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Abstract: The immune system of young infants is both quantitatively and qualitatively distinct from
that of adults, with diminished responsiveness leaving these individuals vulnerable to infection.
Because of this, young infants suffer increased morbidity and mortality from respiratory pathogens
such as influenza viruses. The impaired generation of robust and persistent antibody responses in
these individuals makes overcoming this increased vulnerability through vaccination challenging.
Because of this, an effective vaccine against influenza viruses in infants under 6 months is not
available. Furthermore, vaccination against influenza viruses is challenging even in adults due to
the high antigenic variability across viral strains, allowing immune evasion even after induction
of robust immune responses. This has led to substantial interest in understanding how specific
antibody responses are formed to variable and conserved components of influenza viruses, as
immune responses tend to strongly favor recognition of variable epitopes. Elicitation of broadly
protective antibody in young infants, therefore, requires that both the unique characteristics of young
infant immunity as well as the antibody immunodominance present among epitopes be effectively
addressed. Here, we review our current understanding of the antibody response in newborns and
young infants and discuss recent developments in vaccination strategies that can modulate both
magnitude and epitope specificity of IAV-specific antibody.
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1. Influenza Virus Infection of Young Infants

Following birth, infants must make the transition from the protected environment of
the womb to the antigen-rich outside world. This requires substantial adjustment by the
immune system as it begins to encounter its first non-self antigens. Shortly after birth, the
immune system exists in an altered state that is broadly characterized by the suppression
of inflammatory responses, which recent studies suggest is necessary for the induction
of tolerance to commensal microbiota and harmless environmental antigens [1–3]. While
this benefits the long-term health of the individual, these immune alterations can leave
young infants vulnerable to viral and bacterial illnesses [4,5]. Influenza A virus (IAV) is a
relatively common viral respiratory tract pathogen that exhibits higher rates of infection
and leads to higher incidence of serious disease or secondary complications following
primary infection of newborns and young infants [6–8].

Compounding this increased susceptibility to infection and severe disease, the damp-
ened newborn immune response poses significant challenges for the elicitation of protective
immunity by vaccination [9]. In addition to lacking potency in the initial immune response,
responses in young infants tend to be relatively transient, limiting the window of protection
that is conferred even in the face of successful immune stimulation [10,11]. Because of
these barriers to vaccine efficacy, there is currently no IAV vaccine available to infants
under 6 months of age [12,13]. As vaccination is currently the most effective method of
preventing IAV infection and ameliorating severe disease, this leaves infants without the
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benefit of vaccine-mediated protection outside of passively transferred maternal antibody,
which wanes significantly within the first 2–3 months after birth, with minimal remaining
antibody by 7 months [14–17]. Given the requirement for two doses of the IAV to achieve
protection and the inability to deliver the first dose until 6 months of age, there is a strong
and urgent need to better understand not only the nature of viral immunity in newborns
and young infants, but how it can be manipulated to provide optimal protection at early
times following birth.

While the immune system of the young infant provides its own special challenges
with regard to vaccine development, current approaches towards vaccinating against
influenza viruses are far from perfect—even for healthy adults. Influenza viruses are highly
variable due to their capacity for antigenic drift, necessitating yearly updates to maintain
vaccine efficacy. This requires accurate prediction of circulating strains each season prior to
vaccine production [18–20]. Current seasonal vaccines contain either inactivated influenza
viruses or live attenuated viruses. The former is administered intramuscularly and the
latter intranasally. Both types of vaccines are quadrivalent, containing the two strains of
influenza A and two strains of influenza B predicted to be most highly circulating that
season. Antibodies generated following vaccination are predominantly directed to the
variable head region of the influenza hemagglutinin (HA) protein [21,22].

The challenge of annual reformulation of the vaccine has led to considerable effort
dedicated to the development of a “universal flu vaccine”—one that elicits immune pro-
tection against a wide variety of viral strains. Generation of broadly protective immune
responses is of particular interest for young infants considering the potentially life-long
consequences of immune responses during this immunologically impressionable period
in early life. Opportunely, many of the strategies being investigated in attempts to elicit
broadly cross-protective antibodies to influenza viruses may also have a role in improving
immune responses in young infants. Here, we will review some of the prominent deficits
in the antibody responses of young infants (summarized in Table 1) and discuss recent
advances and current considerations in the study of young infant IAV vaccination. We
discuss findings in animal models, primarily mice, as well as humans, predominantly cord
blood. We note that while the mouse is a highly tractable and powerful model, there are
limitations. Mice are born with immune systems that are less mature than humans, not
reflecting humans until approximately a week of age. Their rapid aging to adulthood
limits the study of immune system maturation through the period of infancy, i.e., newborns
versus young infants. Further, differences in maternal antibody transfer, the balance of
leukocyte subsets, Toll-like receptors, and antibody subsets may also impact findings in
newborn mouse models [23,24]. While these differences must be considered, the mouse
provides an important model, especially for in vivo studies.

We will primarily discuss alterations identified in circulating and secondary lymphoid
tissues given our focus on vaccines and that most of our understanding is derived from
these sites. However, we note that mucosal immune responses are a critical component of
protection following infection and understanding the regulation of immune responses in
these tissues in newborns and young infants is a significant area that merits further study.

Table 1. Alterations in early life antibody responses relative to those seen in healthy adults.

Initiation of the antibody response

Innate mediators of humoral
immunity

↓ production of Th1-associated cytokines by DCs
↓ antigen presentation
↓ complement levels

B cell activation
↑ surface IgM expression

↑ initial proliferationAltered responses to TLR signaling despite similar
levels of expression

GC localization ↓ CD62L and CCR7 on newborn B cells
↓ homing to lymphoid organs
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Table 1. Cont.

The germinal center response

B cells
↓ somatic hypermutation

↓ mutation and clonal diversity
↓ antigen presentation to obtain T cell help

T follicular helper cells

↓ differentiation and localization to the GC
(likely due to

↓ transcription of CXCR5 and Bcl-6)↓ surface expression of CD40L
↑ representation of regulatory T cells

Follicular dendritic cells Functional immaturity impairs establishment and maintenance of GC
architecture

Lasting antibody protection

Terminal differentiation Preferential generation of MBCs
↓ adoption of plasma cell phenotype ( ↓ TACI expression)

Survival ↓ homing of LLPCs to bone marrow niche
↓ production of survival signals by BM stromal cells

2. The antibody Response of Young Infants
2.1. Natural Antibody against Influenza Virus

The B cell compartment of young infants exhibits significant alterations in its innate
as well as adaptive compartments. In mouse models, “natural” antibodies are produced
by B1 cells, a more innate-like subset of B cells [25–27]. There is controversy around the
existence of B1 cells in humans and if present, whether their function parallels that reported
in mouse models. Additional studies will be required to resolve this issue.

Natural IgM (nIgM) produced by B1 cells tends to be polyreactive, which may have
benefit for protection against a highly variable virus like IAV; however, this is balanced
by the limited capacity of B1 cells to undergo affinity maturation to produce high-affinity
antibody and to undergo class-switch recombination (CSR) [25]. It appears that a wave of
natural antibody producing B1 cells emerge early in life, while B2 cells experience a delay,
potentially providing essential protective coverage during the first days of life [28–31].

In mouse models, B1 cells are proposed to recognize conformational epitopes on
carbohydrate-rich IAV spike proteins, likely HA [32] and these antibodies often have
hemagglutinin (HA)-inhibiting properties [33]. Data showing the ability of natural antibody
to promote recruitment and activation of the innate immune system as well as its capacity
to inhibit viral entry make it an important potential contributor to the early immune
response [32]. In the context of influenza virus infection in mice, the presence of pre-existing
virus-reactive IgM has been shown to delay morbidity and mortality via complement-
mediated viral neutralization [26,34–37]. However, these B1-derived antibodies do not
increase following influenza virus infection and therefore these cells may have limited
utility as targets of vaccination [36].

2.2. B2 Activation in Response to Influenza Virus

The generation of high-titer, antigen-specific antibody following infection or vaccina-
tion is the result of the activation and differentiation of B2 cells. In young infants, deficits
are evident at multiple steps in this process. With that noted, there is some debate regarding
the relative contributions of inherent B cell dysfunction versus the influence exerted by
accessory immune cells to the altered nature of the neonatal B cell response [12,38–41]. B
cells from newborns and young infants display several unique qualities not seen in mature,
immunocompetent humoral responses. Beyond global deficiencies in antibody production,
one qualitative differences in newborn and adult responses is the change in BCR repertoire
and immunoglobulin chain usage in very early life—while this may not affect the quantity
of antibody produced, it may certainly influence how different antigens are recognized and
responded to [38,40].

Due to a lack of antigen exposure, most newborn B cells are naïve cells that express
IgM [42]. B cells from cord blood have been shown to have higher surface expression
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of IgM than those found in adult PBMC, while adults had higher levels of IgM stored
intracellularly [43]. In studies of human cord blood cells or newborn mice, ligation of
the BCR is capable of eliciting robust proliferation, although there may be deficiencies in
downstream activation events, such as surface expression of MHC-II and survival after
rapid cell cycle entry [44–46]. This is consistent with a model in which newborn B cells
can respond rapidly to antigen encounters, but lack the reserve to sustain robust immune
responses. Thus, while this transient response may provide some protection against
pathogens, it is less conducive to the generation of immune memory or sustained antibody.

Although neonatal B cells appear capable of responding to antigen via BCR signaling,
they have altered responses to both pathogen-associated molecular patterns (PAMPs)
and cytokines produced by other immune cells, often exerting anti-inflammatory effects
in response to what would normally be activating signals [47,48]. For example, while
B cells from human newborns have been shown to have similar expression of TLRs as
those from adult peripheral blood [49], in both mouse and humans, they display distinct
patterns of cytokine production after stimulation with TLR agonists [48,49]. In addition to
limiting inflammation, this altered cytokine profile also likely contributes to the Th2 bias
characteristic of newborn immunity [49,50].

In terms of direct alterations in B cell effector function, defects in the BAFF/APRIL
signaling system lead to reduced differentiation into plasma cells in mice, thereby limiting
the actual production of antibody [47]. Human cord blood B cells also have diminished
expression of CD25, with correspondingly low sensitivity to IL-2 stimulation, resulting
in limited proliferative responses [44]. Thus, these cells exhibit a defective response to
host-produced immune factors as well as pathogen-derived innate stimuli.

B cell effector function is also dependent on the ability to mobilize towards sites where
antigen and accessory cells are present. Cord blood B cells exhibit reduced expression
of both CD62L and CCR7, leading to a reduced capacity of newborn B cells to home to
lymphoid organs and obtain T cell help [44]. In contrast, no difference between cord blood
and adult B cell expression of CXCR5, which is required for movement both to the follicle
and to the germinal center (GC), was observed. The reduced activation and localization of
B cells to lymphoid tissue both dampen the initial antibody response and severely limit the
potential to elicit lasting, high-quality protective antibody and B cell memory requiring
affinity maturation.

2.3. The Germinal Center of Young Infants

As noted above, the B cell repertoire of young infants is more limited than adults.
This is the result of low expression of the enzyme TdT, which leads to decreased non-
templated-nucleotide addition during V(D)J recombination [51,52]. Thus, young infants
have a restricted array of BCR from which to initiate a response. The generation of effective
lasting immunity requires optimization of pathogen recognition by selection of high-affinity
antibody and the generation of memory B cells (MBCs) as well as long-lived plasma cells
(LLPCs). These processes are driven by differentiation and affinity maturation in the GC.

The intricacies of clonal selection—particularly as it pertains to selection of epitope
specificity rather than simply BCR avidity—are still not fully understood. The GC reaction
requires both spatial and temporal coordination between several subsets of immune cells
and as a result there are multiple facets of this response that can be altered in young
infants. The establishment, expansion, and function of GCs is diminished in this age group,
leading to decreased quantity and quality of protective immune responses after infection
or vaccination [10,53–55].

Some of the defects in affinity maturation can be attributed to intrinsic alterations in
B cell function. B cells from human infants exhibit a reduction in somatic hypermutation
(SHM) [56,57]. SHM allows for generation of high affinity BCR that promotes clonal
selection as a results of successful competition for T cell help in the GC reaction. In a study
of neutralizing antibodies generated in young human infants (<3 months of age) following
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infection with respiratory syncytial virus (RSV), investigators found limited evidence of
SHM [58].

B cells isolated from cord blood also have demonstrated defects in the purine salvage
pathway, resulting in an increased reliance upon de novo nucleotide synthesis [59]. This
metabolic strain is speculated to restrict processes with high nucleotide requirements, such
as proliferation and SHM [59]. Once GC B cells have mutated their receptors to obtain
antigen, they must also test their ability to obtain survival signals from T follicular helper
(Tfh) cells; however, B cells from murine newborns and young infants have a decreased
capacity to present antigen to receive T cell help, further limiting affinity maturation of the
overall response by reducing opportunities for positive selection [60].

In addition to intrinsic alterations in B cells, the GC response in young infants is
limited by a variety of external factors integral to GC function. GC development requires
structural organization by a network of follicular dendritic cells (FDCs) and follicular
reticular cells (FRC), which are not fully mature during the early postnatal period [61,62].
The hampered ability to organize the anatomic architecture required for a GC reaction
appears to not only delay the onset, but also limit persistence and diminish the magnitude
of affinity matured antibody responses in newborn mice [63]. FDC immaturity is also
associated with diminished availability of captured and displayed immune complexes in
the GC, further limiting the capacity of B cells to take up and present antigen to acquire T
cell help.

As mentioned above, Tfh cells play an essential role in affinity maturation. This T cell
subset is characterized by expression of CXCR5, which recognizes CXCL13 secreted by
GC FDCs to allow homing to the germinal center, as well as the key transcription factors
Bcl-6, Ascl2, and Batf [64]. Tfh are responsible for positive selection of B cell clones that
can efficiently take up, process, and present antigen in the light zone of the GC. Signaling
through ICOS/ICOSL and CD40/CD40L inhibit B cell apoptosis during T/B interactions
facilitated by TCR recognition of presented antigen [65]. These signals also drive the
differentiation of GC B cells into memory B cells (MBCs) and long-lived plasma cells
(LLPCs); however, the mechanisms of this process are incompletely understood [66]. Recent
studies in humans have described a subset of circulating Tfh (cTfh) in the periphery that
correlate with the affinity and magnitude of antibody responses to IAV vaccination [67–71].
These cells serve as a surrogate for assessment of GC Tfh cells. The importance of Tfh cells
both in and out of the germinal center has made their study an area of considerable interest
in the field of vaccinology.

The ability of Tfh to provide help to B cells in the GC depends on coordination of
Tfh differentiation, positioning, and expression of appropriate surface receptors. Tfh in
young infants, however, exhibit functional immaturity that is suspected to be a major
limiting factor in the newborn antibody response. The distinct transcriptional profile of
newborn Tfh is most notably associated with decreased expression of the master regulator
Bcl-6 and the GC homing cytokine CXCR5, leading to impairments in Tfh development
and localization [72–74]. Differentiation of Tfh from CD4+ T cells is inhibited by factors
extrinsic as well as intrinsic to newborn T cells, in part due to the reliance of Tfh on
DCs and activated B cells for successful differentiation [73,75]. Both CD4+ T cells from
newborn mice adoptively transferred into adults as well as adult CD4+ T cells adoptively
transferred into newborn mice experience defects in Tfh differentiation, expansion and
maintenance of GC [73]. Even when they are able to successfully enter the follicle, studies
using a mouse model showed newborn-derived follicular T cells tend towards a higher
ratio of T follicular regulatory (Tfr):Tfh cells, suggesting more frequent differentiation into
a regulatory phenotype as well as skewing towards Th2 and Th17 polarization, which
further inhibits the development of robust antibody responses [72,76].

One notable characteristics of newborn Tfh and other T cell populations is the de-
creased surface expression of CD40L [77–79], which is integral to the provision of T cell
help to B cells. This has been shown in both mice and humans. Interestingly, by 3 weeks of
age, human infants gain the capacity to express CD40L following stimulation [79]. There
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are conflicting reports on whether newborn B cells have correspondingly low levels of
CD40 expression, or whether low CD40L expression on Tfh is the limiting factor in the
CD40-CD40L interaction [80–82]. An assessment of cord blood from both term and preterm
births found that the expression of CD40 by B cells collected from term newborns did not
differ significantly from that seen in adult B cells [83]. However, CD40 levels were much
lower in cord blood collected from preterm births, suggesting that impairment of CD40
expression by B cells may fall on a continuum depending on gestational age [83]. It is also
possible that even if newborn B cells have adult-like expression of CD40, they are still be
subject to alterations in signal transduction independent of any Tfh-dependent factors.

2.4. Long-Lived Plasma Cells

Deficiencies in Tfh function are particularly deleterious to the selection and differentia-
tion of LLPCs, which colonize the bone marrow and constitutively secrete affinity-matured
antibody for years to decades after the primary antigen encounter. The provision of T cell
help to induce plasma cell differentiation appears to rely on extended cell-to-cell contact
between Tfh and B cells in the GC, which is in part dependent on a robust CD40/CD40L
interaction and effective B cell presentation of antigen [84]. Murine newborn B cells have
been reported to exhibit decreased expression of BAFF/APRIL receptor TACI, which im-
pedes upregulation of CD138 and adoption of a plasma cell phenotype [47]. Considering
the alterations in B and Tfh function mentioned above, it is unsurprising that newborns
and young infants display dampened differentiation of GC-derived plasma cells compared
to their adult counterparts [12,85].

The challenges continue for plasma cells that successfully undergo terminal differenti-
ation. Upon egress from the GC, future LLPCs must make their way to the bone marrow
(BM) and establish themselves in a BM niche. In addition to a reduced ability of plasma cells
from newborns to migrate to the BM, studies in mice suggest that the microenvironment
of the BM is less supportive of LLPC colonization and persistence [85]. This inhospitable
environment is associated with diminished expression of adhesion molecules and secretion
of pro-survival cytokines such as BAFF and APRIL by BM stromal cells, independent from
alterations impacting B cell differentiation [11,86,87]. Together, the limited differentiation
of plasma cells from the GC and impaired survival of LLPCs in the bone marrow are sus-
pected to be major contributors to the relative transience of circulating antibody following
infection or vaccination of newborns and young infants.

2.5. Memory B Cells

As newborns have minimal encounters with antigen prior to birth, MBC responses in
early life are practically non-existent, as evidenced by the scarcity of CD27hi MBCs in in-
fancy [88]. While this absence of preexisting memory limits the rapid generation of affinity
matured antibody following antigen exposure in young infants, early antigen encounters
appear to prime for more effective subsequent responses by generating MBCs [12,89,90].
The differentiation of MBCs requires less T cell help, lower receptor affinity, and has lower
metabolic demand than is required for differentiation of plasma cells [53]. Recent studies
demonstrate that in some cases, memory cells can even form in the absence of germinal
centers [91–93]. Because of this, the development of MBCs may be less sensitive to the
impairments in B cells and the accessory cells present in newborns and young infants
compared to LLPCs.

The more efficient differentiation of MBCs versus plasma cells in young infants does
not, however, result in unaltered generation of MBCs. MBCs elicited in early life may have
a shorter lifespans than those produced by a mature immune system, as evidenced by the
apparent loss of immune memory to hepatitis B in a significant number of adolescents
who had received hepatitis B vaccines as newborns [94]. Further exploration of newborn
MBC dynamics is warranted to better understand the development and persistence of
this key B cell subset. Fortunately, while investigation of MBCs has been technically
challenging due to the necessity of examining cellular populations compared to relatively
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the straightforward serologic assessments that serve as proxies to LLPCs, recent advances
in high-throughput sequencing and multiplexed analysis are rapidly expanding our ability
to comprehensively assess antigen-specific B cell memory responses [95].

3. Strategies to Increase the Effectiveness and Breadth of Protection Conferred by
Newborn Influenza Vaccines

From the above discussion, it is clear that a broad range of alterations in the devel-
opment, activation, and effector function of both B cells and accessory cells is present in
the immune system of newborns and young infants. Thus, there is likely no one factor
responsible for the dampened antibody responses characteristic of young infant immunity.
Because of this, a variety of distinct pathways and molecules may be viable targets for
improving antibody responses in these individuals. However, this also means that remedi-
ation of a single immune component may not result in the desired outcome if other key
aspects of the interconnected response are left unaddressed and thus targeting multiple
cells types/pathways may be needed.

A common approach to improving the immune response in young infants is to increase
the magnitude of the antibody response to vaccination by inducing sufficient immune acti-
vation to compensate for diminished responsiveness [96–98]. This approach is supported
by findings demonstrating that multiple immune subsets can mount robust responses
when removed from the newborn immune microenvironment and provided a surplus of
activating signals, whether by adoptive transfer or in vitro stimulation [11,61,82]. Although
not the norm for responses in young infants, the capacity for robust responses under select
conditions is likely an adaptation to allow a full-fledged protective immune response in
the setting of severe or life-threatening infection [99]. In these cases, there is an abundance
of accessory immune signals provided by the pathogen in addition to infection-associated
damage to tissues that can activate innate immune sensors.

This highly immunostimulatory environment can be mimicked in the relatively safer
setting of vaccination through inclusion of adjuvants. Historically, adjuvants have been
considered agents that amplify immune responses by acting non-specifically on innate
immune components, thereby indirectly stimulating adaptive immune cells [100]. However,
as our understanding evolves, the concept that “more is better” may not always apply
given increasing evidence that the newborn immunity is not simply a diminished version
of adult immunity, but has fundamental differences in the qualitative responses to certain
stimuli. This may be particularly relevant in efforts to develop broadly protective influenza
vaccines, where targeting antibody responses to specific epitopes may be of greater interest
than general elicitation of high titer influenza virus-specific antibody.

Highly conserved IAV epitopes, particularly the stem domain of the surface protein
HA, have become an appealing target for universal vaccine approaches. However, targeting
epitopes that can confer broad protection is challenging even in the setting of a fully mature
adult immune system. This is the result of the immune system’s apparent preference to
mount immune responses to variable over conserved epitopes. The mechanisms driving
the development and enforcement of this immunologic “subdominance” of conserved IAV
epitopes are not entirely understood; however, it has been shown to be a dynamic process
that is amenable to modulation [101–103]. It is speculated that development of epitope
specificity in MBC and LLPC populations is likely driven by selection events in the GC, as
altering the conditions of the GC reaction influence relative epitope representation. The
enforcement of antibody immunodominance, i.e., the focusing of the response on one or a
select group of epitopes, appears to rely largely on the ability of B cell clones to obtain the
antigen and the T cell help they need for successful affinity maturation, i.e., subdominant
clones are less successful in the GC because they are inherently poor competitors [102,104].

The factors dictating epitope dominance have not been fully elucidated. There may be
a role for epitope accessibility for BCR binding, as dominance does not always correlate
to either average BCR avidity or initial precursor frequency [101,105,106]. With that said,
the avidity of stem-specific B cells was reported to be lower avidity in a study from
Angeletti et al. [102]. In the context of vaccination, immunodominance can be mitigated by
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reducing competition from dominant clones, either by removing these clones from the GC
reaction or by increasing access to subdominant epitopes [104,107]. This is consistent with
the success of experimental vaccination approaches utilizing a headless stem construct,
wherein removing the immunodominant variable head epitopes allowed expansion of
stem-specific clones [108–110].

Reducing competition for Tfh interactions has also been shown to alleviate immun-
odominance, i.e., an increased frequency of Tfh in the draining lymph node was associated
with improved antibody responses to the HA stem [102]. Furthermore, regulatory activity
by Tfr may have a role in dictating immunodominance, potentially through enforcement of
stringent B cell selection, which is thought to minimize generation of potentially autore-
active specificities [111,112]. In this regard, stem-reactive antibodies have been shown to
have increased polyreactivity [113–115] and it is interesting that Tfr appear to promote
stem-reactive antibodies in mice in the setting of vaccine boosting [116]. However, in an-
other study a lower ratio of Tfr/Tfh was associated with more stem-specific antibody [102].
Thus, more work is needed to understand the role of Tfr in the selection of individual B
cell clones.

Together, the findings establish a model in which the elicitation of desirable antibody
to subdominant epitopes may require a higher threshold of immune activation (increased
antigen availability, improved frequency/function of GC B cells and Tfh) to allow a broader
diversity of B cell clones to successfully undergo affinity maturation. The factors implicated
in promoting alleviation of antibody subdominance closely mirror those implicated as
defective in the generation and maintenance of GC responses in young infants that leads
to impaired production of lasting antibody. As such, it is unsurprising that many of the
strategies under investigation for the promotion of subdominant antibody responses have
significant overlap with those that have shown promise for vaccination of young infants.

Vaccination during early life would increase the chance of the vaccine being the
first encounter with IAV, providing an opportunity to influence all subsequent antibody
responses, a process termed original antigenic sin (OAS) [117,118]. Further investigation
will be necessary to examine how the potential induction of OAS during the neonatal
period might be influenced by altered newborn immunity and reduced persistence of
immune responses that are elicited in early life. It is possible that the poor formation
of immune memory during infancy would decrease lasting OAS effects from newborn
vaccination, although it seems likely that even limited memory would be able to influence
antibody response to IAV encounters later in life.

3.1. Modulation of Dendritic Cells

As the interface between innate and adaptive immunity, DCs have become a promi-
nent target for modulation of immune responses through vaccination. DCs from CB and
newborn mice have functional deficits in their capacity to activate other immune cells,
displaying lower levels of surface costimulatory molecules, presenting less antigen, and
producing reduced quantities of pro-inflammatory cytokines [60,119–127]. Of these, partic-
ularly notable is the diminished production of the IL-12p35 subunit of IL-12p70, which is
thought to be a major contributing factor to the Th2 bias characteristic of newborn immune
responses [119,120,128]. Many efforts to improve newborn antibody responses through
use of adjuvants have focused on shifting newborn immunity towards a Th1 response via
stimulating DC cytokine production rather than directly targeting T cells.

The success of the TLR2, 4, and 9-containing Bacille Calmette–Guerin (BCG) vaccine
in generating robust Th1 responses and eliciting effective B cell immunity in newborns (for
review, see [129]) suggested that TLR agonists may be good adjuvants for targeting DCs
(Figure 1). However, in considering this approach, the qualitative alterations in newborn
TLR function, despite similar patterns of TLR expression to adult cells [49,130–133] must
be considered. For example, in humans, DC responses to TLR4 and TLR9 are distinct from
those seen in adults until at least 6 months of age [134]. In addition, despite a higher ratio
of plasmacytoid DCs (pDCs) to conventional DCs (cDCs) than is seen in adults, pDCs
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have impaired production of type I IFN in response to TLR7 and TLR9 signaling, which is
thought to contribute to reduced antiviral responses [122].
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maturity. Increased innate immune stimulation via adjuvants has been shown to confer global ben-
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work to modulate the indicated responses in young infants is yet to be explored. 

Figure 1. Induction of the germinal center response. Initiation of an affinity matured antibody
response requires the coordinated activation and localization of several key immune subsets. Im-
provements in any of these, including T and B cell activation, differentiation, and homing to lymphoid
organs, promote a greater magnitude and diversity of antibody. GC formation in young infants
must also overcome defects in the structural framework of the GC that results from FDC immaturity.
Increased innate immune stimulation via adjuvants has been shown to confer global benefits for the
early steps of the GC formation. Adjuvants in blue have demonstrated effects in newborns or young
infants, while those in green have been shown to work in adults. Whether they can work to modulate
the indicated responses in young infants is yet to be explored.

One strategy to remedy these deficits has been to combine adjuvants in an attempt
to synergize DC activation signals to elicit more adult-like maturation and cytokine pro-
duction. This may be particularly effective when used to activate different modalities of
TLR signaling, i.e., TRIF- versus MyD88-dependent signaling, particularly in terms robust
of IL-12 production [123,135,136]. Targeting the endosomal TLRs that sense nucleic acid
may also be more effective in circumventing DC deficiencies in young infants [98,137]
(Figures 1 and 2). These findings support the efficacy of TLR agonists as effective DC-
stimulating adjuvants for young infants; however, it is important that careful consideration
be paid to the altered nature of the immune response in choosing these agonists.
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Use of adjuvants with DC-stimulating activity has also been shown to enhance sub-
dominant antibody responses associated with prime and boost in adult models, including 
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Figure 2. Persistence of GC-derived humoral responses. Prolongation of the germinal center reaction
is associated with higher rates of SHM, increased differentiation of LLPCs, and improved generation
of broadly neutralizing antibody. Extending the availability of antigen in the GC appears to sustain
the GC reaction; if B cells have no antigen to present, they cannot obtain T cell help. Even after
successful induction of GC responses, young infants are particularly prone to transient reactions.
Once these differentiated B cells exit the germinal center, they face the challenge of continued survival,
which is particularly difficult for newborn LLPCs colonizing the immature bone marrow (BM) niche.
Adjuvants in blue have demonstrated effects in newborns or young infants, while those in green
have been shown to work in adults. Whether they can modulate the indicated responses in young
infants is yet to be explored.

Inclusion of the adjuvant MF59 is associated with increased recruitment and matura-
tion of DCs [138] (Figure 1). Antigen-bearing cells have been found in the lymph node as
early as 3 hours following administration of antigen and adjuvant [139]. Squalene-based
adjuvants have also been shown to enhance antigen uptake by DCs [140]. These data
suggest that these adjuvants are effective in generating DCs that can activate T cells.

Use of adjuvants with DC-stimulating activity has also been shown to enhance sub-
dominant antibody responses associated with prime and boost in adult models, including
those investigating antibody responses to IAV [141–144]. It has been speculated that this
may be due to increased antigen presentation by DCs, thereby reducing the reliance on
MBCs for antigen presentation to T cells during subsequent encounters [145,146]. The asso-
ciation between increased availability of antigen and alleviation of immune subdominance
supports a model in which accessibility to factors promoting success in the germinal center
can improve the chances that a subdominant clone will be able to expand and differentiate
in to either MBCs or LLPCs.

3.2. Modulation of Follicular Dendritic Cells (FDCs)

Recent studies have turned attention towards FDCs as an approach to modulate the
immune response to vaccines [97,147]. In a recent study, the TLR ligand-based adjuvant
PorB was shown to increase presentation of antigen on FDCs in the GC [146] (Figure 1).
While it appears that antigen encounter in general can accelerate the maturation of struc-
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tural components necessary for GC formation [63], Schussek et al. recently demonstrated in
a murine neonate model that the adjuvant CTA1-DD can specifically target FDCs through
binding to complement receptors [148] (Figure 1). Administration of CTA1-DD conjugated
to the M2e protein of influenza virus increased GC generation, T and B cell localization
to the GC via CXCL13 signaling, and class-switched antibody production, in addition to
reducing morbidity and mortality following lethal IAV infection when conjugated to the
M2e protein of influenza virus (Figure 1). Although antibody titers were only followed
through 5 weeks, administration of CTA1-DD also seemed to improve the generation
of LLPCs.

Maintenance of the GC relies in part on the sustained provision of antigen by FDCs
to B cells, permitting the extensive affinity maturation that appears to be necessary for
the generation of LLPCs [149–151]. Although this has not been explicitly studied in the
context of influenza vaccination, increased availability of antigen and prolonged GC
reactions have both been associated with improved antibody responses to subdominant
epitopes, including those associated with broadly neutralizing antibodies to HIV [152,153].
Development of broadly reactive memory B cells has also been attributed to persistent
germinal center foci that permit extensive VH mutations [154]. It is possible that improved
loading of antigen to FDCs would have the combined effects of improving total LLPC
generation and alleviating subdominance of desirable conserved IAV epitopes in both MBC
and LLPC populations.

It is possible that young infants do not require extensive SHM to generate cross-
reactive antibody to influenza viruses considering that infants and children can generate
broadly neutralizing HIV-specific antibody with relatively limited SHM [155,156]. Simi-
larly, several adult-generated antibodies to the HA stem have been found to have minimal
SHM, with even a single mutation to the germline sequence conferring high affinity
binding [157,158]. It is therefore not unreasonable to speculate that young infants may, in
fact, be well equipped to develop cross-strain protection against influenza viruses, particu-
larly given the potentially increased polyreactivity of the newborn BCR repertoire [159]. To
this point, we have found strong HA stem-specific responses in newborn NHP following
influenza virus infection [160].

3.3. Modulation of T Follicular Helper Cells

Due to their integral role in the development of high-quality, lasting antibody re-
sponses, elicitation of robust Tfh responses using adjuvants has been an area of interest
not only for young infants, but for adults as well. In mouse models several adjuvants
have been demonstrated to improve Tfh differentiation, frequency, and function in the
newborn GC, including CpG oligodeoxynucleotides (ODNs) and the Mincle agonist CAF01
(Figure 1) [73,74,96]. The impact of CpG appears to be through driving Tfh to committed
GC Tfh [73,74]. The action of CAF01 has not yet been elucidated.

In general, efforts to improve Tfh contributions to antibody responses have focused
on increasing their frequency and functional capacity. However, there is still much to
be learned about the extent to which adjuvants affect Tfh cells directly versus indirectly
through modulation of innate immune function. Further investigation is required to
determine if our understanding of the relationship between adjuvants and non-follicular
CD4 cells is applicable to Tfh cells, as well as how these interactions might be altered in
the context of the newborn immune system. For example, stimulation with TLR2 or TLR5
agonists in vitro has been shown to directly stimulate T cells from young infants [161–163];
how these agonists may directly impact Tfh differentiation is not known.

In adult models of infection, increased Tfh frequency—both in the GC and in periph-
eral blood—is associated with improved antibody responses to IAV vaccination [69–71].
As their function is closely tied to clonal selection and affinity maturation in the GC, Tfh
have been recently investigated as potential contributors to the development of antibody
immunodominance after both infection and vaccination. The frequency of Tfh within the
lymph node was directly correlated with antibody responses to the HA stem in a mouse
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model [102]. Furthermore, MF59, an adjuvant that has been demonstrated to improve early
life Tfh responses, has also been shown to improve antibody responses to the HA stem in
human adults [141,143].

The presence of cross-protective, but subdominant, antibody may also depend on
the ratio of Tfh:Tfr in the GC, which may be relevant in the context of the bias towards
development of Tregs and Tfr by the newborn immune system [72,116,164]. While it
remains unclear whether the relationship between Tfh and immunodominance in young
infants will be the same as in adults, the success of Tfh stimulation for elicitation of
antibody responses in young infants presents a promising avenue for future development
of strategies to generate broadly protective IAV vaccines.

3.4. Modulation of B Cells

In addition to the many ways in which adjuvants can indirectly modulate antibody
function through their effects on other cells, it is possible for them to act directly on B cells.
Similar to Tfh, however, relatively little is known about the direct mechanisms of adjuvant
activity on newborn B cells. Although vaccination studies provide crucial information
about how different components of the immune system work together to generate practical
results, it can be difficult to parse out the precise sites of adjuvant activity. In an attempt
to address this in a model using TLR agonist as adjuvants, we have demonstrated that
TLR7/8 agonist R848 can directly stimulate the activation of B cells isolated from newborn
NHP in vitro [165] (Figure 1). We would expect this finding to carry over to human
newborns considering the homology in TLR expression between humans and NHP. In
adults, TLR7 signaling in particular is demonstrated to facilitate the generation of MBCs by
directly acting on B cells, with subsequently improved generation of secondary plasma cell
responses after boost [166,167]. The possible capacity of TLR7/8 signaling to promote B
cell memory in young infants is also consistent with our observation that use of R848 as an
adjuvant for an inactivated IAV vaccine results in the robust production of HA stem-specific
antibody following boost and challenge in the absence of detectable antibody following
the initial priming dose [168]. This supports the feasibility of targeting newborn B cells
through innate immune signals, even in the context of the altered TLR responsiveness seen
in early life [49].

In addition to use of PAMPS that are likely to affect multiple immune populations,
small molecules that bind B cell surface receptors involved in survival and proliferation,
such as BAFF, APRIL, and soluble CD40L, have shown promise as potential adjuvants in
adult models [169] (Figure 2). However, the utility of these adjuvants in young infants may
be limited by differences in expression of the surface receptors for these molecules [170].
This is exemplified by the diminished expression of TACI by B cells observed in newborn
mice, leading to deficits in plasma cell differentiation even in the presence of exogenous
BAFF and APRIL [47]. Importantly, however, this same study showed that TACI could
be upregulated by the administration of CpG ODN, suggesting that this adjuvant may
promote plasma cell generation (Figure 2). This underscores the importance of developing
a nuanced understanding of the immune system of newborns and young infants to promote
rational vaccine design that adequately accounts for these unique characteristics.

One important caveat of studies on the efficacy of adjuvant in stimulating newborn
antibody responses is the well-established discrepancy between early effector responses
and the persistence of protection. Given the earlier time points often assessed in newborn
models, it is quite possible that studies examining the induction of antibody responses
with vaccine adjuvants may overestimate the long-term protection provided. Additionally,
when considering epitope specificity as an important component of the antibody response,
it is important to consider the dynamic nature of immunodominance—the antibody profile
present shortly after antigen encounter may be very different from that seen after com-
pletion of the GC response and establishment of LLPCs in the bone marrow [101]. While
limited time courses are a valid practical constraint, the ability to elicit lasting memory and
plasma cell responses is an essential component of vaccine efficacy.
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3.5. Overcoming Regulation by Maternal Antibody

Vaccination against influenza during pregnancy has undeniable benefits for young
infants. However, high titers of passively transferred antibody can be an additional
barrier to eliciting antibody responses in young infants. Blunted antibody responses in
the presence of maternal antibody have been demonstrated in humans for several routine
newborn vaccinations, with the extent of antibody inhibition directly correlating with titers
of maternal antibody [17,171]. Unfortunately, the lack of an approved influenza vaccine
for infants under 6 months of age has limited our ability to study the effects of maternal
antibody on newborn antibody responses in this setting. With that said, the initial studies
to determine utility of the trivalent inactivated influenza vaccine (TIV) in infants showed
infants between 10–22 weeks of age with maternal antibody did not have significant
increases in hemagglutination inhibition assay (HAI) titers following vaccination [172]. It
is important to keep in mind, however, that this vaccine was poorly immunogenic in this
age group even when maternal antibody was limited and thus the extent of the regulatory
effect is difficult to ascertain. Still, evidence of decreased responses to inactivated influenza
virus in the presence of maternal antibody has been observed in animal models including
infant mice, piglets, and foals [3,173–177].

There have been several mechanisms proposed to account for the inhibition of humoral
responses in young infants by maternal antibody. In general, it is suspected that limiting
antigen availability, through epitope masking and/or antibody-mediated clearance, and
inhibition of B cell signaling, termed antibody feedback, results in the faulty activation and
priming of antigen-specific B cell clones [171,178]. However, a recent study by Vono et al.
using a murine model of IAV vaccination found that while maternal antibody specific for
HA inhibited the generation of newborn antibody responses in a dose-dependent manner,
the activation of B cells and initial establishment of GCs was unchanged [3]. Instead, the
presence of maternal antibody shortened the duration of GC activity, corresponding to
deficits in the expansion of Tfh and subsequent generation of MBCs and LLPCs. This
proposed model wherein antibody inhibition by maternal antibody is mediated by pre-
mature cessation of the GC response is consistent with the findings by Willis et al. that
nucleoside-modified mRNA vaccination can alleviate the inhibitory effects of maternal
antibody by prolonging the duration of the GC reaction [179] (Figure 2).

Interestingly, maternal antibody appears to shape the specificity of the newborn
response. B cells found in the GC when maternally derived antibodies were present used
distinct BCRs from those present in the absence of maternal antibody [3]. While BCR usage
does not necessarily equate to epitope specificity, it is tempting to speculate that maternal
antibody may be shaping epitope recognition of the newborn response. The ability of
antibody to a given epitope to inhibit further generation of antibody to that same epitope
has been demonstrated both in context of passive antibody transfer and induced antibody
responses [101,180]. Further exploration of the differences between maternal and newborn
epitope specificity will be particularly relevant to the development of cross-protective
influenza vaccines, as the manipulation of maternal immunity may provide another tool
that can be used to shape the newborn immune response.

Finally, in contrast the inhibitory effects described above, it is worth noting that there
are data supporting the ability of pre-existing antibody to promote responses under some
circumstances [181]. In mice, administration of anti-TNP antibody with TNP-BSA or TNP-
KLH resulted in antibody responses that were several hundred fold higher than with
antigen alone [182,183]. One mechanism by which pre-existing antibody has been reported
to promote immune responses is through increased antigen presentation by dendritic
cells. This can occur as a result of Fc-mediated uptake [184]. An increase in antigen
uptake by DCs has the potential to strongly impact the ability of naïve CD4+ T cells to
be activated [185], which in turn can support B cell activation, proliferation, survival and
isotype switching. Given the complexity of the competing mechanisms, both positive and
negative, at play and the differences in antibody across individuals that is transferred to
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the infant, additional studies are warranted to fully understand the effects of maternal
antibody in the context of influenza vaccination of young infants.

4. Concluding Remarks

Influenza A virus infections are an annually recurring public health threat due to
antigenic variability in the circulating strains and the ability to cause severe pathology,
particularly in vulnerable populations such as young infants. As we expand our under-
standing of immune regulation in these individuals, it has become clear that the challenge
of eliciting robust antibody responses in early life is not just in magnifying the responses
that are present, but in understanding with precision the functional attributes needed for
optimal protection as well as how to overcome the fundamental alterations in how the
immune system works. At the same time that we are learning more about the unique
characteristics of newborn and young infant immunity, the investigation of antibody im-
munodominance is rapidly expanding as we explore how the immune system develops
preferential responses to some epitopes over others. The development of a vaccine that can
provide broad protection against highly variable influenza A viruses will require thought-
ful design that integrates findings from both of these fields of study. We propose our ability
to meet this objective will benefit from the substantial overlap in approaches that have
successfully induced protective immunity and promoted strong responses to conserved
IAV epitopes. While there is still much to learn, the increasing information available offers
encouragement that this goal can be reached.
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