The classical model describes that lateral cis-dimerization

of cadherin molecules has to take place first before a trans-contact

with a corresponding dimer of an opposing cell can be formed

(experimental evidences are detailed reviewed in [12]). In the last

five years, however, improvements in analytical methods have

produced results favoring an alternative model in which cis-

dimerization is no longer critical for trans-interaction. Instead,

EC1-EC2 interdomains of two cadherins form a fast-binding

intermediate trans-contact, the so-called X-dimer, which then

facilitates formation of more stable swapped trans-dimer. In the

trans-dimer tryptophan 2 (Trp2, W2) of one EC1 inserts into the

hydrophobic pocket of its EC1 counterpart, while the backbone of

the EC1 domain interacts laterally with the EC2/EC3 domains of

an adjacent cadherin forming cadherin cis-dimers (Figure 1) and,
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with growing numbers of contributing molecules, a cadherin

lattice [13,14]. In the alternative model cadherin trans-interaction

does not require pre-formation of a cis-dimer. Instead, lateral

dimerization and clustering have a cooperative effect by increasing

the probability of trans-dimer formation [15,16].

The general significance of lateral cadherin clustering to foster

adhesion strength is beyond dispute, but the recent new insight

into mechanisms of cadherin binding ask for a re-investigation of

the precise effect of clustering on adhesion force. To quantify the

clustering effect in adhesion force generation, surfaces carrying

cadherin monomers immobilized at defined distances should be

provided for cell binding studies. However, many previous cell

adhesion studies were based on the classical assumption that cis-

dimerization precedes the trans-interaction of cadherins and

therefore used EC domains fused to the heavy chain constant

fragment of immunoglobulin (Fc) for surface immobilization [17].

On these artificial surfaces, formation of disulfide bonds between

the Fc fragments serves to mimic cis-dimerization of cadherin EC

domains, which was then predicted to facilitate trans-interactions

with cellular cadherins. In some of these studies, cadherin-Fc

fusion proteins were directly spotted on surfaces for immobiliza-

tion [18,19], a procedure which may induce artificial protein

folding or surface-induced protein denaturing. Importantly,

directly adsorbed fusion protein may also not be in the correct

orientation for receptor binding. To circumvent these potential

problems, in other studies fusion proteins were immobilized in an

oriented manner on surfaces covered with protein A or antibodies

recognizing the Fc domain [20]. These non-covalent sandwich

strategies potentially provide proper receptor orientation but may

not provide quantitative binding. Although cells bind specifically

to these cadherin surfaces, studies evaluating the optimal lateral

density and geometry of positioning of cadherin EC domains on

the surface are still limited.

To overcome current limitations regarding correct receptor

positioning, quantitative receptor immobilization and density

control, we have applied a SNAP-tag immobilization technique

that permits the immobilization of cadherin molecules with

controlled intermolecular spacing on patterned surfaces. To this

end, different E-cadherin EC domain constructs were fused to a C-

terminal SNAP-tag. The SNAP-tag is an enzyme that recognizes

benzylguanine (BG) as its substrate and binds covalently to the

benzyl group while releasing guanine [21,22]. For surface

immobilization, thiols carrying a BG headgroup can be self-

assembled into monolayers (SAMs) on gold surfaces [23]. Upon

reaction of the E-cadherin SNAP-tag fusion protein with the BG

head group, cadherin becomes covalently attached to the SAM.

To control cadherin functionalization density, thiols carrying BG

head groups (BGT) are mixed with an unfunctionalized ma-

trixthiol (MT) at different ratios. We confirm the functionality and

specificity of the generated E-cadherin-functionalized SAMs in cell

spreading assays and by single-cell force spectroscopy (SCFS) and

single-molecule force spectroscopy (SMFS). We furthermore

Figure 1. Schematic depiction of cis- and trans-interactions between E-cadherin ectodomains (ECs) on the cell surface. Trans-
interactions (highlighted in red) are mediated by the EC1 and occur between cadherin molecules of neighboring cells. Lateral cis-interactions
(indicated in yellow) occur between the EC1 of one cadherin molecule and the EC2, the EC2/EC3 linker region and part of the EC3 of an adjacent
cadherin molecule exposed on the same cell. A combination of cis- and trans-interactions is depicted on the right hand side of the scheme. Here, the
EC1 is simultaneously engaged in a cis-interaction with an adjacent cadherin molecule from the same cell, as well as in a trans-interaction with a
cadherin molecule from an opposite cell (the EC2 involved in both cis- and trans- interactions is colored in yellow and red). Model based on [14,57,58].
doi:10.1371/journal.pone.0093123.g001

Covalent Surface Immobilization of E-Cadherin

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e93123



demonstrate that E-cadherin constructs containing all five EC

domains (E1-5) promote cell spreading as long as a lateral spacing

of 5-11 nm is maintained. In contrast, a shorter extracellular

fragment of E-cadherin (E1-2) containing only the N-terminal

EC1 and part of the EC2 domain fails in cell spreading assays.

SMFS confirmed the cell spreading results, as only the E1-5

construct revealed binding forces in the range of 50–70 pN, typical

for classical interaction forces, while interaction forces of the

truncated construct E1-2 were reduced to near background levels

(#20 pN). Together, these experiments demonstrate that mono-

meric E-cadherins immobilized via a SNAP-tag provide a suitable

tool to study quantitatively mechanism of cadherin clustering in

adhesion force generation.

Methods

Protein expression and purification
Fusion proteins were generated using the SNAP-vector

pSEMS1-26 m (Covalys). Human E-cadherin-EC1-5 or human

E-cadherin-EC1-2 fragments were amplified by PCR and inserted

via an EcoRV site N-terminally to the SNAP-tag. The 12xHis-tag

was amplified by PCR and inserted via Xho/NotI sites C-

terminally to the SNAP-tag. A stop codon was added downstream

of the His-tag using mutagenesis PCR. HEK293 cells were stably

transfected with the different E-cadherin expression constructs.

Cells were seeded semiconfluent and cultured for 1 week. Every

second to third day the supernatant was collected and protease

inhibitors (cOmplete tablet, Roche) were added. Pooled superna-

tants were filtered and concentrated using VivaCell filtration

devices (MWCO 30 kDa, Sartorius). His-tag protein purification

was performed using Ni2+-NTA column chromatography. Frac-

tions containing the fusion proteins were examined by western blot

analysis using an anti-SNAP antibody (NEB) at a dilution of 1:500.

Positive fractions were pooled, 1 mM dithiotreitol (DTT) was

added and the proteins were stored at 280uC after shock-freezing

in liquid nitrogen.

Surface preparation for cell spreading assays
For cell spreading assays patterned surfaces carrying different E-

cadherin EC domain constructs (E1-2 or E1-5) were prepared by

microcontact printing (mCP) of BG thiol mixtures on gold as

described before [23]. SNAP-tagged E-cadherin EC domains were

then covalently bound to the BG headgroups of the thiols forming

a SAM on the gold surface. Briefly, a mixture of BG thiol (BGT)

and matrixthiol (MT) at a total thiol concentration of 100 mM was

incubated on a PDMS stamp for 5 minutes. The dried stamp was

then brought in contact with a gold-coated glass cover slip

(150 nm gold on 20 nm chromium), removed and the non-

patterned areas were back-filled with 100 mM OH-terminated

tetra(ethylene glycol)undecanthiol (EG4-thiol, Asemblon) for

45 min. Surfaces were washed 3 times with HBS (10 mM HEPES,

150 mM NaCl, pH 7.4) prior to the incubation with 2 mM E-

cadherin fusion proteins in HBS for 2 hours at room temperature.

After washing three times with cell culture medium, the surfaces

were immediately used in cell spreading assays. For SCFS

experiments, gold surfaces were incubated with BG-thiol/

matrixthiol solutions for at least 16 hours for forming homoge-

neous SAMs. Afterwards, surfaces were incubated with SNAP-tag

fusion protein solution (2 mM) in HBS for 2 hours at room

temperature, washed 5 times with HBS and used for force

spectroscopy experiments within 1 hour.

Surface preparation for single-molecule spectroscopy
Cantilevers (BioLever, BL-RC150VB, gold-coated on both

sides, Olympus) and gold-coated glass cover slides were cleaned

in argon plasma for 20 s and subsequently functionalized by

immersion in the thiol solution for 16 h (substrates) or 3 h

(cantilevers). Prior to functionalization with cadherin molecules,

cantilevers and substrates were rinsed with pure solvent and with

EDTA-buffer (2 mM EDTA in HBS) to remove excess thiol from

the solution. Both surfaces were simultaneously incubated with

protein solution (Cprotein = 1–2 mM in EDTA-buffer) for 2 h to

couple E1-2 or E1-5 to tip and substrate. For heterophilic

measurements tips were coated with E1-2 and substrates with E1-

5. Prior to force spectroscopy measurements, cadherin-coated

surfaces were washed with Ca2+-buffer (2 mM Ca2+ in HBS) and

activated by incubation in the same buffer for 30 min.

Cell spreading assay and immunochemistry
Untransfected cells or cells stably transfected with human E-

cadherin-EGFP were cultured at 7% CO2 and 37uC in DMEM

high glucose 4,5 g/l (PAA) (L-cells) or in RPMI 1640 (PAA) (HeLa

cells). Cell culture media were supplemented with 1% Pen/Strep

(PAA), 10% heat inactivated FCS (Biochrom AG) and, in case of

the transfected cells, with 2 mg/ml G418 (geneticin sulfate, Roth).

For spreading assays cells were washed with PBS (phosphate

buffered saline: 137 mM NaCl, 2.7 mM KCl, 6.5 mM Na2HPO4,

1.5 mM KH2PO4, pH 7.5) and treated with separation media (2%

heat inactivated chicken sera, 2 mM EDTA in PBS). The cells

were resuspended in media without other additives and centri-

fuged. Cells (1.1 6 105 6 2.5 ml) were seeded in a petri dish

(35 mm diameter) containing the functionalized surfaces. To verify

cadherin-mediated interactions, 2 ml/ml of the E-cadherin block-

ing antibody DECMA (Sigma-Aldrich) or 10 mM EDTA were

added and cells were cultured for 2 hours before being fixed and

analyzed by immunostaining. Cells were fixed with 4% parafor-

maldehyde for 10 minutes. Samples were washed three times with

PBS and three times with 2.5% BSA in PBS (blocking reagent)

prior to an additional incubation in blocking reagent for 30 min.

Antibody incubation (a-E-cadherin, H108, polyclonal rabbit,

Santa Cruz, dilution 1:250; a-E-cadherin, DECMA, monoclonal

rat, Sigma-Aldrich, dilution 1:500, a-SNAP-tag rabbit polyclonal,

ThermoFisher, 1:500) was performed overnight at 4uC or for

1 hour at 37uC. After three washing steps with PBS, secondary

goat anti-rabbit-cy3 or goat anti-rat-cy3 antibody (dilution 1:200,

Dianova) was applied for 30 minutes at 37uC. For nuclei staining,

DAPI (dilution 1:1000 in PBS) was used, followed by three

washing steps with PBS. After mounting the samples in Mowiol-

488/DABCO (Roth), cells were examined by fluorescence

microscopy (Spinning Disc Microscope Cell Observer SD, Carl

Zeiss Jena). For statistical evaluation we determined the percent-

age of spread cells of all cells (spread or rounded-up) attached to

the micropatterns (E1-2 or E1-5) or to the passivated EG4 area.

Single-molecule force spectroscopy (SMFS)
Force spectroscopy measurements were performed both in

presence and absence of calcium ions. The reversibility of calcium

binding was tested by switching from Ca2+- to EDTA-buffer and

back to the original buffer. Buffer exchange was accomplished by

thoroughly rinsing the system with 5 ml of buffer. In order to

maintain protein functionality, samples were always kept sub-

merged in buffer. After exchanging the buffer to Ca2+- or EDTA-

buffer, the system was incubated for 30 min before starting force

measurements. The cantilever spring constant (nominal spring

constant kc = 6 pN/nm) was determined prior to each experiment

by the thermal noise method [24]. The force-distance curves were
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performed with a pulling velocity between 0.1 and 10 mm/s in

EDTA- or Ca2+-buffer at RT. Contact forces were in the range of

30 to 200 pN and the contact time varied between 0 and 5 s.

Single-cell force spectroscopy (SCFS)
For SCFS L-cells were transfected with the human E-cadherin-

EGFP construct by electroporation. Cells (16107) were washed

twice with 5 ml ice-cold electroporation buffer (120 mM KCl,

10 mM K2PO4/KH2PO4, 2 mM MgCl2, 25 mM Hepes, 0.5%

Ficoll 400; pH 7.6), resuspended in 300 ml electroporation buffer

and transferred into an ice-cold electroporation cuvette (4 mm)

containing 10 mg of plasmid. Subsequently, cells were electropo-

rated using a Gene PulserXcell electroporation system (Biorad), an

exponential-decay pulse protocol and settings of 250 V and

960 mF. After re-plating, cells were cultured for 16 hours before

commencing SCFS measurements. SCFS was performed using a

Nanowizard II AFM (JPK Instruments) mounted on top of an

Axiovert 200 inverted microscope (Carl Zeiss). A CellHesion

module extended the vertical range to 100 mm by piezo-driven

movements of the sample holder. Tipless silicon nitride cantilevers

were V-shaped, 200 mm long and had a nominal spring constant

of kc = 60 pN/nm (NP-0, Veeco Instruments). The cantilevers

were plasma-cleaned prior to functionalization with concanavalin

A as described previously [25]. Cantilever spring constants were

determined in situ prior to every experiment, using the micro-

scope’s calibration routine, and were found to be compatible with

the manufacturer’s specifications. Spectroscopy experiments were

performed at 37uC using a temperature-controlled BioCell

chamber (JPK Instruments). Immediately prior to measurements,

cells were washed with D-PBS, treated with separation media,

washed and resuspended in fresh CO2-independent cell culture

medium (Invitrogen). A glass coverslip carrying a gold-coat

functionalized with cadherin ectodomain on the left side was

inserted into the AFM sample chamber and covered with CO2-

independent medium. A fraction of the cell suspension was

injected into the sample chamber and a single transfected cell,

identified by its EGFP signal, was then captured above the

transparent right half of the coverslip by pressing the cantilever

onto the cell with a contact force of 500 pN for 3 s. The cell was

lifted from the surface and allowed to establish firm adhesion on

the cantilever for 5 min. To measure surface adhesion, the

immobilized cell was lowered onto the functionalized half of the

substrate with a contact force of 1.5 nN for different contact times.

The cantilever was subsequently retracted at constant speed

(5 mm/s) over pulling ranges ensuring complete separation of cell

and surface (.70 mm). Usually, two to five force curves were

acquired for each cell and contact time interval. Between force

measurement cycles the retracted cell was left to recover for 2 to

3 min before being adhered to a different spot on the

functionalized surface. Maximal cell detachment forces, single

rupture force step height and corresponding loading rates were

extracted from retrace curves using the JPK IP Software. To verify

cadherin-mediated adhesion, control measurements were per-

formed in the presence of 10 mM EDTA, on EG4-thiol SAM

lacking the E1-5 construct or by using untransfected L-cells.

Results and Discussion

Covalent immobilization of E-cadherin ectodomains
We set out to functionalize surfaces with different cadherin EC

domain monomers at defined surface density. To this end we

generated two different constructs fused to a SNAP-12His-tag in

order to make use of the benzylguanine thiol (BGT) self-assembly

monolayer (SAM) method we have developed previously [23]. The

first construct (E1-5) contains the complete extracellular part of

human E-cadherin consisting of five EC domains. The second

construct contains a truncated version consisting of the full EC1

and the majority of the EC2 domain (E1-2). Both constructs

contain an N-terminal signal peptide and a propeptide required

for proper processing of the proteins in eukaryotic cells

(Figure 2A). While the signal peptide targets the newly

synthesized protein to the membrane, the propeptide is thought

to protect the N-terminus from premature intracellular cadherin

binding [26]. A furin-like protease removes the cadherin

propeptide at the cell surface, which limits the production of the

cadherin fusion proteins to eukaryotic cell lines, as the protease is

absent in bacteria. Of several mammalian cell lines tested,

HEK293 cells were the best producers of the E-cadherin-SNAP-

12His-tag proteins. A stretch of 12 histidine residues (12His) served

to extract the fusion protein out of the cell supernatant by Ni2+-

NTA affinity chromatography. To loosely mimic the belt-like or

punctate cadherin arrangement occurring in adherens junctions,

different patterns of thiol SAMs containing a mixture of 1:100

BGT/MT were generated by microcontact printing (mCP) on gold

surfaces. After backfilling with pure EG4-thiol to passivate the

remaining areas on the gold surface, E-cadherin-SNAP-tag fusion

proteins were covalently coupled to the BG headgroups via their

SNAP-tag (Figure 2B). Upright orientation and chemical

composition of these thiol SAMs have been previously character-

ized spectroscopically by XPS (X-ray photoelectron spectroscopy)

and PES (photoelectron emission) [27]. Successful immobilization

of the E1-5 construct was further confirmed by immunostaining

with antibodies specific for the E-cadherin EC domain

(Figure 2C) or the SNAP enzyme (data not shown).

E1-5 ectodomains arrayed at intermolecular distances of
5–11 nm promote E-cadherin-mediated cell spreading

To demonstrate the functionality of the immobilized E-cadherin

ectodomains in cell spreading assays, we generated an L-cell line

stably expressing human E-cadherin-EGFP (Figure S1A). L-cells

are murine fibroblasts which lack endogenous cadherins [28] and

are therefore widely used as a standard cell line to investigate

specific cadherin-mediated cell behavior, comparing the behavior

of cadherin transfected and untransfected cells. Transfected L-cells

(EcadEGFP/L-cells) revealed proper membrane localization of

human E-cadherin-EGFP (Figure S1B). When EcadEGFP/L-

cells were seeded on E1-5 patterns, they spread and readily

adapted to the rectangular pattern shape (Figure 3A, top panel).

Cadherin-specific binding of the transfected cells to immobilized

E1-5 was tested by seeding cells in the presence of EDTA or an

inhibitory anti-E-cadherin antibody (DECMA). Both treatments

resulted in a loss of pattern recognition and cell spreading of

EcadEGFP/L-cells, though occasionally rounded-up cells re-

mained attached to E1-5 pattern after blocking antibody treatment

(Figure 3A, bottom panel). Statistical evaluation further con-

firmed the significance of the results. We considered a spread cell

morphology as a read-out of cadherin-mediated adhesion and

determined the percentage of spread cells (formation of cellular

protrusions and irregular cell shape) of all attached cells (sum of

spread and rounded-up cells). While 69 6 12% of EcadEGFP/L-

cells spread on E1-5 patterns, only 18 6 6% of cells were spread in

presence of the DECMA antibody. The addition of EDTA

completely prevented cell spreading to the E-cadherin patterns or

the EG4-thiol background. In Ca2+-containing medium, however,

a small proportion of cell (5-10%) attached to the EG4-thiol

background (Figure 3B).

Although mechanisms of homophilic cadherin binding have

been intensively studied, it is still unclear to which extent precisely

Covalent Surface Immobilization of E-Cadherin
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the different EC domains contribute to cell adhesion [12,29,30].

This prompted us to investigate whether a shorter fragment of E-

cadherin, consisting only of the outermost EC1 and the majority of

the EC2 domains (E1-2, Figure 2A) was sufficient for supporting

E-cadherin-mediated cell binding. EcadEGFP/L-cells exhibited

poor spreading and never fully adapted their shape to the E1-2

rectangles as observed for E1-5 substrates (not shown). Instead,

those cells that attached to E1-2 patterns were usually rounded-up,

similarly to when cadherin function was blocked by DECMA

treatment on E1-5 substrates (Figure 3A). The relative frequency

of cells spreading on E1-2 patterns (25 6 8%) was only slightly

higher than on EG4 passivated areas (12 6 5%), or DECMA-

treated cells on E1-5 (18 6 6%, compare columns in

Figure 3B,C). Thus, E1-2 was insufficient to maintain E-

cadherin-mediated adhesion. This is of interest in the debate

about the role of the EC domains 2 to 5 in cell adhesion. The

alternative model by Zhang et al. [15] and reviewed in [16]

suggests that cadherin trans-dimer formation only involves

interacting EC1 domains, while the lateral cis-interaction of the

EC1 backbone with the EC2, the EC2/EC3 interdomain and part

of EC3 is required for subsequent cadherin clustering and lattice

formation at the cell membrane. However, the E1-2 construct

lacks part of the EC2 and the EC3, and hence cannot support EC1

to EC2/EC3 interaction. Lack of adhesion functionality of E1-2

therefore supports that EC1 to EC2/EC3 binding is required for

full binding activity. We therefore conclude that an EC1 swapped

trans-dimer formation alone is insufficient for cell binding. Only

lateral clustering of cadherin molecules may render sufficient

mechanical traction forces for cell adhesion. This idea is in line

with previous studies performed with a broad set of C-cadherin

deletion mutants pointing to the requirement of the EC3 domain

in adhesion [31,32]. These insights into cadherin monomer

function also underline the usefulness of the monomer immobi-

lization provided by the SNAP-tag immobilization technique,

compared to systems were pre-formed Fc-dimer constructs are

used that may bind cooperatively.

To complement the L-cell spreading experiments, we also

investigated the adhesion behavior of HeLa cells transfected with

EcadEGFP (EcadEGFP/HeLa) as a second cell system. HeLa cells

are negative for E-cadherin but express N-cadherin [33]

(Figure 2A). EcadEGFP/HeLa cells readily spread on immobi-

lized E1-5 and the cellular EcadEGFP distribution reflected the

E1-5 surface pattern, pointing to specific recognition of E1-5 by

EcadEGFP (Figure 2C). In contrast, cell spreading on E1-2 or the

passivating EG4-thiol was rarely observed (Figure 2B,C). Al-

though HeLa cells express endogenous N-cadherin, untransfected

HeLa cells did not spread on immobilized E1-5 (not shown). Thus,

cross-reactivity between endogenous N-cadherin and immobilized

E1-5 appeared negligible, underlining the specificity of E1-5

recognition by EcadEGFP in HeLa cells.

After confirming the functionality of the complete E-cadherin

ectodomain (E1-5) immobilized as monomers in cell spreading

Figure 2. Surface immobilization of E-cadherin constructs. (A) Schematic depiction of the E-cadherin E1-5 and E1-2 fusion constructs fused to
SNAP- and His-tag compared to full-length human E-cadherin (upper row). The numbers below the constructs indicate amino acid positions in these
constructs. SP: signal peptide, PP: propeptide, EC: extracellular domain, W2: Tryptophan 2, TMD: transmembrane domain, CPD: cytoplasmic domain.
(B) Schematic drawing of covalent binding of the fusion protein via its SNAP-tag to the benzyl group by releasing of the guanine part. A mixture of
benzylguanine thiol (BGT) and matrixthiol (MT) is applied to the gold surface by microcontact printing (mCP), whereas the unprinted areas are
backfilled with EG4-thiol. (C) Immunostaining of the microcontact printed area after protein functionalization using the H108 (top right image) or the
DECMA (other images) a-E-cadherin antibody. E1-5 protein binds specifically to the BGT containing areas. Scale bars 20 mm.
doi:10.1371/journal.pone.0093123.g002
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assays, we became interested in defining the optimal lateral

distance between E1-5 molecules required for promoting cell

spreading. If lateral clustering between these adhesion molecules is

a prerequisite for providing sufficient mechanical traction forces,

the intermolecular distance between E1-5 monomers should not

exceed a certain limit so that a lattice can still form from adjacent

monomers displayed within the SAMs. As covalent binding of the

cadherin fusion constructs via the SNAP-tag to BGT/MT occurs

at a 1:1 ratio, the cadherin surface density can be systematically

adjusted by reducing the BGT content in the SAMs. As shown in

Figure 3D the BGT/MT mixture could be diluted up to 1:500

without reducing the cell binding capacities of the E1-5 surfaces.

However, further dilution of BGT/MT mixture to 1:1000 or

above strongly decreased cell binding. We estimated the theoret-

ical density of immobilized E1-5 based on the work of Harder et

al., who defined the packing density of a defect-free thiol SAM to

be 0.214 nm2/thiolate [34]. As a result, a 1:100 BGT/MT SAM

would correspond to a distance between single E1-5 of about 5 nm

and a 1:500 BGT/MT SAM to a distance of 11 nm (Figure
S3A,B). Interestingly, a mixture of 1:1000 BGT/MT, which

corresponds to an average distance of 16 nm between single E1-5

molecules based on nearest neighbor distribution, lowers the

adhesion ability by more than 50% compared to a 1:500 BGT/

MT SAM (Figure 3D). Thus, our results point to an optimal

lateral distance between E1-5 monomers in the range of 5-11 nm.

These results are in agreement with the value of 5.7 nm measured

for the optimal surface density of Cadherin-11 ectodomains in

supported lipid layers required for proper tissue differentiation

Figure 3. Cell adhesion on immobilized E1-5 and E1-2 fusion constructs. (A) Upper row: fluorescence image of EcadEGFP/L-cells on
microcontact printed surfaces functionalized with E1-5; lower row in presence of 2 ml/ml blocking antibody (DECMA). Green: EcadEGFP fluorescence,
red: immunostaining against E-cadherin, merge: overlay with nuclei staining (DAPI). (B) Statistical analysis of spread EcadEGFP/L-cells on E1-5 pattern
(black) or on EG4-thiol (white) without treatment or in the presence of 10 mM EDTA or 2 ml/ml DECMA. Spread cells as percentage of total attached
cells per substrate type (mean6SE). N: numbers of experiments, n: numbers of cells. (C) Statistical analysis of spread EcadEGFP/L-cells on E1-2 pattern
(black) or on EG4-thiol (white). N: numbers of experiments, n: numbers of cells, mean6SE. (D) Statistical analysis of EcadEGFP/cells on E1-5 pattern of
different BGT:MT ratios as indicated (mean6SE). The dilutions used to create varying distances of E-cadherin monomers and the corresponding
theoretical intermolecular distances are indicated below.
doi:10.1371/journal.pone.0093123.g003
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[35]. Importantly, in contrast to cadherins anchored in lipid layers,

E-cadherin ectodomains covalently immobilized on thiol SAMs

are fixed in place and cannot move laterally. Thus, in thiol SAM

layers the bending capacity of the EC1-5 ectodomain limits lateral

clustering. In regard to the lattices model of Harrison et al. [14],

this suggests that a distance above 11 nm is too large to allow the

interaction of the EC1 domain of the immobilized E1-5 with the

EC2/EC3 domain of its lateral neighbor to form a cadherin

lattice.

Dynamic cell adhesion reinforcement during initial
cadherin adhesion

After having determined the optimal density of E1-5 immobi-

lization for overall cell spreading, we proceeded to investigate the

effect of receptor density on the formation of cadherin-mediated

cell adhesion forces directly by AFM-based single-cell force

spectroscopy (SCFS). SCFS provides excellent control over cell/

substrate contact times so that the dynamics of cell adhesion

formation can be studied. Single EcadEGFP-transfected L-cells

immobilized on an AFM cantilever (Figure 4A) were approached

for different time intervals onto homogeneous E1-5-surfaces

produced by using a 1:100 BGT/MT ratio (estimated intermo-

lecular spacing: 5 nm). Subsequently, cell-substrate rupture forces

were determined by pulling the cell away from the substrate

through an upward movement of the cantilever. As shown in

Figure 4B, EcadEGFP/L-cells showed progressive adhesion

strengthening with increasing contact time, typical for the

formation of receptor-mediated cell adhesion. To verify specific

cadherin-mediated adhesion, we performed a series of control

experiments. On EG4-thiol substrates lacking the E1-5 functiona-

lization, adhesion forces were significantly reduced at time points.

Likewise, adhesion was significantly reduced when removing

extracellular Ca2+ by EDTA addition to the medium or when

testing untransfected, cadherin-negative L-cells. Together, the

control experiments thus confirmed specific, E-cadherin-mediated

cell adhesion to the E1-5 substrate and underlined the suitability of

these surfaces to study molecular mechanisms of cadherin-

mediated adhesion processes.

Over the first 300 s of substrate contact, the build-up of

cadherin-mediated cell adhesion forces followed a sigmoidal

pattern: Initially (#10 s), cells showed a low adhesion force of

about 1.7 nN, which strengthened about 2.7-fold to 4.6 nN

between 30 and 120 s of cell attachment. In the remaining 180 s

of contact, only a slight further force increase of less than 10%

(from 4.6 to 5 nN) occurred. The formation dynamics and range

of cadherin-mediated adhesion forces we measured were on a

similar scale as other cadherin-dependent forces reported in

several previous studies in different cell types and techniques. For

instance, the mean value of traction forces of C2 mouse myogenic

cells on N-cadherin coated pillars measured over 20 min is about

15 nN [36]. Measurements of binding probability of cadherins

over shorter time intervals were performed by Chien et al. using

cell aspiration assays between C-cadherin expressing cells and C-

Cadherin functionalized red blood cells [32]. Interestingly, the

binding probability increased strongly within the first 2 s, followed

by a lag phase between 2-7 s, and again increased until after 20 s a

plateau was reached [32]. Using a different approach, we observed

a similar biphasic response, although the dynamics of adhesion

formation was slightly shifted in SCFS experiments. Between 5 to

10 s we measured a moderate constant adhesion force, while a

continuous increase of the adhesion force was observed after 30 s

contact time. We assume that the delayed increase in adhesion

force generation reflects the input of E-cadherin clustering and

cytoskeleton anchorage. A comparable biphasic displacement

behavior of N-cadherin loaded beads on myogenic C2 cells has

been previously reported [37]. N-cadherin loaded beads showed

an initially freely diffusive phase (20–100 s, depending on the

density of loaded N-cadherin), followed by a second phase of

directed diffusion due to the anchorage of the cellular N-cadherin

receptors to the cytoskeleton.

The dynamic reinforcement of cadherin-mediated adhesion

forces has not been quantitated before in living cells over time

scales extending to several minutes. The forces measured with our

method likely reflect the progressive recruitment process of

cadherins into new cell-cell contacts, processes which have

previously been traced by photobleaching and recovery of E-

cadherin-EGFP [38]. Lateral clustering of E-cadherin into

cadherin lattices [39] and an increase in the number of engaged

receptors in the contact area may lead to the strong force increase,

starting 30 seconds after contact initiation. This time window

corresponds to E-cadherin puncta formation connected to the

actin cytoskeleton at newly formed cell contacts [38]. Subsequent-

ly, fusion of the early puncta into larger patches further promotes

cadherin clustering, occurring 10–15 min after cadherin-cadherin

engagement at the earliest [40]. These later-stage processes of

cadherin aggregation were not investigated here. However, the

SCFS measurements confirmed the suitability of the SNAP-tag

immobilization method to quantitate early events of cadherin-

mediated cell adhesion.

Single-molecule adhesion forces between cadherin
monomers

After quantitating cadherin-mediated adhesion forces to immo-

bilized E1-5 on the single cell level, we were interested in obtaining

further insight into cadherin adhesion forces on the single receptor

level. Therefore, we performed single-molecule force spectroscopy

(SMFS) experiments with the E1-2 and E1-5 cadherin constructs,

subjecting them to homomeric (E1-5/E1-5 or E1-2/E1-2) or

heteromeric (E1-5/E1-2) bond breakage under a linear force ramp

(Figure 5A-C). In these experiments, both AFM-tips and gold

surfaces were functionalized with the corresponding cadherin

molecules and brought into contact for a defined time, allowing

the molecules to form an adhesive complex. Upon withdrawal of

the tip from the surface, bond breakage becomes visible as a jump

in the retraction curve. When using short contact times (,5 s) and

low contact forces (,200 pN), about 20% of all force curves

involving E1-5 homodimers displayed unbinding events, while

heterodimers composed of E1-2 and E1-5 produced a 8–10% yield

under identical contact conditions. In the case of E1-2 attached to

tip and substrate, only 5% of all curves displayed rupturing of

bonds. The low interaction probability in all experiments indicated

that primarily single molecule rupture events were detected

according to Poisson statistics. To further confirm that these

experiments detected the unbinding of individual bonds, the

rupture events were wormlike chain (WLC)-fitted, which provided

persistence lengths of lp = (0.5 6 0.1) nm, indicative of single

polypeptide chain stretching (Figure S4). Counting only rupture

events consistent with single polymer chain stretching (WLC

behavior) restricted our analysis to events corresponding to single-

molecule mechanics and excluded non-specific contact mechanics

dominated by attractive van-der-Waals forces. As a specificity

control for cadherin-mediated binding, force curves were collected

in the presence and absence of Ca2+-ions.

Single-molecule rupture events were recorded as a function of

construct size, contact time, presence of calcium ions, and loading

rate. Figure 5A shows typical force extension curves obtained

from disjoining E1-5 homodimers (left column) in the presence

(green) and absence (grey) of Ca2+ -ions (2 mM). Generally,
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unbinding forces of homomeric E1-5-bonds were substantially

larger in the presence of Ca2+ (35–90 pN) than in the absence of

Ca2+ (0–20 pN) at an identical pulling speed of 1 mm/s. The

rupture force histograms for homomeric unbinding of E1-5

displayed two distinct peaks, centered around 35 and 60 pN

(Figure 5A). While addition of 2 mM EDTA fully abolished

specific interactions between E1-5 cadherin ectodomains, a

smaller relative impact of Ca2+-depletion was found on rupture

forces during disjoining of E1-2 dimers (Figure 5B, red curve

with calcium, grey curve after calcium depletion). However, in this

case unbinding forces were already lower (around 20–30 pN, see

red histogram in Figure 5B). The unbinding of heteromeric E1-

2/E1-5 (Figure 5C) showed a complex distribution of rupture

forces (yellow histogram in Figure 5C), but with a lower number

of events than observed for the homomeric E1-5 interaction.

To obtain further insight into the cadherin unbinding mecha-

nism, we investigated the loading rate dependency of the

unbinding forces (Figure 6). Again, only rupture events that

displayed clear WLC behavior prior to disjoining were taken into

account, excluding non–specific interactions from the analysis.

However, based on this requirement, homomeric interactions

between the shorter E1-2 constructs could not reliably analyzed

due to difficulties in distinguishing between specific and non-

specific interactions. Plotting the most probable rupture force Ff as

a function of loading rate rf provides a means to compute the off-

rate at zero force koff (F = 0) and the distance from the ground

state to the transition state (xu) according to equation (1) and

assuming a single well potential:

Ff ~
kBT

xu

ln
xurf

kBTkoff

� �
ð1Þ

The E1-5 bond rupture force histograms revealed a bimodal

distribution at all tested pulling speeds (Figure 6A). We

interpreted the bimodal distribution of the homomeric E1-5 bond

as the probing of two different types of bonds. Therefore, we

plotted the maxima of the first peak (green triangles) at low force

and the second peak (green circles) at high force separately over

the corresponding loading rates (Figure 6B). For comparison, we

also added data obtained by Leckband and coworkers (purple

stars, [41]), which largely matched our results regarding the

stronger bond fraction. Also in agreement with previous data

presented by Leckband and coworkers, the width of the potential-

well amounted to xu , 1.1 nm. In contrast to the homotypic E1-5

interaction, the force histograms obtained from E1-2/E1-5

interactions (orange symbols in Figure 6B) and E1-2/E1-2

interactions (data not shown) displayed substantially lower forces.

However, occasionally we also observed larger forces for these

interactions, possibly reproducing the low and high force peaks

found for homotypic E1-5 bond breakage.

A bimodal distribution of unbinding forces could be explained

either by occasional formation of E1-5 cis-dimers prior to trans-

binding, yielding two different classes of trans-interactions

depending on the cis-dimerization state. Replacing E1-5 by E1-

2, which lacks part of EC2, the EC2/3 interdomain region and

EC3 important for cis-dimerization, resulted in an overall

reduction of binding strength, indicating an important role of

lateral interactions for modulating the binding strength of E-

cadherin. However, cis-dimerization alone is unlikely to account

for the switch between high and low binding strength in the E1-5

construct and alternative mechanisms may account for the rupture

force variability. For instance, different trans-interaction sites could

exist on a single cadherin strand, which are exposed depending on

the precise molecular orientation. Biomembrane force probe

measurements also indicate that multiple binding states are

responsible for the adhesive contact between cadherins: Leckband

Figure 4. Single-cell force spectroscopy. (A) Schematic depiction of an SCFS experiment. A single probe cell is attached to an AFM cantilever (I)
and brought in contact with the substrate (II). During cell retraction (III) a force curve is recorded from which the cell adhesion force can be
determined. (B) Adhesion forces (mean 6 SEM) measured at different contact times. EcadEGFP/L-cells on E1-5 (black), on EG4-thiol (light grey), on E1-
5 in the presence of 10 mM EDTA (dark grey) and untransfected L-cells on E1-5 (white) were tested. The significance was determined using the Mann-
Whitney test (* p, 0.05). At least 10 cells were tested per condition.
doi:10.1371/journal.pone.0093123.g004
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and coworkers found two weak bonds with a koff1 = 3.9 s21 and

koff2 = 0.019 s21 when rupturing EC1–EC2 fragments [41], while

EC1–EC5 fragments exhibited four different bond classes differing

in strength and off-rate. These different states did not correspond

to multiple cross-links, as the dominant peak at higher forces

displayed an off-rate (koff = 1.2 61024 s21) which was similar to

our findings for the high rupture force population in single

molecule unbinding events.

Zhang and coworkers measured an identical binding strength of

wildtype cadherins acting either as monomers or as laterally

connected dimers (peak force of 64 6 27 pN) [15]. Although in

these experiments the bond strength of monomeric and cadherin–

Fc dimer complexes were similar, the cadherin-Fc dimer showed a

higher probability of binding than the cadherin monomer [15],

indicating that dimerization may enhance the chance of cadherin

binding initiation. In agreement, varying the contact time between

the functionalized AFM-tip (E1-5) and the substrate (E1-5)

between 0 to 5 s also revealed an increase in binding probability

with contact time but no significant impact on the scale of

unbinding forces in our measurements. Our single-molecule

Figure 5. Single-molecule force spectroscopy. (A) Force spectroscopy data obtained during the bond rupture between E1-5 constructs
attached to a gold-coated AFM tip and a gold-covered glass slide (see scheme). A typical force extension curve shows the unbinding of E1-5 dimers in
the absence of calcium ions (grey) and the presence of calcium ions (green). The extension curves show nonlinear stretching behavior preceding
bond rupture. The rupture force histogram (green) reveals two major maxima potentially corresponding to two types of bonds. (B) Corresponding
SMFS data of force-assisted unbinding of E1-2/E1-2 (red) or (C) E1-5/E1-2 (orange) cadherin molecules attached to tip and substrate as illustrated in
the schemes. Tip substrate contact time was 0.1 s and pulling velocity was 1 mm/s.
doi:10.1371/journal.pone.0093123.g005
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measurements therefore confirmed that E-cadherins-SNAP-tag

fusion constructs display essentially identical binding mechanisms

as Fc constructs. Cadherin-SNAP tag constructs therefore provide

an alternative system to study cadherin-mediated adhesion

processes, albeit with the added benefit of covalent, oriented and

density-controlled immobilization.

Integrating SMSF and SCFS reveals sequential unbinding
of cadherin bonds

As demonstrated above, in SCFS the dynamic formation of

cadherin-mediated cell adhesion can be monitored as an increase

in cell detachment forces with increasing cell-substrate contact

time (Figure 4B). However, in addition to quantitative informa-

tion about overall cell adhesion (maximal detachment force),

SCFS force-distance curves also contain a series of discrete rupture

force steps which can provide information about the scale and

number of individual adhesive contacts that have formed during

substrate contact (Figure 7A). Analyzing these small rupture

steps, which may correspond to the rupture of single receptor

bonds or to small groups of receptors unbinding collectively, can

provide additional insight into the receptor binding mechanism

[42,43]. For instance, in integrin-mediated adhesion, progressive

receptor clustering and adhesion reinforcement coincides with a

gradual increase of the single rupture step size above the single-

receptor level [42,44]. However, rupture events group into two

mechanistically different classes which must be distinguished

during force curve analysis [45]. Single rupture events, or ’’force

jumps‘‘, denote bond rupture of cytoskeleton-associated receptors.

Cytoskeletal anchoring stiffens the adhesive bridge and causes a

non-linear force increase prior to bond rupture [46]. Since these

bonds rupture under force loading, the corresponding rupture

force steps can be analyzed to determine the receptor-ligand bond

strength in relation to the applied loading rate [43,47]. In contrast,

tethers are small cytoskeleton-free membrane tubes extracted from

a large plasma membrane reservoir under constant force,

indicated by a force plateau before rupture [48,49,50]. Tether

rupture forces are related to the force required for membrane tube

extraction, but provide no information regarding the strength of

individual receptor-ligand bonds at the tether tip or the number of

receptors maintaining the tether.

In addition to the slope of the force curve preceding rupture,

single rupture steps and tether events can be distinguished by the

position within the F-D curve at which they occur [51]. Single

rupture steps occur early during retraction while the cell body is

detaching from the substrate, whereas tethers are easily extended

to several tens of micrometer [52,53] and often rupture only in the

final phase of cell retraction after the main cell body has already

detached fully from the surface [45,51]. SCFS retraction curves on

E1-5 substrates contained a characteristic rupture step pattern

consistent with the presence of both single rupture steps in the

early phase of retraction and tether rupture at lager stages

(Figure 7B). The tether rupture events showed a regular

staircase-like pattern, similar to what has been recently observed

for integrin receptors whose intracellular link to the actin

cytoskeleton has been severed [54]. To restrict the rupture force

analysis to single rupture steps, we defined a plateau length

exceeding 300 nm before bond rupture as a criterion for tether

behavior [49] and removed all rupture events meeting this

condition (23–54% of all rupture events, depending on the cell-

substrate contact time) from subsequent rupture force analysis.

Quantification of the remaining single rupture steps after 5 s of

substrate contact yielded a rupture force distribution spanning

from about 35 to 200 pN, with a maximum around 50 pN

(Figure 7C). At the same retraction speed (5 mm/s), SMFS

experiments yielded higher bond loading rates compared to SCFS

measurements, indicating a stiffer linker/receptor bridge in the

cell-free system, and therefore accelerated force loading before

bond rupture. However, at low retraction speed (0.1 mm/s), the

mean loading rates of single cadherin unbinding events in SMFS

and single rupture steps in SCFS experiments were comparable

(,700 pN/s). Under these conditions, SMFS yielded single

cadherin unbinding forces between 15 and 70 pN, with a maxima

around 55 pN (Figure 6). Thus, at short contact times the

majority of single rupture steps in cells were within a similar range

as single E1-5/E1-5 interactions measured in SMFS experiments,

suggesting that they primarily represent single cadherin-cadherin

bond breakage.

To investigate the development of single rupture steps with

increasing contact time, we defined an arbitrary upper single-

molecule force limit of 105 pN. This cut-off force covered all single

cadherin unbinding forces determined at comparable loading rates

in SMFS experiments and also the majority of single E-cadherin

unbinding forces measured by Panorchan et al. in a CHO cell

system at the same cell retraction speed (5 mm/s) [55]. Using this

value as an approximate upper force threshold for single-molecule

events indicated that the majority of rupture events (.78%) in

Figure 6. Dynamic force spectroscopy. (A) Rupture force distributions obtained at different retraction speeds for the homotypic E1-5 bond
rupture. (B) Rupture force Ff as a function of loading rate for homotypic E1-5 (green symbols) or heteromeric E1-2/E1-5 bond rupture (orange
symbols). The different symbols represent the maxima identified in the multimodal distribution of rupture force obtained for a given loading rate. For
the homotypic E1-5 bond we determined xu = 1.1 nm and koff = 1.2 6 1024 s21 (green circles); xu = 2.3 nm and koff = 1.4 6 1025 s21 (green
triangles). For the heteromeric E1-5/E1-2 bond we determined xu = 4.5 nm and koff = 5.961027 s21 (yellow triangles). The violet stars indicate data
taken from [41].
doi:10.1371/journal.pone.0093123.g006
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Figure 7. Rupture force step analysis in SCFS experiments. (A) A single L-cell expressing Ecad-EGFP is approached onto an E1-5 surface.
During substrate contact individual cadherin adhesion contacts form progressively. (B) During subsequent cell retraction, individual contacts rupture
sequentially, leading to a step-like signature in the force-distance curve. Cytoskeleton-attached receptor bonds rupture under active force loading
(single rupture steps, zoom-in), while membrane tethers are extracted under constant force, indicted by a plateau in the force curve before bond
rupture. A plateau length cut-off of 300 nm was used to separate single rupture steps from tethers. (C) Single rupture step histogram after a contact
time of 5 s. The dotted line indicates an arbitrary force threshold which contains ,95% of single cadherin unbinding forces determined in SMFS
measurements. The percentage values indicate the fraction of single rupture steps falling below (on the right) or above (on the left) the single-
molecule force threshold. (D) Single rupture step histogram after 300 s. The percentage values indicate the fraction of single rupture steps falling
below (on the right) or above (on the left) the single-molecule force threshold. (E) Rupture step sizes versus contact time as box-whisker-plots. The
dotted lines indicate the same single molecule force threshold as in (C) and (D). (F) Number of single rupture steps (6SD) per force-distance-curve for
different cell-substrate contact times. A trend line highlights the increase in rupture force step number per force curve with increasing contact time.
doi:10.1371/journal.pone.0093123.g007
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cells falls within the single-cadherin range at short contact time

(Figure 7C). After 300 s contact, there is a slight increase in the

percentage of single rupture forces ranging above the single

cadherin bond threshold, suggesting a partial change from single

to cooperative receptor binding or an increase in the adhesion

strength of individual receptors (Figure 7D). However, the

majority of single rupture events (75%) still rang at the single

cadherin level across the entire 300 s interval (Figure 7E),

although overall adhesion increases greatly over the same interval

(see Figure 4B). This indicated that during cell detachment

individual cadherin receptors unbind sequentially, instead of

simultaneously as larger groups of cross-linked receptors. Howev-

er, the number of rupture force steps per force curve increased

with contact time, demonstrating a progressive increase in the total

number of engaged cadherin receptors with time, which would

account for the increase in overall cell adhesion with time

(Figure 7F). Together, these findings suggest that cadherin

contacts are primarily reinforced by increasing the number of

engaged receptors and by organizing these receptors into regular

yet comparatively loosely associated adhesive clusters. Integrating

results obtained from both SMFS and SCFS measurements on

structurally and chemically well-defined cadherin adhesion sub-

strates can therefore provide a better understanding of mecha-

nisms underlying cadherin binding in the cellular context.

Conclusions

In this work we have presented a novel method for covalent

surface immobilization of different monomeric E-cadherin con-

structs using a SNAP-tag approach. This method provides an

important alternative to Fc-fusion protein immobilization, and

generates patterned cadherin surfaces with defined receptor

orientation and adjustable lateral density. We confirmed the

biological functionality of these surfaces in cell spreading and AFM

single-cell and single-molecule adhesion experiments and deter-

mined a receptor spacing of 5 to 11 nm for optimal cell spreading.

Furthermore, by integrating SMSF and SCFS measurements we

gained additional insight into the formation and rupture mechan-

ics of cadherin bonds and the contribution of individual cadherin

ectodomains for mediating cell adhesion. Recently, the SNAP-tag

has also been applied to functionalize 3D polymer scaffolds with

high special accuracy [56]. When using cadherin SNAP-tag

proteins in these applications, the SNAP-tag immobilization

method should foster activities aimed at rebuilding organotypic

cell assemblies 3D, providing a unique opportunity to investigate

cadherin function beyond 2D surfaces.

Supporting Information

Figure S1 Western-blot analysis of L-cells. (A) Western-

blot analysis of wildtype L-cells and EcadEGFP expressing L-cells.

Merged phase contrast and fluorescence images of EcadEGFP/L-

cells (B). Junctional localization of EcadEGFP indicates proper cell

adhesion function of the construct in L-cells.

(TIF)

Figure S2 Western-blot analysis of HeLa cells. (A)

Western-blot analysis of wildtype HeLa cells and EcadEGFP-

transfected HeLa cells for E-cadherin (right panel) or N-cadherin

(left panel). Statistical analysis of EcadEGFP/HeLa cells spread on

E1-5 or E1-2 patterns or on EG4-thiol. N: numbers of

experiments, n: numbers of cells, standard error is shown (B).

Fluorescence image of EcadEGFP/HeLa cells on microcontact

printed surfaces functionalized with E1-5 or E1-2. Green (C):

EcadEGFP fluorescence, red: immunostaining against E-cadherin

(E1-5) or SNAP-tag (E1-2), merge: overlay with nuclei staining

(DAPI).

(TIF)

Figure S3 Average distance calculation of E-cadherin
monomers. (A) Theoretical hexagon grid used for the calcula-

tions. Each hexagon marks the area occupied by one benzylgua-

nine thiol diluted in matrixthiol. The intermolecular distance d

corresponds to 26 the radius r of the hexagon. Based on Harder et

al. 1998, the area A occupied per thiolate is 0.214 nm2 [34]. When

this value is multiplied with the dilution ratio, the hexagon radius

and the intermolecular distance can be calculated (B).

(TIF)

Figure S4 Persistence length analysis. Left: Typical force

extension curve during bond breakage of E1-5 constructs (green

curve). A WLC-fit (blue) provides a persistence length of 0.5 nm,

consistent with the stretching of a single polypeptide chain. Right:

Persistence lengths obtained from WLC-fitting of rupture events

recorded at different pulling speeds.

(TIF)
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