
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9077  | https://doi.org/10.1038/s41598-022-11396-1

www.nature.com/scientificreports

Integrated usage of historical 
geospatial data and modern 
satellite images reveal long‑term 
land use/cover changes in Bursa/
Turkey, 1858–2020
Paria Ettehadi Osgouei1,3, Elif Sertel2* & M. Erdem Kabadayı4

Land surface of the Earth has been changing as a result of human induced activities and natural 
processes. Accurate representation of landscape characteristics and precise determination of spatio‑
temporal changes provide valuable inputs for environmental models, landscape and urban planning, 
and historical land cover change analysis. This study aims to determine historical land use and land 
cover (LULC) changes using multi‑modal geospatial data, which are the cadastral maps produced in 
1858, monochrome aerial photographs obtained in 1955, and multi‑spectral WorldView‑3 satellite 
images of 2020. We investigated two pilot regions, Aksu and Kestel towns in Bursa/Turkey, to analyze 
the long‑term LULC changes quantitatively and to understand the driving forces that caused the 
changes. We propose methods to facilitate the preparation of historical datasets for the LULC change 
detection and present an object‑oriented joint classification scheme for multi‑source datasets 
to accurately map the spatio‑temporal changes. Our approach minimized the amount of manual 
digitizing required for the boundary delineation of LULC classes from historical geospatial data. Also, 
our quantitative analysis of LULC maps indicates diverging developments for the selected locations 
in the long period of 162 years. We observed rural depopulation and gradual afforestation in Aksu; 
whereas, agricultural land abandonment and deforestation in Kestel.

Global environmental change is a critical issue causing climate change, land degradation, and biodiversity loss. 
Land surface has been changing significantly due to natural and anthropogenic effects, causing variations in land 
use and land cover (LULC) characteristics of the corresponding regions. Understanding the spatio-temporal 
distribution, patterns, and impacts of landscape change is essential for the sustainable management of the Earth’s 
 resources1–3.

Agricultural land abandonment, de- and/or afforestation, and rural depopulation are acute challenges world-
wide. In 2018, it was forecasted that between 2015 and 2030, about 11% of agricultural land in the European 
Union would be under high potential risk of  abandonment4. Deforestation as a form of land cover change is 
proven to be directly linked to soil erosion and climate  change5. Rural depopulation is becoming a central theme 
of research impacting both demography as well as land  use6. A long-term perspective to understand these and 
other crucial forms of LULC changes is necessary. Accurate mapping of current and past land surface conditions 
is crucial to provide reliable geo-information for modeling the land changes, to deliver reliable inputs for different 
environmental models, and to develop precise decision-support systems for multi-disciplinary  applications7.

Creating current high-resolution LULC maps became widespread with the increased availability of different 
satellite images and numerous image processing approaches. Many researchers have analyzed the pattern of 
LULC changes by using multi-temporal satellite  images7–16. Aerial imagery and historical cadastral maps have also 
been used to characterize the landscape dynamics. Popelková and Mulková (2018) conducted a multi-temporal 
analysis of land cover change in a coalfield in today’s Czech Republic between 1836 and 2009 using cadastral 
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maps and ortho-photos17. Xystrakis et al. (2017) determined post-World War II LULC change in Greece applying 
photo interpretation methods to aerial photographs obtained between 1948 and  200918. Their results illustrated 
that the post-war need for agricultural production caused LULC changes within the Aetoloakarnania region. 
They stated that the LULC exhibits differences in vegetation densification for different periods, and agricultural 
abandonment was dominant between 1985 and 2007, parallel to socio-economic changes. Minta et al. (2018) 
used aerial photographs obtained in 1957 and 1995 and Landsat images collected in 1995 and 2014 to analyze the 
historical LULC changes in the central Ethiopian  highlands19. Due to the quality limitations of their geospatial 
data, six LULC classes were distinguished, namely cultivated land, pastureland, forestland, woodland, settle-
ment, and plantation land. Drummond et al. (2019) mapped the historical LULC change in northern Colorado 
between 1937 and 1997 of 1 m spatial resolution aerial  photographs20. They also used historical maps and other 
geo-information sources to create 38 detailed LULC classes.

The generation of LULC maps from historical aerial photographs and traditional maps is challenging due to 
the limited spectral and radiometric resolution of aerial photographs, differences in geometry, and the definition 
of land classes. Cousins (2001) analyzed the land cover change in Sweden with an integrated usage of historical 
cadastral maps of the seventeenth and eighteenth centuries and aerial photographs from 1945 and  198121. She 
emphasized the spatial errors inherent in old maps and the requirement of precise geometric correction to map 
the spatio-temporal distribution of different land cover classes accurately. She used the rubber sheet transforma-
tion method for the geometric correction of the scanned historical maps. Skaloš et al. used historical military 
survey maps and old ortho-photomaps to understand the long-term landscape dynamics for 250  years22. They 
determined the main problems of historical maps as geodetic inaccuracy, errors in the specification of landscape 
segments, and scale differences causing the loss of some spatial details. They also emphasized the challenge of 
finding common control points from different maps and ortho-photos due to the time difference. Seven differ-
ent land cover classes used in this research are built-up areas, arable land, grassland, fruit groves, forests, water 
surfaces, and transport systems.

Several studies focused on the characterization of long-term LULC changes and landscape dynamics. To 
model long-term LULC changes, multi-modal data from various sources must be analyzed. The sources will 
include but are not limited to maps derived from traditional surveying methods, aerial photographs acquired 
from airplanes or UAVs, and satellite  images23–25. The study by Kanianska et al. is an example of the coopera-
tive use of historical geospatial data and very high resolution (VHR) satellite images. They analyzed the LULC 
changes of three rural sites in Slovakia from 1782 to 2006 using historical maps and VHR satellite  data26. They 
identified a limited number of land categories from historical maps, which are agricultural land, including arable 
lands and permanent crops, permanent grasslands, forest, built-up areas, and others. They found significant land 
cover changes for the 224 years, such as permanent grassland conversion into arable and gradual afforestation 
of permanent grasslands and transition to the forest.

The availability of geospatial data is quite limited for the determination of land changes on a centennial time 
scale and these data have their specific characteristics. In general, multi-spectral VHR satellite images could 
be obtained after 2000 and different classification algorithms could be easily applied to these images with high 
 performance26–28. High-resolution landscape characteristics of the period between the 1950s and 1970s can be 
generated using monochrome analog aerial photographs and Corona images from the KeyHole (KH) satellite 
series but these data sets have some limitations such as geometric distortions as a result of old data acquisition 
technology, image scanning problems and having only one spectral band. When we consider landscape mapping 
of early 1900s or before 1900, historical maps are the only sources that contain limitations due to the land catego-
ries available within the legend, scale problems, and exaggeration of some geographic features such as roads and 
water courses. For historical studies, the determination of long-term LULC change is important which requires 
the usage of multi-modal geospatial data from traditional maps, aerial photographs, and VHR satellite images. 
Dealing with various maps, aerial photographs, and satellite images challenges geometric compatibility to ensure 
precise locational change analysis. Also, historical LULC applications require harmonizing different geospatial 
aspects such as the definition of a standard projection system, finding common control points, spatial detail 
level, scale, and thematic content of various data  sources23,24. Therefore, proposing methodological approaches 
for integrated usage of multi-source geospatial data and generating accurate LULC maps via a joint classification 
scheme is a challenging task since there is not much comprehensive research on this topic.

The LULC mapping has been analyzed utilizing the object-based image classification technique with high-
resolution multi-spectral satellite  images27–31. In comparison, either the available vector layers of historical maps 
or ortho-photos have been used, or the cadastral maps and single-band aerial photographs have been interpreted 
by manual  vectorization21,22. Popelková and Mulková used the available vector layers for their spatial analysis of 
land cover change. In some cases, manual digitization was applied to maps or aerial photographs to form vector 
layers for spatial  analysis17. Lieskovský et al. produced the first spatially explicit historical digital map of land 
use for the cross-border Carpathian Ecoregion, digitized from military topography maps generated between 
1819 and  198032. In her study of land-cover transitions in Sweden from 1945 to 1981, Cousins (2001) manually 
digitized black and white aerial photographs to generate grassland, arable field, water, forest, cultivated grassland, 
and non-management  classes21. Skaloš et al. applied on-screen digitizing and vectorized the geo-information 
content of old maps and ortho-photos22. LULC classes used in different studies vary, but the number of classes 
is mostly limited due to the quality limitations of historical maps and aerial photographs. The improved and 
effective approach of object-based image analysis should also be utilized for generating the LULC maps from 
monochrome aerial photographs.

Besides the challenges of mapping the LULC from various types of geospatial datasets, the optimal methods 
are required to detect changes that occurred between time points of a study period. One of the most effective 
approaches for the optimal assessment of LULC change is the use of LULC maps from earlier dates as an auxiliary 
thematic layer for the analysis of the subsequent datasets. The LULC maps (e.g. classified images) of the earlier 
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dates that consist of labeled polygons can be used to create meaningful polygons (e.g. objects) in a dataset at 
later dates. Gerard et al., and Yu et al. took advantage of the segmentation approach based on a land-cover map 
generated in an earlier date and predefining the object boundaries based on the prior parcel data to improve the 
detection of LULC  changes33,34.

This study proposes a methodology to leverage the multi-modal geospatial data, including the historical 
datasets and VHR satellite images, to determine LULC changes for a long historical period of approximately 
160 years. The first step of our process includes the geometric correction and sub-pixel spatial matching of data-
sets, for which we provided some suggestions. The second step is to define a joint classification schema based on 
the LULC classes distinguished by cadastral maps, aerial photographs, and satellite images to analyze changing 
landscapes. In the third step, we focused on producing accurate LULC maps from the different datasets and 
discussed the difficulties of creating the LULC maps from historical data sources. We suggested the iterative 
object-based segmentation approach to facilitate the detection of the changed areas. Finally, we assessed the 
trends in landscape changes and the dominant LULC change factors in our two pilot regions.

The historical background of the study areas. The selected towns, Aksu and Kestel, are both ancient 
settlements on the outskirts of the city of Bursa. Figure 1 shows the locations of Aksu and Kestel in the Bursa 
region. This study examines the historical LULC changes in these two towns from the 1850s until today with 
three time points: the 1850s, 1950s, and 2020s. Aksu was a Roman and Byzantine settlement on the Silk Road 
positioned as the last stop and 24 km east of Bursa. The caravanserai and the long-distance trade route deter-
mined the fate of the settlement. Aksu lived off from the caravan trade as a service providing rural settlement 
until the demise of this trade network in the late nineteenth century. After the end of the caravan trade, the vil-
lage lost importance and turned into a self-sufficient rural settlement on the main road to Bursa until 1970. With 
the construction of a new route bypassing Aksu, the last episode of its long decline started. Today the village faces 
severe depopulation with fewer people than it had in the 1840s.

Until the late nineteenth century, Kestel remained an insignificant midway rural settlement between Aksu 
and Bursa, while Aksu was a small stop on a vital trade route too close to Bursa, which kept its growth potential 
in check. The mid-twentieth century marks the end of international migration to Kestel, the dominant source 
of its long-term population growth. The late twentieth century for Aksu refers to a time of stagnation and loss 
of logistic importance due to the shift from animal-drawn to engine-powered long-distance transport, which 
no longer needs to stop 24 km before or after Bursa route. In 2020, Aksu became a severely depopulated and 
economically deprived village administratively belonging to Kestel. Kestel, on the other hand, became an integral 
part of the Bursa metropolitan area and its continuous urban fabric. In this study, we used demographic data for 
the 1840s extracted from the Ottoman population registers available at the Turkish Presidency State Archives 
of the Republic of Turkey—Department of Ottoman Archives (NFS.d. collection), for 1955 publications of the 
Turkish Statistical Institute and for 2020 municipal sources.

Materials and methods
Data Used. We used cadastral maps from 1858 to reconstruct the LULC structure of Aksu and Kestel for 
the mid-nineteenth century. General Staff of the Ottoman Army produced these maps in 1:10,000 scale. These 
maps were one of the earliest attempts of creating cadastral maps in the Ottoman Empire. The images of histori-
cal maps scanned at 1270 dpi resolutions are provided by the Turkish Presidency State Archives of the Republic 
of Turkey – Department of Ottoman Archives (Map collection, HRT.h, 561–567). Individual tiles of cadastral 
maps are of a 1:2,000 scale. However, these maps are kept separated from their accompanying cadastral registers 

Figure 1.  Map of the location of Bursa region in Turkey and two study sites in Bursa. (a) Bursa region, (b) 
Kestel, and (c) Aksu.
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or documentation regarding their production process in the archives. There are no studies on the production of 
these cadastral maps, but few studies used them until  now35,36.

The LULC structures of Aksu and Kestel for the mid-twentieth century were generated using aerial photo-
graphs from June 23, 1955, with a scale of 1:30,000. These aerial photographs were captured by the US Navy 
Photographic Squadron VJ-62 (established on April 10, 1952, re-designated to VAP-62 on July 1956, and dises-
tablished on October 15, 1969). The squadron conducted mapping and special photographic projects  worldwide37. 
Lastly, the VHR satellite images of WorldView-3 (WV-3) with 0.3 m of spatial resolution, collected on September 
6, 2020, were used to show the up-to-date LULC patterns of Aksu and Kestel.

Methodology. Figure 2 shows the flowchart of steps followed in this study to detect the LULC changes. The 
workflow includes three phases: preprocessing, LULC mapping, and statistical analysis of LULC changes.

Data preprocessing. Orthorectification is the first important step in ensuring accurate spatial positioning 
among the multi-temporal and multi-source images, eliminating geometric distortions, and defining all data 
sets on a common projection system. To align the multi-modal geospatial datasets, we first performed the ortho-
rectification of the satellite images and then we used the orthorectified satellite images as reference for the geo-
referencing of the cadastral maps and aerial photographs.

Figure 2.  Flowchart of the processing steps for the LULC change analysis for Kestel.
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Satellite imagery orthorectification. We first pan-sharpened the WV-3 images by applying the PANSHARP2 
 algorithm38 to fuse the panchromatic (PAN) image of 0.3 m spatial resolution with four multispectral bands (R, 
G, B, and near-infrared (NIR)) of 1.2 m. We then geometrically corrected the pan-sharpened (PSP) WV-3 image-
ries using an ALOS Global Digital Surface Model with a horizontal resolution of approximately 30 m (ALOS 
World 3D – 30 m), rational polynomial coefficients (RPC) file, and additional five ground control points (GCPs) 
for the refinement. As a geometric model, we used the RPC model with zero-order polynomial  adjustment39, 
and orthorectified images were registered to the Universal Traverse Mercator (UTM) Zone 35 N as the reference 
coordinate system.

Georeferencing of scanned cadastral maps and aerial photographs. We used orthorectified WV-3 imageries as a 
reference for the geometric correction of the historical cadastral maps and the aerial photographs. We selected 
the spline (triangulation) transformation, a rubber sheeting method, useful for local accuracy and requiring a 
minimum of 10 control points, as the transformation method to determine the correct map coordinate location 
for each cell in the historical maps and aerial photographs. The spline transformation provides superior accura-
cies for the geometric correction of the historical geospatial  data40,41.

The lack of topographic properties of planimetric features in the historical cadastral maps and the inherent 
distortions of the aerial photographs due to terrain and camera tilts causes difficulties in precise georeferencing 
of these data sets. It increases the number of required ground control points (GCPs) for optimal image rectifica-
tion. Adequate and homogenously distributed GCPs, identified from cadastral maps and aerial photographs, 
can ensure precise spatial alignment among different geospatial data. The best locations for GCPs were border 
intersections of agricultural fields and roads. As for artificial objects, places of worship and schools, which are 
highly probable that have remained unchanged, are other optimal locations for GCPs to perform the accurate 
geometric correction. Figure 3 displays samples of GCPs selected from cadastral maps and aerial photographs. 
We obtained 2.11 m or better overall RMSE (Root Mean Square Error) values for the geometric correction of 
the historical maps and aerial photographs.

LULC classification scheme. We defined our classification scheme by analyzing the LULC classes distinguished 
in all three datasets (i.e., cadastral maps, aerial photographs, and WV-3 imageries). We used the classification 
scheme shown in Table 1. We also present codes and names of the land cover (LC) classes derived from Corine 
LC  nomenclature42.

The legends provided on the historical cadastral maps of Aksu and Kestel delineate 15 LULC categories, which 
are: (1) buildings, (2) home gardens, (3) roads, (4) arable land, (5) gardens, (6) mulberry groves, (7) chestnut 
groves, (8) olive groves, (9) vegetable gardens, (10) forest, (11) courtyards, (12) vineyards, (13) arable fields, (14) 

Figure 3.  Examples of GCPs selection (red crosses in blue circles) on (a), (c) Cadastral maps and their 
counterparts on (b), (d) Aerial photographs.
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cemeteries, (15) watercourses. Categorizing the land cover types of cadastral maps is limited with the classes 
available in the map legend. The legend of cadastral maps categorizes the forested area in one class named “for-
est”. Therefore, it was not possible to use third-level LC sub-categories in our classification schema for forest area 
which is separating forested areas into three subclasses (3.1.1, 3.1.2, and 3.1.3) according to the type of tree cover. 
Although some of the third-level LC sub-categories could be extracted from the cadastral map legend, it was 
not possible to extract all third level agricultural classes from single-band monochromatic aerial photographs. 
Although the spatial extent of fruit trees as a permanent crop could be determined from aerial photographs, it 
was not possible to classify these trees into different fruit types (e.g. 2.2.1 Vineyards, 2.2.2 Fruit trees and berry 
plantations, 2.2.3 Olive groves). Limitation on the number of forest classes is due to the historical cadastral map 
content; whereas limitation on the number of agricultural classes is mainly offset by the aerial photographs which 
have only one spectral band and we did not have any field survey or ancillary geographical data that could help 
the specific identification of fruit trees.

Our primary focus is to find out agricultural land abandonment, deforestation/afforestation, urbanization, 
and rural depopulation within the historical periods. Therefore, most of the second level LULC classes are suf-
ficient for our purpose. LULC changes within the third class level such as the conversion of third level agricul-
ture classes among each other were not aimed to analyze in this research. Our datasets allow us to use Level 3 
CORINE classes for the artificial surfaces. These classes are useful to determine residential area implications of 
rural depopulation or urbanization, one of the focused transformation types for our analysis.

We re-organized and categorized the LULC types used in the cadastral maps, with minimum possible manipu-
lation (only for 2.4 and 3.2 LC classes) according to the classification scheme, as shown in Table 2.

Table 1.  Classification scheme of the study.

LC Level 1 LC Level 2 LC Level 3

1. Artificial Surfaces

1.1 Urban fabric
1.1.1 Continuous urban fabric

1.1.2 Discontinuous urban fabric

1.2 Industrial, commercial and transport units
1.2.1 Industrial or commercial units

1.2.2 Road and rail networks and associated land

1.3 Mine, dump and construction sites

1.4 Artificial, non-agricultural vegetated areas

2. Agricultural areas

2.1 Arable land

2.2 Permanent crops

2.4 Heterogeneous agricultural areas

3. Forest and semi-natural areas
3.1 Forest

3.2 Shrub and/or herbaceous vegetation associations

5. Water bodies 5.1 Inland waters

Table 2.  Correspondence between Corine Land Cover and historical cadastral maps nomenclature.

LC class Historical map nomenclature

1.1.2 Discontinuous urban fabric

Buildings, courtyards, home gardens,

Courtyards

Home gardens

Cemeteries

1.2.2 Road and rail networks and associated land Roads

2.1 Arable land

Non-irrigated Arable land

Arable fields

Vegetable gardens

2.2 Permanent crops

Gardens

Mulberry groves

Vineyards

Chestnut groves

Olive groves

2.4 Heterogeneous agricultural areas
Visual identification and categorization of land parcels principally occupied by 
agriculture, including both arable land and permanent crops with significant areas 
of natural grass and forest

3.1 Forest Forest

3.2 Shrub and/or herbaceous vegetation associations Visual identification and categorization of land with sparse trees

5.1 Inland waters Watercourses
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LULC mapping. After aligning all geospatial data, we used the georeferenced cadastral maps, aerial photo-
graphs, and satellite images for the LULC mapping. We set the spatial extent of the selected regions based on 
boundaries digitized from the cadastral maps of 1858. Then we detected historical LULC changes within these 
extents for all geospatial datasets covering 1900 ha and 830 ha of the Aksu and Kestel regions, respectively. Fig-
ures 4 and 5 show the selected extents from the historical maps, aerial photographs, and satellite images of the 
Kestel and Aksu sites, respectively.

Digitization of cadastral maps‑1858 LULC maps. We visually interpreted and manually digitized the geo-
graphic features on the historical maps and created vector data for each class. The road features in cadastral 
maps lack topological properties. They also include spatial errors possibly generated in the process of surveying 
and map production. Therefore, we cross-checked digitized road segments by visual inspection of the road data 
of the aerial photographs from 1955. We then further modified road polygons to represent accurate road widths. 
Afterward, we categorized vectorized features of the cadastral maps into the LULC classes defined in Table 1. 

Figure 4.  Geospatial dataset for the Kestel study region. (a) 1858 Cadastral map, (b) 1955 aerial photo, and (c) 
2020 WV-3 satellite image (finer details shown in the inset images highlighted by Blue boxes).

Figure 5.  Geospatial dataset for the Aksu study region. (a) 1858 Cadastral map, (b) 1955 aerial photo, and (c) 
2020 WV-3 satellite image (finer details shown in the inset images highlighted by red boxes).
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Finally, we created the vectorized 1858 LULC map. Figure 6 presents the vectorized 1858 cadastral maps of Aksu 
and Kestel.

Object‑based image analysis of aerial photographs‑1955 LULC maps. At the second stage of LULC mapping, 
we performed the segmentation and classification of the aerial photographs using an object-based approach 
for generating the 1955 LULC map. The object-based image analysis (OBIA) approach in LULC mapping pro-
vides advantages over the traditional per-pixel techniques such as higher classification accuracy, depicting more 
accurate LULC change, and differentiating extra LULC  classes33,43,44. We used the eCognition® software (Trimble 
Germany GmbH, Munich) to implement an object-based image analysis (OBIA). The OBIA approach contains 
two phases including the segmentation and classification phases that are performed to locate meaningful objects 
in an image and categorize the created objects, respectively.

Multiple ancillary datasets have been used to support different phases of OBIA. The Open Street Map (OSM) 
vector data, an open-source geospatial dataset (http:// www. opens treet map. org/), has been utilized as ancil-
lary vector data in OBIA to improve the classification of the remotely sensed images. Sertel et al. (2018) used 
OSM as a thematic layer for road  extraction7. Since there are several limitations in extracting the roads from 
aerial imagery, the OSM road network data could be useful. A majority of unpaved roads in single-band aerial 
photographs can easily be misclassified as homogeneous areas of arable lands. Precise detection of the roads 
from monoband aerial photographs without multi-spectral information is difficult. Therefore, we overlaid the 
OSM road network data with the aerial photographs to extract the revised aerial road vectors through visual 
interpretation and manual digitization.

We segmented the 1955 aerial photographs with the integration of 1858 LULC map produced from cadastral 
maps. We implemented the multi-resolution segmentation algorithm. In this segmentation method, a parameter 
called scale determines the size of resulting objects, and the shape and compactness parameters determine the 
boundaries of objects. The segmentation process of the aerial photographs was performed at multiple stages with 
various scale, shape, and compactness parameter values. At the initial stage, we segmented the regions according 
to the 1858 LULC map and we utilized large-scale parameters. The scale parameter was set to 100 and the shape 
parameter and the compactness were set as 0.7 and 0.3, respectively. At this stage, we focused on interpreting 
the objects that have not changed between 1858 and 1955. We classified the segments using the thematic layer 
attribute (LULC classes defined by the cadastral maps) with the highest coverage. Image objects in which the land 
surface has changed during 1858–1955 period were detected by visual interpretation and unclassified for further 
segmentation. We followed this approach to reduce the manual effort. We defined unchanged objects between 
1858 and 1955 and assigned the same classes of 1858 LULC map to the objects in 1955 aerial photographs. We 
then segmented the remaining segments, the last time into smaller objects with the scale parameter set as 25, 
the shape parameter set as 0.2, and the compactness set as 0.8.

We classified the remaining unclassified objects through the development of rulesets. An object can be 
described by several possible features as explanatory variables which are provided by eCognition. In the classifi-
cation ruleset, different features and parameters can be defined to describe and extract object classes of interest 
and thresholds for each feature can be defined by the trial-and-error method. We tested sets of variables for the 
classification of the monoband aerial photographs. Object features such as the mean value of the monoband, 
texture after Haralick, distance to neighbor objects, shape features (e.g., rectangular fit and asymmetry), and 
extent features (e.g., area and length/width) were the most useful alternatives. The classification process of the 
parcels of the aerial photographs with LULC change started with the classification of roads constructed between 
1858 and 1955 by utilizing the aerial road map. The watercourse class was the most difficult to classify since 

Figure 6.  Vectorized cadastral maps of (a) Kestel and (b) Aksu with Red and green lines showing the vector 
boundaries.

http://www.openstreetmap.org/
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shrubs or trees mostly covered the watercourses. These areas were misclassified as forest or agricultural land. 
Therefore, experts in historical map reading with local geographical information performed the detection and 
classification of the water course class and interpreted by the cadastral map (1858) and the google map (2020). 
After roads and watercourses, we classified forest and agricultural lands using the optimal thresholds for the 
brightness feature. We calculated the thresholds using the single band of the aerial photograph combined with the 
area and rectangular fit features. The heterogeneous agricultural areas class principally occupied by agriculture 
with significant areas of natural grass and trees within the same object are separated from the arable lands using 
the standard deviation of the digital number (DN) values of the aerial photographs. The texture feature helped 
classify the permanent crops. The brightness, shape, asymmetry, and distance to road class features were the best-
performing ones for classifying the remaining artificial surfaces. The manual interpretation was performed for 
the classification of sub-classes of artificial surface class, including the continuous/discontinuous urban fabric, 
industrial, commercial, and transport units, mine, dump and construction sites, and artificial, non-agricultural 
vegetated areas. Since these land use classes contain one or more land cover and land use categories (e.g., arti-
ficial non-agriculture land or industrial or commercial units), finding the optimal threshold and exact feature 
for distinguishing the subclasses of artificial surfaces is difficult. Especially in the case of using the single-band 
aerial photographs, manual interpretation was required.

Object‑based image analysis of satellite images‑2020 LULC maps. We segmented WV-3 satellite images using 
multi-resolution segmentation algorithm and ancillary geographic data. Similar to the aerial road map, the road 
network of the study region in 2020, named, WV-3 road map, was extracted by overlaying the OSM road data 
with the WV-3 satellite image. In the segmentation process of the WV-3 image, we used the vector boundaries 
of the classified aerial photograph (the 1955 LULC map) and the WV-3 road map as ancillary thematic layers. 
We opted for the same segmentation and classification approach used for the aerial photographs for the WV-3 
image.

Firstly, we segmented the satellite image into spectrally homogeneous objects using vector data of the 1955 
LULC map by applying large-scale parameters. We implemented scale parameter values of 300, 200, 100, and 
50 to find the optimal scale to classify objects that have not changed between 1955 and 2020. The best multi-
resolution segmentation configuration was the scale of 100 and the shape and compactness parameters of 0.3 
and 0.7, respectively. We classified the segments using the thematic layer attribute (LULC classes defined by the 
aerial maps) with the highest coverage. Segments with LULC change, e.g. the image objects in which the land 
surface has changed during 1955–2020 period were detected by visual interpretation and unclassified for fur-
ther segmentation. As a result, we excluded the objects which were remained unchanged during 1955–2020 by 
assigning the prepared labels which were allocated in the previous step during the classification of 1955 aerial 
photographs. We then segmented the remaining objects into smaller objects to identify the changed areas in 
detail. At this step, the scale, shape, and compactness parameters were set as 25, 0.2, and 0.8, respectively.

Except for the additional sets of variables utilized to classify the WV-3 images, we applied the rule-set devel-
oped for the classification of the aerial photograph for the classification of the remaining objects of 2020 satel-
lite images. The additional sets of variables include the mean of G, B, R, and NIR and two spectral indices, the 
Normalized Difference Water Index (NDWI), and the Normalized Difference Vegetation Index (NDVI). NDVI 
was calculated as the normalized difference of reflectance values in the red and NIR bands; whereas , NDWI 
was determined as the normalized difference of reflectance values of the green and NIR bands. Through the 
logical conditions, objects having specified values of NDVI and NDWI can be assigned to vegetation and water 
classes, respectively. The use of NDVI facilitated the delineation of terrains covered by vegetation and the NDWI 
improved the extraction of water bodies due to its ability to separate water and non-water objects. We separated 
different sub-classes of agricultural areas and forests by using optimal thresholds for NDVI which were defined 
by a trial and error method. Also we utilized assigning the optimal threshold to NDWI to separate water bodies 
from other land covers. In addition, the mean blue band layer was useful in classifying the artificial surfaces. 
We assessed the accuracy of each classification using error matrices (overall, user’s and producer’s accuracies, 
and Kappa statistics)45,46.

Estimating LULC changes and LULC conversions. After the production of LULC maps of Aksu and Kestel for 
1858, 1955, and 2020, the vector data of the LULC maps were used to quantify the LULC conversions for two 
different periods which are 1858–1955 and 1955–2020. To compare the LULC maps of study areas between two 
different dates of each study period, we provided detailed “from-to” LULC change information by calculating the 
LULC change transition matrix computed using overlay functions in ArcGIS.

We overlaid LULC maps of 1858 and 1955 and intersected the vector boundaries of the 1858 and 1955 LULC 
maps to determine the conversion types of LULC classes (from which class to which class). Similarly, to quantify 
the LULC changes between 1955 and 2020, we overlaid the 1955 and 2020 LULC maps. Then we created transition 
matrices and performed statistical analysis utilizing the matrices. Finally, we discussed the main LULC change 
types and the driving factors of the changes in the selected study areas.

Results
The accuracy assessment of LULC maps. Satisfactory overall accuracies (> 85%) for the classification 
results are prerequisites for accurate LULC change  analysis46. We assessed the accuracy of our classification 
results with a set of randomly selected reference points. We chose reference points based on two criteria: (1) 
We randomly selected 30 points pefo each land cover class, (2) We targeted homogenously distributed sample 
points within the entire mapping area. The total number of check points varies according to the number of LULC 
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classes in LULC maps which is 300 for WV-3 and 210 for aerial imagery of the Aksu region and 360 for WV-3 
and 210 for aerial imagery of the Kestel region.

We used the original aerial photographs and WV-3 images as the reference data. Table 3 presents the overall 
accuracy and Kappa metrics. Tables 4 and 5 show the accuracy results per-class for the aerial photographs and 
WV-3 images of the Aksu and Kestel regions. Of the ten LULC classes, other than arable land, permanent crop, 
and heterogeneous agriculture land classes in which marginal mapping confusion occurred, other LULC classes 
have high per-class accuracy values (> 85%).

LULC change analysis. LULC changes in the Aksu region in two periods: 1858–1955 and 1955–2020. Fig-
ure 7 presents the LULC map of the Aksu site in 1858, 1955, and 2020, the classification results of the cadastral 
map (1858), aerial photograph (1955), and WV-3 imagery (2020), respectively. Tables 6 and 7 present the change 
matrices, showing the conversion of one LULC class to another between 1858 to 1955 and 1955–2020. In Ta-
bles 6 and 7, values in bold show the LULC classes with the change of 30% or more and identified as changed 
areas. Values in italics illustrate the unchanged areas for the studied periods.

The LULC maps (Fig. 7) show that the region is mostly covered by forest (LC class 3.1) and agricultural areas 
(LC classes 2.1, 2.2, and 2.4), and LULC change was relatively minor in the entire period. The agricultural land 

Table 3.  The overall accuracy and Kappa statistics.

Region Data type Overall accuracy (%) Kappa(%)

Aksu
Aerial photographs 95.5 94.65

WV-3 images 94.11 93.30

Kestel
Aerial photographs 90.74 89.16

WV-3 images 94.72 94.10

Table 4.  Classification accuracies for the Aksu region.

Land cover classes

WV-3 images Aerial photographs

Producer’s accuracy (%) User’s accuracy %) Producer’s accuracy (%) User’s accuracy (%)

1.1.2 100 90.48 100 96

1.2.1 100 90 – –

1.2.2 90.63 100 96 96

1.3 100 93.33 – –

1.4 100 100 – –

2.1 88.57 88.57 93.02 100

2.2 97.22 100 81.82 90

2.4 86.84 94.29 93.10 90

3.1 97.06 94.29 97.44 95

5.1 100 86.67 100 96.67

Table 5.  Classification accuracies for the Kestel region.

Land cover classes

WV-3 images Aerial photographs

Producer’s accuracy (%) User’s accuracy (%) Producer’s accuracy (%) User’s accuracy (%)

1.1.1 100 95.45 – –

1.1.2 91.43 96.97 96.30 92.86

1.2.1 94.87 97.37 – –

1.2.2 85.19 95.83 100.00 86.67

1.3 93.33 93.33 – –

1.4 93.75 100 – –

2.1 100 80 90.24 88.10

2.2 100 93.33 93.33 100

2.4 81.25 100 77.78 93.33

3.1 100.00 96.77 87.50 100

3.2 90 100 – –

5.1 100 85 95.83 76.67
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(944.63 ha) in 1858 was dominated by arable land (2.1) (671.89 ha), followed by heterogeneous agricultural area 
(2.4) (230.05 ha) and permanent crops (2.2) (42.68 ha). In 1955, the agricultural areas increased to 1087.30 ha 
with the conversion of 236.36 ha forest area to agricultural area (Table 6) which was also dominated by arable 
land (800.97 ha).

In 2020, the agricultural area (LC class 2) (838 ha) was dominated by heterogeneous agricultural areas (2.4) 
(529 ha). Also, there has been a 24% increase in the forest area (3.1) between 1955–2020 with the conversion 
of 159 ha of arable lands and 64 ha of heterogeneous agricultural area (2.4) to the forest area. Artificial surfaces 
(LC class 1) covered only 12 ha, 22 ha, and 70 ha in 1858, 1955, and 2020, respectively, which indicates a low 
anthropogenic impact on the study area within 163 years (Fig. 7, Tables 6 and 7).

Figure 7.  LULC maps of the Aksu region in: (a) 1858 (b) 1955 (c) 2020.

Table 6.  LULC change matrix between 1858 and 1955 in the Aksu region (areas in hectares). Significant 
values are in [bold, italics].

LULC 1.1.2 1.2.2 2.1 2.2 2.4 3.1 5.1 Total 1858

1.1.2 5.62 5.63

1.2.2 5.99 0.03 6.09

2.1 2.36 0.17 526.38 1.53 57.43 84.00 671.89

2.2 1.12 0.01 41.33 0.23 42.69

2.4 1.16 0.34 37.07 138.77 52.69 230.06

3.1 5.98 0.66 236.36 3.21 43.99 651.48 941.70

5.1 0.04 2.91 2.99

Total 1955 15.14 7.16 800.97 4.74 281.58 788.46 2.99 1901

Table 7.  LULC change matrix between 1955 and 2020 in the Aksu region (areas in hectares). Significant 
values are in [bold, italics].

LULC 1.1.2 1.2.1 1.2.2 1.3 1.4 2.1 2.2 2.4 3.1 5.1 Total 1955

1.1.2 14.99 0.06 0.08 15.13

1.2.2 0.07 6.77 0.03 0.14 0.12 7.16

2.1 13.88 0.19 2.90 3.29 1.55 194.36 88.95 322.31 158.95 14.51 800.88

2.2 2.60 0.14 2.00 4.74

2.4 3.14 0.10 9.32 2.72 9.04 194.10 63.04 0.12 281.58

3.1 0.20 0.87 5.12 7.12 0.13 3.33 8.16 11.54 750.03 1.81 788.31

5.1 0.10 0.24 2.63 2.99

Total 2020 32.28 1.07 14.96 19.73 1.69 200.44 108.75 528.42 974.37 19.09 1901
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Driving forces of LULC changes in the Aksu Region. The almost stagnant population of Aksu increased slightly 
from 472 inhabitants in the 1840s to 658 inhabitants in 1955. Only a 40% increase in more than a century for 
population, which normally grows exponentially, is a sign of rural depopulation in the long-term. Still, the min-
ute population growth is in accord with the conversion of forest lands to agricultural areas between 1858 to 1955 
due to the increasing human activities and, specifically, agriculture practices. After the construction of the new 
main Bursa road in 1972, the older road passing through Aksu village lost its importance, and economic activi-
ties in the village diminished significantly. The population of Aksu decreased to just 362 inhabitants in 2020. 
The drastic depopulation in the second half of the twentieth century explains the most significant LULC change 
between 1955 and 2020 in the Aksu region, which is the transformation of arable lands (2.1) to heterogeneous 
agricultural areas (2.4) and forest (3.1). The arable lands were transformed to lands covered by a mixture of 
shrubs and annual grasses and plants due to gradual forestation in the region after agricultural land abandon-
ment. In sum, rural depopulation accompanied by agricultural land abandonment set the LULC dynamics in the 
long period under consideration for the Aksu region.

LULC change in the Kestel Region in two periods: 1858–1955 and 1955–2020. Figure 8 presents the LULC map of 
Kestel in 1858, 1955, and 2020, based on the classification of the cadastral map (1858), aerial photograph (1955), 
and WV-3 image (2020). Tables 8 and 9 present the change matrices for two periods (1858–1955, 1955–2020). In 
Tables 8 and 9, cells with top 30% values are highlighted in bold, and cells in italics show the total area of LULC 
class remained unchanged during each period. In 1858, the agricultural areas (LC class 2) and forest and semi-
natural areas (LC class 3), were dominant in the LULC structure of the Kestel, constituting approximately 49% 
and 48% of the study area, respectively. The remaining 3% of the study area is covered by discontinuous urban 
fabric (LC class 1.1.1), road and rail networks, and associated land (LC class 1.2.2), and watercourses (LC class 
5.1). The most significant LULC changes between 1858 and 1955 were related to forest and semi-natural areas 
in which forest land decreased from 394 ha in 1858 to 272 ha in 1955. During 98 years between 1858 and 1955, 
260 ha out of 390 ha of forest lands in 1858 remained unchanged, while 116.34 ha transformed to agricultural 
land and 16.7 to discontinuous urban fabric (LC class 11.2) and roads (LC class 1.2.2) (Table 8). Discontinuous 

Figure 8.  LULC maps of the Kestel region in: (a) 1858, (b) 1955, (c) 2020.

Table 8.  LULC change matrix between 1858 and 1955 in the Kestel region (areas in hectares). Significant 
values are in [bold, italics].

LULC 1.1.2 1.2.2 2.1 2.2 2.4 3.1 5.1 Total 1858

1.1.2 6.79 0.28 7.07

1.2.2 0.39 8.59 0.39 0.09 0.12 0.03 0.01 9.62

2.1 2.57 6.76 249.90 74.47 13.15 11.55 2.48 360.89

2.2 1.64 0.21 31.22 8.24 3.60 0.15 45.06

2.4 0.05 0.05 0.30 2.81 3.22

3.1 7.27 5.54 100.46 13.50 2.20 260.30 0.76 390.21

3.2 3.48 0.42 3.90

5.1 2.00 0.33 1.64 0.28 0.17 0.34 4.24 9.01

Total 1955 24.19 22.18 383.80 96.90 22.04 272.22 7.65 829
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urban fabric class increased from 0.85% in 1858 to 3% in 1955, which mostly captured the forest class (LC class 
3.1) (-7.27 ha) and arable land class (LC class 2.1) (-2.6 ha).

Shrub and/or herbaceous vegetation associations class (LC class 3.2) including natural grassland, herbaceous 
vegetation, and scattered trees located on the east of the urbanized region of Kestel in 1858 with a total area 
of 3.48 ha, which then converted to the discontinuous urban area during the period of 1858–1955. Also, the 
forest land parcel covering the 7.30 ha at the west of the urbanized region of Kestel in 1858 was converted to a 
discontinuous urban area in the same period. In addition, the road constructions occupied approximately 6 ha 
of forest and semi-natural areas and close to 7 ha of agricultural areas between 1858 and 1955.

Visual interpretation of LULC maps of the Kestel region in 1955 and 2020 shows that the initial spatial struc-
ture of this town was changed fundamentally during the years between 1955 and 2020 (Fig. 8). The study area 
in 1955 was covered mainly by agricultural areas and forest, whereas the built-up area, majorly aggregated in 
the center of the town made up a minuscule portion (5.3%) of the study area. In 2020 land use changed drasti-
cally. The built-up area, including urban structures and industrial constructions, expanded significantly, and a 
large amount of farmland and forest was replaced with the urban fabric. The most significant land-use change 
in Kestel during 65 years between 1955 and 2020 is a significant decrease in agricultural areas (from 59.6% in 
1955 to 16.3% in 2020) and forest and semi-natural areas (from 34.1% in 1955 to 17.9% in 2020). Only 32.7 ha 
(8.6%) of arable land class in 1955 with a total area of 378 ha have remained unchanged in 65 years between 1955 
and 2020. 36.1% of the arable land class was transformed to the urban fabric (LC class 1.1), 29.1% to industrial, 
commercial, and transport units (LC class 1.2), 1.66% to mine, dump, and construction sites (LC class 1.3), 1.63% 
to artificial, non-agricultural vegetated areas (LC class 1.4) (Table 8). The percentage of artificial surfaces (LC 
class 1) in the Kestel region was 5.3% with a total area of 44 ha in 1955, and it increased in 65 years ten-fold to 
almost 497.8 ha. As a result, the percentage of artificial surfaces was 65.3% with a total area of 541.8 ha in 2020 
(Fig. 8, Table 9). The Kestel study area had changed substantially by the industrial activities during 1955 and 
2020 in which the 126.9 ha of agricultural area and 16.8 ha of forest land were transformed to the lands that are 
currently under industrial or commercial use.

Driving forces of LULC changes at the Kestel Region. In addition to biological reproduction, Kestel gained popu-
lation due to migration in around a hundred years between our first two observation years. Bursa region, in 
general including towns such as Kestel, were arrival points for waves of migration from the Balkans both in the 
late 19th as well as in the early twentieth  century47. Its population grew from 228 inhabitants in the 1840s to 2359 
inhabitants in 1955. This population growth caused an increase in the agricultural areas between 1858 and 1955 
(from 409 to 503 ha), which can be explained by increased agricultural activity and consequent deforestation 
(− 116.34 ha of forest class) in the region. Due to the lack of systematic mechanization in agricultural production 
in Turkey and the Bursa region until the 1950s, we can safely assume that increased agricultural activity resulted 
in an extension of agricultural land instead of an intensification of production based on technological change. 
Migration could also explain a marginal increase of discontinuous urban fabric in the region. The discontinuous 
urban area in 1858 grew to the east into the land, which was covered with a natural grassland, and to the west 
into the forest land. The more drastic LULC changes in the second half of the twentieth century in the Kestel 
region are related to the further increased human activity. The last wave of immigration from Bulgaria in 1989 
caused another jump in the population of Kestel and accelerated urban growth in the 1990s. Kestel town expe-
rienced the most recent LULC changes after it became one of the seven districts within the borders of the Bursa 
province in 2004, resulting in final population growth (from 2359 inhabitants in 1955 to 70,865 inhabitants in 
2020). The proximity to the industrialized city of Bursa, economic growth, and ever-increasing employment 
opportunities due to the industrial potential of Kestel further accelerated the rate of LULC change in this region. 
Today the Kestel town borders the Bursa city to the west, where most of its industrial sites are located. It is 
plausible that Kestel will be an organic part of the urban amalgamation of the city of Bursa in the near future. In 
sum, the LULC changes of Kestel were driven by accelerated urbanization sustained by long-term immigration.

Table 9.  LULC change matrix between 1955 and 2020 in the Kestel region (areas in hectares). Significant 
values are in [bold, italics].

LULC 1.1.1 1.1.2 1.2.1 1.2.2 1.3 1.4 2.1 2.2 2.4 3.1 3.2 5.1 Total 1955

1.1.2 20.98 0.37 0.71 22.06

1.2.2 3.24 0.33 0.98 11.54 0.82 1.9 0.2 0.91 0.3 0.98 0.22 0.58 22

2.1 114 22.78 87.31 23 6.29 6.19 32.78 32.01 22.07 22.23 9.15 0.23 378.04

2.2 27.88 1.17 28.76 5.8 0.64 4.55 0.8 18.82 4.67 0.72 0.45 94.26

2.4 9.95 10.88 0.58 0.66 0.02 22.09

3.1 39.12 28.92 16.8 12.78 25.39 23.37 2.4 7.18 11.49 113.7 1.38 0.39 282.92

5.1 1.4 0.02 2.29 0.75 0.1 0.28 0.08 0.14 0.55 0.08 0.12 1.79 7.6

Total 2020 216.57 53.22 147.02 54.82 33.24 37 36.92 59.06 39.08 137.71 11.34 2.99 829
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Discussion
LULC dynamic of Aksu and Kestel during 1858–2020. Historical cadastral maps and aerial photo-
graphs in companion with VHR satellite imageries allowed us to track long-term LULC changes from 1858 to 
2020 in two study areas in Bursa/Turkey, namely Aksu and Kestel sites. While we digitized the scanned cadastral 
maps, we classified the aerial photographs and satellite images using the OBIA approach and generated LULC 
maps for 1858, 1955, and 2020. The overall accuracy values are higher than 90% (Table 3). For most of the LULC 
classes UA and PA values are higher than 90% (Tables 4 and 5). We obtained very high accuracy values for 
artificial surface, water and forest classes for 2020 LULC maps with the important contribution of 30 cm spatial 
resolution of WV-3 images. According to the statistical analysis of the LULC changes, Kestel has experienced 
significant land changes compared to Aksu between 1858 and 2020. The primary trend observed during the 
163 years at Kestel is the significant agricultural area and forest conversion into urban land and industrial sites, 
where forest and semi-natural areas decreased from around 48% in 1858 to approximately 18% in 2020. The 
agricultural areas decreased from around 49% in 1858 to roughly 16% in 2020. In the meantime, the LULC of 
Aksu was changed only slightly in the same period. A gradual forestation and arable land conversion to hetero-
geneous agricultural areas were the main characteristics, where heterogeneous agricultural areas increased from 
around 12% in 1858 to roughly 28% in 2020. The artificial surfaces increased significantly from only 2% in 1858 
to approximately 66% in 2020 in Kestel. In contrast, they rose only marginally from 0.62% in 1858 to 3.66% in 
2020 in Aksu.

The socio-economic, demographic, and technological factors influencing the LULC changes can be analyzed 
in two periods between 1858 and 2020: (1) 1858–1955 and (2) 1955–2020. The dynamics of agricultural and 
forest land changes due to the dependence of an economic livelihood on farming impacted the LULC changes 
between 1858 and 1955. In the first period, the slight increase in population due to migrations and following 
human activities led to the conversion of forest lands to agricultural areas. Therefore, the most apparent change 
in the first period at both sites was an expansion of agrarian land based on extensive agriculture. In contrast, in 
the second period, 1955–2020, the socio-economic and technological factors became more critical, and migra-
tion, urban expansions, and industrial development mainly characterized the period. In this period, Aksu and 
Kestel followed radically diverging paths. The population growth due to immigration and natural increase and 
industrial area developments due to the proximity to the Bursa city center intensified the LULC changes in 
Kestel. On the contrary, lack of immigration and loss of logistical importance led to drastic rural depopulation, 
widespread agricultural land abandonment, and gradual afforestation in Aksu.

Iterative classification approach. We used the object-based classification method to segment the 
remotely sensed images, including the single-band aerial photographs and multi-spectral satellite imageries, 
into discrete objects and then applied decision trees for the identification and classification of these objects. In 
our proposed approach, we benefitted from the LULC outputs of former date for the consecutive segmentations. 
We utilized the vector boundaries of polygons in the classified cadastral maps as ancillary data for the segmenta-
tion and of the aerial photographs which improved the overall accuracy. We reduced the manual effort by using 
the labels 1858 LULC maps to assign the class to objects in aerial photographs which have not changed during 
1858 and 1955.

Consistently, we used the classification vectors of aerial photographs to segment the satellite imageries into 
meaningful objects for LULC detection and utilize the classified 1955 aerial photo to label the objects in 2020 
satellite images that have not changed during 1955 and 2020. Additionally, we used the OSM road network to 
improve the classification of the road class. Overall, integration of the digitized cadastral maps, former date clas-
sification results, and open-source geo-information into the object-based classification of aerial photographs 
and satellite images maps minimized the manual effort for the visual interpretation of aerial photographs and 
improved the classification accuracy for both data sets.

Drawbacks of historical datasets. There are some limitations in using the historical cadastral maps and 
aerial photographs for LULC change analysis. Traditional cadastral maps do not contain topographic proper-
ties of planimetric features; therefore, there is no information on relief causing difficulties in georeferencing. 
Possible deterioration of image quality caused by scanning the original hardcopy of aerial photographs and the 
inherent distortions caused by terrain and camera tilts preclude the precise rectification and classification of 
the aerial photographs. Moreover, classes used for long term land change analysis are highly dependent on the 
legend of the historical traditional map and limitations of aerial photographs specifically on the spectral domain. 
Although we can extract higher details for artificial surface classes, we cannot able to extract detail agricultural 
and forest classes due to these limitations.

Limitations of the approach for LULC change detection. Although the literature mainly utilizes 
object-based image analysis methods to classify VHR multi-spectral satellite images and manual methods for 
aerial photographs, our results showed that a hybrid approach of manual and object-based techniques is very 
useful for the classification of single-band aerial photographs. Our method can be time-efficient and provide 
more accurate results. Even though some manual interpretations are yet required, object-based segmentation 
and classifications significantly facilitate the LULC change detection in this study. Studies such as Yu et al. (2016) 
suggest utilizing various methodologies like the change vector analysis (CVA) to identify areas with changes 
automatically but this approach still requires multi-spectral images of similar sources for different  periods33.
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Conclusion
We evaluated the integration of historical geospatial data and recent VHR satellite images to determine the 
historical LULC changes between 1858 and 2020. Our results showed that a hybrid approach of manual and 
object-based techniques is very useful for the classification of single-band aerial photographs. Iterative use of the 
classified geospatial data of an earlier date for segmentation and classification of the data in a subsequent date 
facilitates both the generation of LULC maps and the detection of LULC changes.

Despite some limitation of the aerial photographs and historical cadastral maps including inherent geometric 
distortions, lack of topographic properties, and deterioration of image quality caused by scanning the original 
hardcopy; these historical geospatial data provide valuable information about the historical spatial distribution 
of LULC classes to understand the past landscape conditions and how these areas have changed due to different 
factors. LULC classes that will be evaluated need to be extracted from all data sets. Therefore, they are limited 
with the characteristics of traditional maps and aerial photographs.

Multi-temporal LULC maps could be used to predict future landscape conditions and analyze the changes 
under similar driving forces. Different researchers could apply our proposed approach to generate highly accu-
rate LULC maps of other regions from similar multi-modal geospatial data. In future studies, optimal automatic 
LULC change detection methods using multi-source geospatial data including single-band aerial photographs 
and multi-spectral satellite images will be further studied to minimize the manual interpretation. Finally, our 
proposed approach could be implemented to create reliable labeled reference datasets for deep learning models 
to automatize historical LULC mapping studies.

Data availability
Original geospatial data including cadastral maps, aerial photographs and WV-3 satellite images are not publicly 
available due to copyright rules of data providers but are available from the corresponding author on reasonable 
request. Newly generated LULC data are included in this published article as high resolution figures. Original 
versions of these LULC maps are available from the corresponding author on reasonable request.
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