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A B S T R A C T   

Event-related potentials (ERPs) are advantageous for investigating cognitive development. However, their 
application in infants/children is challenging given children’s difficulty in sitting through the multiple trials 
required in an ERP task. Thus, a large problem in developmental ERP research is high subject exclusion due to 
too few analyzable trials. Common analytic approaches (that involve averaging trials within subjects and 
excluding subjects with too few trials, as in ANOVA and linear regression) work around this problem, but do not 
mitigate it. Moreover, these practices can lead to inaccuracies in measuring neural signals. The greater the 
subject exclusion, the more problematic inaccuracies can be. We review recent developmental ERP studies to 
illustrate the prevalence of these issues. Critically, we demonstrate an alternative approach to ERP analysis—
linear mixed effects (LME) modeling—which offers unique utility in developmental ERP research. We demonstrate 
with simulated and real ERP data from preschool children that commonly employed ANOVAs yield biased results 
that become more biased as subject exclusion increases. In contrast, LME models yield accurate, unbiased results 
even when subjects have low trial-counts, and are better able to detect real condition differences. We include 
tutorials and example code to facilitate LME analyses in future ERP research.   

1. Introduction 

Event-related potentials (ERPs) extracted from the electroencepha
logram (EEG) are commonly used to examine brain activity in infants 
and young children. ERPs have advantages for assessing cognitive 
development across infancy, childhood, and adulthood compared to 
eye-tracking and behavioral methods. However, there are also chal
lenges to their application in infants and young children who have dif
ficulty being still and attentive for the multiple trials required in an ERP 
task. Thus, a large problem in developmental ERP research is the high 
rates of subject exclusion due to low numbers of analyzable trials. 
Current approaches to ERP analysis work around this problem, but do 
not mitigate it, and moreover, can lead to inaccuracies in measuring 
neural signals. The greater the subject exclusion, the more problematic 
these inaccuracies can be. In this paper, we demonstrate an alternative 
approach to ERP analysis: linear mixed effects (LME) modeling (also 
referred to as multilevel models, random-effects models, or hierarchical 
linear models). These models are becoming increasingly common in 
adult ERP research (Frömer et al., 2018; Volpert-Esmond et al., 2021), 
but offer unique utility in developmental ERP data despite remaining an 

uncommon analysis method. As we demonstrate with both simulated 
and real ERP data, the LME framework addresses problems that arise 
from high subject exclusion, and provides a more accurate assessment of 
the real underlying neural signals in ERP data. 

1.1. The advantages of ERPs in studying cognitive development 

The ERP method is useful for studying cognitive development, and 
has advantages over other common methods such as eye-tracking and 
behavioral tasks. Unlike behavioral tasks and eye-tracking which cap
ture only distal measures of cognition (e.g., downstream responses 
resulting from combinations of prior cognitive and motor processes), 
ERPs afford a proximal measure of cognition by directly measuring the 
underlying changes in neural activity as they occur essentially in real 
time (Sur and Sinha, 2009). Behavioral measures can be more chal
lenging to interpret: eye-gaze and behavioral responses can conflict (e. 
g., Cuevas and Bell, 2010), and it can be difficult to find comparable 
tasks across wide age ranges (e.g., infants, children, adults) in which 
cognitive and behavioral task demands vary to accommodate subjects’ 
discrepant capabilities. In contrast, ERP designs can use similar or 
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identical stimuli across a wide range of ages to examine neural speci
ficity across development (Clawson et al., 2017; Guy et al., 2016; Halit 
et al., 2003; Leppänen et al., 2007; Taylor et al., 1999). 

ERPs are the time-locked EEG activity corresponding to a cognitive, 
motor, or sensory event, and constitute waveforms that capture a 
pattern of event-related brain activity. These event-related waveforms 
emerge when the neural activity over multiple trials (i.e., multiple 
presentations of an event) is averaged together to reveal the neural ac
tivity that is common across trial presentations, with the ‘noise’ or non- 
event-related activity ‘averaged out’ (see Fig. 1). ERPs offer a powerful 
approach to study development of cognitive and perceptual processes, 
especially given many ERP tasks do not require a subject response, and 
can thus reveal cognition and development in preverbal infants and 
young children for whom overt responses are difficult or impossible. 
Indeed, meaningful and distinct patterns of neural activity (i.e., ‘com
ponents’) are revealed in the ERP that are detectable and comparable 
across the lifespan, and that reflect cognitive processes (see e.g., Claw
son et al., 2017; Guy et al., 2016; Halit et al., 2003; Leppänen et al., 
2007; Taylor et al., 1999). 

1.2. Challenges with ERP analyses especially for developmental studies: 
problems with casewise deletion and mean averaging 

Despite its many advantages, there are also challenges to ERP 
research, especially with infants and children. These challenges arise in 
part from the difficulty of getting subjects to sit still enough and for long 
enough to yield the many trials required to reveal the ERP. A common 
way that researchers analyze ERP data is to first average voltages across 
many trials per subject, and then mean average across subjects to reveal a 
grand-average ERP (which can then be analyzed for group or condition 
effects). In a process of casewise deletion (also referred to as complete- 
case analysis and listwise deletion), researchers exclude subjects with 
few artifact-free trials from mean averaging because of concerns that 
these subjects have ERPs with a low signal-to-noise ratio. 

High casewise deletion of subjects with too few trials is especially 
prevalent in developmental studies. This higher rate of subject exclusion 
exists in part because ERP tasks designed for infants and children have 
fewer trials to begin with in order to accommodate the young subjects’ 
shorter attention spans and faster rates of fatigue. Additionally, infants 
and children have greater difficulty sitting still and attending to each 
trial, and thus more trials are flagged for removal in pre-processing due 
to excessive movement or inattention. To illustrate this high subject 
exclusion that increases as the target population decreases in age, we 
conducted a review of 122 ERP studies published in the journal Devel
opmental Cognitive Neuroscience from January 2011 to April 2021 (see 
Appendix A for the literature review procedures). The review revealed 
that, across studies (N = 53)1 that used a trial-rejection threshold and 
required a minimum of 10 trials/condition for subject inclusion (rep
resenting the most common threshold in our literature review), on 
average, 32.44% of infants and toddlers (0- to 35-months-old), 11.45% 
of preschoolers (3- to 5-years-old), and 6.49% of older children (6- to 13- 

years-old) who participated in the study were excluded from analyses 
(see Fig. 2). These results highlight the problem of high data loss due to 
high casewise deletion in mean averaging approaches. 

Both casewise deletion and mean averaging can cause problems for 
ERP analyses. As we outline in sections below, these practices can lead to 
issues such as arbitrarily determining exclusion criteria, inefficient data 
collection, decreased power to detect condition or group differences, 
and an incomplete interpretation of ERP results. Most problematic for 
developmental research, these problems are often exacerbated in studies 
that exclude a large number of subjects due to low trial count. 

1.2.1. Problems with casewise deletion: casewise deletion decreases power, 
represents large sunk costs, and its determination is arbitrary 

Given that ERPs extracted from fewer trials have reduced signal-to- 
noise ratios, researchers commonly exclude subjects who have too few 
artifact-free trials in a condition through casewise deletion. But the 
cutoff point for ‘too few trials’ is arbitrarily set by researchers. A com
mon cutoff is to exclude subjects with fewer than 10–15 trials. In our 
review of developmental ERP studies noted above, 48 studies reported a 
trial cutoff. Of these studies, a 10–15 trial cutoff was the most common 
cutoff used across each age group (52% of infant/toddler studies, 
37.50% of preschooler studies, and 31.25% of older children studies 
employed a trial cutoff within this range, see Appendix Table A.2). 
Although some research has examined how different trial cutoff points 
affect ERP data quality, this research has used adult populations to 
determine the number of trials sufficient to eliminate random error in 
the mean-averaged ERP (Boudewyn et al., 2018; Luck, 2014). These 
heuristics may be inappropriate for child ERPs, which are noisier than 
adult ERPs (Hämmerer et al., 2013). This higher noise in child data is 
reflected in thresholds for rejecting noisy trials. For example, common 
simple voltage thresholds for preschool ERP studies are between ± 150 
to ± 250 µV (Carver et al., 2003; Cicchetti and Curtis, 2005; D’Hondt 
et al., 2017; Decety et al., 2018; Taylor et al., 1999; Webb et al., 2006); 
whereas many adult studies use a stricter simple voltage threshold of 
± 40 to ± 100 µV (Brusini et al., 2016; Duta et al., 2012; Huang et al., 
2019; Sanders and Zobel, 2012; Shephard et al., 2014). However, the 
relation between trials and noise in developmental ERPs is not clear 
given that infants and children also have a higher signal-to-noise ratio 
due to thinner skulls than adults (see Roche-Labarbe et al., 2008). Thus, 
there may be different factors for children versus adults that influence 
the number of ERP trials necessary to obtain a clean ERP signal. 

In part to address this issue, researchers have recently developed 
alternative methods of assessing single-subject ERP data quality (e.g., 
subject-level reliability, Clayson et al., 2021; standardized measurement 
error, Luck et al., 2021) to provide researchers with more objective and 
quantitative approaches to identifying subjects who should be excluded. 
These alternative methods may result in fewer subject exclusions (e.g., 
subjects with few trials may still be retained if their ERP is assessed as 
‘high quality’ by one of these alternative metrics). However, any amount 
of casewise deletion, regardless of how exclusion is determined, impacts 
power to detect a significant effect in the sample. Power is a function of 
sample size, effect size and variability; thus, with all other factors held 
constant, decreased sample size decreases power to detect differences 
across groups or across conditions (Jones et al., 2003; Little et al., 2016). 
Moreover, collecting clean developmental ERP data is time intensive 
and costly. Even before an experiment begins, time and funds have been 
spent recruiting and scheduling families, and laboratories often hire 
paid research staff to run experimental sessions with infants and chil
dren given that researchers must have extensive training to maximize 
infant/child task compliance. Thus, any subject excluded from analyses 
represents a large sunk cost. 

1.2.2. Problems with mean averaging: possible errors in interpretation of 
results (Simpson’s Paradox) 

Statistical analyses commonly applied to ERP data to determine 
condition differences or relations among behavioral variables include 

1 The percentages of subjects casewise deleted in each age group were 
calculated from 53 studies of the total 122 reviewed. Specifically, we first 
identified 67 studies that could be categorized into our three age groups. As 
seen in Appendix Table A.2, the most commonly used trial/condition threshold 
for subject exclusion, in all age groups, was 10–15 trials. Furthermore, as seen 
in Appendix Table A.1, the most commonly reported trial/condition threshold 
across all 122 studies was 10. Thus, to best capture trends in the literature, we 
examined the 67 studies categorized into our three age groups, and identified 
53 studies that required at least 10 trials per condition for subject inclusion (the 
most common threshold identified in the literature review of all 122 studies). 
The percentages calculated from these 53 studies are reported in Fig. 2, and 
were used to create the different percentages of casewise deletion in the 
simulation analyses in Section 3. See Appendix A for complete literature review 
details. 
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regression and analysis of variance (ANOVA, i.e., regression with cate
gorical predictors). In our literature review, 90.16% of studies exam
ining ERPs in children used one or more regression/ANOVA analyses, 
representing the most common analysis in the review (see 
Appendix Table A.1). However, when performing these analyses over 
mean-averaged ERPs, the results may offer an incomplete picture of 
neural phenomena, particularly when there are different within- and 
between-subjects effects (see Fig. 3). This problem is known as Simp
son’s Paradox (Simpson, 1951; Snijders and Bosker, 2012). ERP data are 
susceptible to Simpson’s Paradox because although there may be both 
within- and between-subjects effects, mean averaging only captures 
between-subjects patterns. Within-subjects variability describes 
different patterns that subjects show within their ERP trials. For 

example, subjects can have varying slopes of reduced mean amplitude 
across trials. Between-subjects variability includes behavioral charac
teristics of subjects that influence their ERP. For example, ERPs may be 
influenced by subjects’ age (e.g., N290 amplitude becomes sensitive to 
face stimulus orientation in older infants, de Haan et al., 2002; Halit 
et al., 2003), temperament (Bar-Haim et al., 2003; Lahat et al., 2014), or 
other behavioral characteristics. Both linear regression and ANOVA 
require mean averaging ERPs within-subjects, which make examining 
within-subjects variability challenging or impossible given that the 
within-subjects variability is collapsed. Alternatives (such as binning 
behavioral responses to create categories of within-subjects variability) 
can result in errors in inference. Specifically, when researchers dichot
omize continuous variables (e.g., anxiety levels), there are Type II errors 

Fig. 1. Example of how single ERP trials are averaged within a condition to reveal a mean-averaged ERP waveform. As more trials are averaged together, noise from 
single trials are ‘averaged-out’ in order to measure latency-to-peak and amplitude of ERP components (e.g., P1, N290, P400). 

Fig. 2. Stacked bar plot of the mean percent of excluded subjects in studies requiring at least 10 trials/condition for ERP analysis (N = 53)1, representing the most 
common threshold used in our literature review (see Appendix A). All studies were published in the journal Developmental Cognitive Neuroscience from January 2011 
to April 2021. Infant/Toddlers = 0- to 35-month-olds; Preschoolers = 3- to 5-year-olds; Older Children = 6- to 13-year-olds. 
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in models with a single predictor and Type I errors when there are 
multiple predictors (Irwin and McClelland, 2003; Krueger and Tian, 
2004; Maxwell and Delaney, 1993). Further, dichotomizing ordinal data 
results in biased parameter estimates (Sankey and Weissfeld, 1998). 

Ignoring the within-subjects variability that exists in ERP data when 
using standard linear regression models can result in only describing 
part of the ERP component’s characteristics (whereas LMEs can describe 
the complete within- and between-subjects effects). To illustrate issues 
arising when only between-subjects effects are modeled, consider an 
example in which subjects are shown a series of images and asked to rate 
them across each trial (e.g., rating subjective anxiety on a series of In
ternational Affective Picture System images, Lang et al., 2008). In this 
hypothetical study, the within-subjects variability illustrates that higher 
anxiety on individual trials is related to less negative ERP amplitude. 
However, at the between-subjects level, higher anxiety is related to more 
negative ERP amplitude (see Fig. 3). Using mean averaging in a standard 
linear regression framework would reveal the negative between-subjects 
relation, but not the positive within-subjects relation, which best char
acterizes the relation between subjects’ anxiety and their ERP ampli
tude. Thus, as illustrated in this example, the interpretation of data and 
conclusions researchers draw from mean-averaged data can suggest the 
opposite effect of what occurs at the within-subjects level. 

1.2.3. Problems with using casewise deletion in ordinary least squares: 
violation of missingness assumptions can lead to grand-mean ERPs that are 
biased or incorrect 

Also problematic, the use of casewise deletion (used in common ERP 
analyses such as linear regression and ANOVA) can lead to grand-mean 
ERPs that are biased or incorrect. These biases occur when missingness 
assumptions for casewise deletion are violated, as is often the case in 
ERP research and in developmental ERP studies in particular. We first 
describe the types of missing data that may occur in ERP studies using 
examples. We then clarify why some types of missing data result in 
biased grand-mean ERPs when using casewise deletion, but remain 
unbiased in LME (which uses maximum likelihood instead of casewise 
deletion). 

Rubin and colleagues (Little and Rubin, 2002; Rubin, 1976) have 
described three mechanisms of missing data, and these mechanisms and 
solutions have been expanded upon (Baraldi and Enders, 2010; Graham, 
2009). These types of missingness are: (1) missing completely at random 
(MCAR), (2) missing not at random (MNAR), and (3) missing at random 
(MAR). Importantly, missing mechanisms describe a specific dataset 
being used in a model or analysis, and are not characteristics of a 
complete dataset itself (Baraldi and Enders, 2010). Therefore, within a 
larger dataset and depending on which variables are included in the 

model, there may be independent analyses that meet assumptions for 
MCAR, MAR, and MNAR (Nakagawa and Freckleton, 2008). As we 
describe in sections below, while both MNAR and MAR violate as
sumptions of casewise deletion, LME in contrast remains unbiased when 
data are MAR. Additionally, while MNAR is problematic for both case
wise deletion and LME models, LME allows for the inclusion of other 
variables that can make LME analyses more likely to meet MAR 
assumptions. 

1.2.3.1. Types of missing data. MCAR occurs when the probability of 
missing data on a given target measure (e.g., trial-level mean amplitude) 
is not related to other measured variables (e.g., age), not related to 
unmeasured variables (e.g., other constructs that may be relevant but 
that were not assessed in a given study, e.g., prenatal exposure to 
medication), and also not related to the missing values of the target 
measure itself (i.e., the hypothetical values of the variable that would 
have been observed if they were not missing) (Rubin, 1976; Little et al., 
2016). For example, MCAR can emerge from a child moving away 
during a longitudinal experiment, experimenter error, or equipment 
failure during the experiment. These examples describe MCAR because 
the data that would have been observed (e.g., if the equipment did not 
fail) are not related to any variable, either measured or unmeasured. 
That is, the missingness is ‘completely random’. If data are MCAR, the 
dataset will not violate missing assumptions of casewise deletion (used 
in ANOVA and linear regression) or LME, and parameter estimates of 
analyses remain unbiased. 

MNAR occurs when the probability of missing data on a target 
measure is related to unmeasured variables and related to the missing 
values of the target measure itself (Nakagawa and Freckleton, 2011). For 
example, there may be greater missing ERP data for infants with 
behaviorally inhibited temperaments who fuss more during the experi
ment and therefore have greater missing trials (de Haan et al., 2004). 
Thus, if temperament was not measured by the researcher and the target 
ERP component of interest is modulated by temperament, data will be 
MNAR. That is, the probability of missing ERP data is not random (it is 
related to temperament), and the ERP data observed is biased due to 
greater missingness in behaviorally inhibited children in the sample. 
When data are MNAR, missingness assumptions of both casewise dele
tion and LME are violated. 

MAR occurs when the probability of missing data can be predicted 
completely by measured variables, and thus after accounting for these 
sources of missingness, the remaining missing data are random (Snijders 
and Bosker, 2012; Graham, 2009). In this way, data can be MAR if 
missingness is (1) related to other observed measures, and any remaining 
missingness is random (Baraldi and Enders, 2010), or (2) related to 
unobserved measures that are not related to the missing values of the 
target measure itself (Higgins et al., 2008). For example, if researchers 
collect information on subject temperament, then the missing data that 
is more likely to occur in behaviorally inhibited infants (e.g., due to 
more frequent fussing) can be modeled and accounted for in analyses, 
resulting in unbiased ERP data despite greater missing trials for 
behaviorally inhibited infants in the sample. Likewise, if temperament 
was not measured, but was unrelated to the ERP component of interest, 
then the reduced trial count for behaviorally inhibited infants in the 
sample would still not systematically bias the ERP data that were 
observed, because temperament did not modulate this specific compo
nent of interest. When data are MAR, missingness assumptions are met 
for LME, but not for casewise deletion (used in ANOVA and linear 
regression). 

1.2.3.2. Casewise deletion in ordinary least squares is more vulnerable to 
violations of missingness compared to LME. Understanding the mecha
nism of missing data that best describes a researcher’s analysis is critical, 
because as we summarized above, casewise deletion is only appropriate 
in ordinary least squares models (e.g., ANOVA, linear regression) when 

Fig. 3. Illustration of Simpson’s Paradox, in which there are different within- 
subjects effects (shown here by colored lines indicating individual subjects’ 
regression lines) and between-subjects effects (shown here by the black 
regression line). Figure was created in the R package ‘correlation’ (Version 
0.6.1; Makowski et al., 2020). 
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data are MCAR (Baraldi and Enders, 2010). In contrast, LME, which we 
present in greater detail below, is appropriate when data are either 
MCAR or MAR. 

In addition, LME can account for trial-level reasons for missingness, 
therefore making data more likely to fall under MAR assumptions versus 
MNAR. Specifically, given MNAR can occur when missing data on a 
target measure are predicted by an unmeasured variable, LME can 
incorporate ‘auxiliary’ variables, or variables that are not of interest 
themselves but that likely relate to missingness. As noted above, by 
definition, MAR occurs when the probability of missing data can be 
predicted completely by measured variables. Thus, when an auxiliary 
variable is included in LME, missing data within a target variable can be 
accounted for, at both within- and between-subjects levels, enabling the 
variable to meet MAR assumptions. In contrast, if auxiliary variables are 
added to ANOVA or regression models, missingness will only be 
accounted for at the between-subjects level (because the mean averaging 
in these analyses obscures within-subjects effects). As a particularly 
salient example, trial presentation number is frequently related to 
missing data in developmental ERP studies, because infants and children 
are fussier toward the end of the recording and therefore end the session 
early or have larger artifacts (due to motion) on later trials that ulti
mately get excluded from analyses. Trial presentation number is a 
within-subjects variable and thus can be accounted for in LME, making 
the analysis MAR and meeting assumptions. In contrast, neither 
regression nor ANOVA can account for this within-subjects effect, and 
missingness assumptions will be violated for these analyses, biasing 
results (see also Section 1.3.1 for further discussion of this example). 

As we demonstrate in both simulated (Section 3) and real ERP data 
(Section 4), when missingness assumptions in ordinary least squares 
methods are violated (as is common in ERP research), casewise deletion 
biases parameter estimates (Baraldi and Enders, 2010; Little et al., 2016; 
Roth, 1994), and can lead researchers to believe that mean amplitude is 
higher or lower than it truly is at the population level. Further, given 
that there is greater bias at higher levels of casewise deletion (Little 
et al., 2016), infant ERP research—which has the highest levels of 
casewise deletion (see Fig. 2)—is particularly vulnerable to biased 
parameter estimates. 

1.3. LME as an alternative approach to grand-mean averaging and 
casewise deletion 

We have described several issues arising from the use of casewise 
deletion and mean averaging in ERP research that can weaken studies’ 
power, lead to incomplete conclusions about the relation between 
neural signals and cognitive processes, and bias results from statistical 
analyses. Here, we discuss in greater detail an alternative approach to 
mean averaging subjects’ ERP waveforms using linear mixed effects 
models (LME), which does not involve casewise deletion and can handle 
missing data that are either MCAR or MAR. 

LME can be used to answer research questions about both within- 
and between-subjects effects, and therefore can be used for most existing 
developmental ERP studies, including studies examining condition dif
ferences, group differences and individual differences. Thus, LME has 
wide-ranging utility to answer many of the developmental questions 
that concern research in developmental neuroscience. Importantly, as 
we discuss in the sections below, the LME approach provides more ac
curate estimates of effects in statistical analyses, allows researchers to 
include all subjects (even those who only contribute one trial), and can 
be easily incorporated into existing ERP data processing pipelines. 
Despite the usefulness and flexibility of LMEs for developmental ERP 
research, only 4.92% of studies in our Developmental Cognitive Neuro
science review have utilized this valuable approach. 

1.3.1. LME provides more accurate estimates of effects by modeling both 
random and fixed effects, at both between- and within-subjects levels 

Given that LMEs can model both within- and between-subjects 

effects, they can better model variability that arises from effects that are 
not of interest themselves but that may bias an effect-of-interest (so- 
called ‘nuisance’ variables). The capability to model a broad array of 
nuisance variables allows for better isolation of an effect-of-interest. 
LMEs are further advantageous because they can model not only fixed 
effects (that are modeled in ordinary least squares), but also random 
effects, thereby accounting for even more sources of nuisance variability 
to further isolate an effect of interest. 

Random effects are assumed to be sampled randomly from the pop
ulation and are typically not of interest themselves (DeBruine and Barr, 
2021). However, if random effects are included in a model, it can ac
count for more sampling variability, and thus more accurately estimate a 
fixed effect of interest. ERP data contains several sources of variability 
that can be modeled as random effects. Thus, LMEs can be especially 
advantageous when used in ERP research. For example, the specific 
electrode channels of interest for a given ERP component, stimulus-level 
characteristics, and even the subjects themselves can be modeled as 
random effects. Including these random effects helps account for this 
extra variability and better isolate the target effect of ERP component 
amplitude. To illustrate, in an ERP experiment wherein subjects view 
emotions (e.g., happy, fearful, and angry emotion conditions) that are 
expressed across different actors, the ERP amplitude might be modu
lated by random stimulus-level characteristics of the actors themselves 
(such as hair color, face shape). Including ‘actor’ as a random effect in 
the model accounts for this stimulus-level variability and thus enables 
more accurate estimation of the effect-of-interest (i.e., the ERP ampli
tude modulated by emotion) (see Section 2.2 for further discussion of 
this example and for additional examples of random effects). 

Including fixed effects in models also enables more accurate esti
mation of effects of interest. Fixed effects are assumed to be non-random, 
related to the target variable of interest, and consistent across samples 
from the population. Between-subjects fixed effects are modeled in or
dinary least squares analyses, but because LME can also model within- 
subjects fixed effects, LME is again advantageous in its ability to 
model more nuisance variables. In particular, unlike ordinary least 
squares, LME can model fixed effects at the trial level, which is especially 
advantageous for developmental ERP studies. To illustrate, some ERP 
components show an amplitude ‘decay’ (habituation) over repeated 
trials (e.g., the Negative Central or NC; Borgström et al., 2016; Friedrich 
and Friederici, 2017; Junge et al., 2012; Karrer et al., 1998; Nikkel and 
Karrer, 1994; Reynolds and Richards, 2019; Snyder et al., 2010; Wiebe 
et al., 2006; but see also Quinn et al., 2006, 2010; Snyder et al., 2002). In 
ordinary least squares that cannot model trial-level variability, early 
trials will be mean averaged with later trials. This practice is not prob
lematic in and of itself, however, in developmental ERP studies in which 
infants and young children often ‘fuss out’ early, there are commonly 
more missing trials toward the end of the experiment. Thus, if the 
trial-level amplitude decay is not modeled (e.g., by including trial pre
sentation number as a within-subjects fixed effect), then results will be 
biased toward the mean amplitude from earlier trial presentations and 
artificially inflated. Modeling amplitude decay when it occurs within 
this pattern of missing data is particularly important when comparing 
mean amplitude across different age groups. For example, if results show 
that preschool children have greater mean ERP amplitude compared to 
adolescents, this ‘age effect’ could be driven at least in part by the bias in 
the preschool sample wherein the proportion of high-amplitude trials 
from the beginning of the experiment may be over-represented (because 
more preschoolers ended the task early). 

In sum, LMEs can importantly model both fixed and random effects, 
at both between- and within-subjects levels. Thus, LMEs have the 
capability to account for a broad array of nuisance variables and more 
accurately estimate the effect of interest. These functions make LMEs 
especially advantageous when used to analyze developmental ERP data 
in which random effects (e.g., of stimulus-level characteristics) may 
obscure condition-level fixed effects of interest, and in which within- 
subjects fixed effects (e.g., at the trial-level) can bias estimates of ERP 
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amplitude—a bias that can disproportionately affect infant and child 
samples. 

1.3.2. LME does not require casewise deletion, and produces unbiased 
estimates regardless of whether missingness is random (MAR) or completely 
random (MCAR) 

LME does not require casewise deletion, and instead uses maximum 
likelihood estimation to account for missing data. Maximum likelihood 
as a means to handle missing data in developmental ERP experiments 
has several benefits. It allows researchers to analyze all artifact-free data 
from subjects, even from those who would have otherwise been removed 
due to too few analyzable trials. Further, maximum likelihood estima
tion produces unbiased estimates regardless of whether data are MCAR 
or MAR; whereas casewise deletion only produces unbiased estimates 
when data are MCAR (Baraldi and Enders, 2010; Little et al., 2016). 
Given that ERP studies commonly have data that are MAR, LME and its 
use of maximum likelihood is advantageous: LME produces unbiased 
estimates where mean averaging and casewise deletion does not (as we 
demonstrate in Section 3). 

1.3.3. LMEs use partial pooling to enable inclusion of all usable trials 
As previously discussed, for ordinary least squares analyses with 

developmental ERP data, high numbers of subjects are casewise deleted 
because of not enough usable artifact-free trials to contribute to a subject 
average. In contrast, LMEs can include all available artifact-free trials, 
even if children have more data in one condition than another, and even 
if children have only one artifact-free ERP trial. LMEs account for 
different numbers of trials being contributed by different subjects 
through partial pooling of the model’s variance. 

Specifically, LMEs partially pool the within-subjects and between- 
subjects variance in the model (also referred to as “shrinkage”, Gel
man and Hill, 2007). Partial pooling combines the group-level effect (e. 
g., the average effect for all subjects) and the subject-level effect, and 
therefore subjects’ individual effect estimates are drawn toward the 
group estimate. The number of trials that subjects contribute to the 
group mean dictates the extent to which subjects’ estimates are pulled 
toward the group mean. In addition, subjects with fewer trials (who have 
a less reliable estimate of their mean amplitude) are weighted less in the 
mean than subjects with a high trial count. Therefore, subjects with even 
just a single artifact-free ERP trial (who otherwise would be casewise 
deleted before mean averaging) are included in analyses, and subjects 
with fewer trials will have less weight in the group mean than a subject 
with more usable trials. Retaining as many subjects as possible for ERP 
analysis helps increase power to detect effects, and is particularly 
valuable for developmental studies given the large sunk cost of testing 
infants and young children. It also sidesteps the issue of using an arbi
trary trial cut-off for exclusion with casewise deletion. 

In contrast, in a model with complete pooling of variance, trial-level 
data are fit without a categorical predictor of subject, and all trials 
would be treated as part of a single ‘group’ or subject, which ignores 
within-subjects variability (e.g., a subject may have higher or lower 
amplitude than the rest of subjects). ANOVA assumes that all conditions 
or groups are sampled from a population with the same variance, and 
calculates a single pooled standard deviation (i.e., all conditions have 
the same standard deviation value). In a model with no pooling, the 
regression model would be fit individually to each subject. However, 
fitting a model to each individual subject overfits data (Gelman and Hill, 
2007). Therefore, partial pooling in LME has the advantage of including 
subjects who have few artifact-free ERP trials, but also gives these 
subjects less weight in the sample mean to account for their less precise 
estimate of amplitude (due to few trials). 

2. Comparing LME and linear regression 

In the sections that follow, we describe how LME is an extension of 
regression, and demonstrate how data that would typically be analyzed 

in a mean-averaged regression or ANOVA (which both use ordinary least 
squares estimation) can be analyzed in an LME framework. We begin by 
reviewing linear regression, and then illustrate how this formula is 
modified in LME. 

ERP data have a hierarchical structure in which trials are “nested” 
within subjects, and trials within one subject are more similar to each 
other than trials from another subject. Statistical models need to account 
for this nested structure in which the value of one trial is influenced or 
dependent upon other trials. In linear regression, this nesting is 
accounted for by mean averaging to produce a single mean amplitude 
value per condition per subject. However, in LME this nesting is 
accounted for by modeling within-subjects variability (at the trial level) 
and including random effects for subjects (e.g., subjects can differ in 
their intercepts or grand mean across all conditions; and in their slopes or 
their effect across conditions). 

2.1. Linear regression 

Eq. (1): Linear regression can be represented as:  

yj = β0 + β1x1j + β2x2j + Ɛj                                                                   

β0 represents the intercept, and β1, β2 represent the slope of fixed 
effects. 

j represents subject-level estimates. 
Ɛj represents error residuals where Ɛj ~N(0,σ2).  

For example, the following model describes the influence of condi
tion on mean amplitude while controlling for age:  

Mean amplitude = β0 + β1Condition + β2Age + Ɛ                                     

where β0 is the intercept (mean amplitude across all conditions when 
Age = 0), β1 and β2 are fixed effects, meaning that the coefficients do not 
vary (i.e., are non-random), and Ɛ is residual variance. In linear 
regression, the relation between mean amplitude and Condition, and 
mean amplitude and Age, is the same for every subject. 

2.2. Linear mixed effects model (LME) 

In contrast to linear regression which only models between-subjects 
variability of ERPs, LMEs model variability at both the within-subjects 
(also called ‘level 1’) and between-subjects (also called ‘level 2’) 
levels. We present LME models using the two-level notation style from 
Raudenbush and Bryk (2002). Data dependence is accounted for by 
random effects, or effects that are assumed to be sampled from a pop
ulation (for further description see Section 1.3.1 above). In ERP studies, 
some common examples of random effects are variability in trial 
amplitude that is a function of subject (e.g., trials within a subject are 
similar to each other) or a feature of stimulus (e.g., trials in which the 
same actor expresses different emotions have a similar amplitude across 
subjects). We illustrate a simplified LME model (see Eq. (2) below) with 
the most universal random effect of ‘Subject’ to account for each subject 
having ERPs more similar to themselves than to another subject. This 
model also includes one level 2 fixed effect (called ‘Predictor’). Thus, 
this simplified LME model includes a fixed effect of a level 2 Predictor, 
and one random effect (a random intercept for Subject). Note that this 
‘Predictor’ slot is highly flexible. For example, in an LME model exam
ining condition differences (e.g., a model similar to ANOVA), the Pre
dictor could be a fixed effect of condition; whereas in an LME model 
examining individual differences (e.g., a model similar to linear 
regression), the Predictor could be any continuous variable of interest 
(e.g., age, executive function). We describe and interpret a more com
plex model with both level 1 and level 2 fixed effects in Section 3.  

Eq. (2). 
Level 1 (within-subjects): yij = β0j + Ɛij. 

M.J. Heise et al.                                                                                                                                                                                                                                 



Developmental Cognitive Neuroscience 54 (2022) 101070

7

i represents trial-level estimates. 
j represents subject-level estimates. 

Level 2 (between-subjects): 
β0j = γ00 + γ01Predictorj + u0j. 
γ00 = Grand mean intercept across the sample. 
γ01 = Predictor’s mean across the sample. 
u0j = Each Subject’s increment to the grand mean. 

The level 2 model illustrates that each subject has a unique intercept, 
and all subjects share a single slope of Predictor (e.g., a fixed effect of 
condition or the slope of an individual differences predictor) within the 
model. 

The assumptions of a linear mixed effects model analysis are similar 
to linear regression; they include linearity, normal distribution of re
siduals, and homoscedasticity. The first assumption, linearity, states that 
the independent variables must be linearly related to the outcome var
iables. A dataset’s linearity can be visually inspected by plotting the 
model’s residuals with the observed outcome variable. The second 
assumption, normal distribution of residuals, states that the residuals of 
the dependent variable should follow a normal distribution and not be 
skewed. For datasets with samples between 3 and 5000 (Royston, 1995), 
the model’s residuals can be tested with the Shapiro-Wilk test of 
normality. Datasets with sample sizes greater than 5000 require using 
visual inspection of the model’s residuals. If this assumption is violated, 
then the fixed effects or outcome variable can be transformed to a 
different scale, such as a log scale (e.g., reaction time is frequently 
log-transformed to meet the assumption of normal distributions of re
siduals). The third assumption, homoscedasticity (i.e., homogeneity of 
variance) states that each group (e.g., younger vs. older age group) 
should have a similar distribution of values. This assumption can be 
tested using the Levene’s test for homogeneity of variance. Note that 
these three assumptions must also be met in order to use regression 
analysis but linear mixed effects models do not require independence of 
datapoints, which is an additional assumption of linear regression. 

3. LME and ANOVA comparison in simulated ERP data 

To demonstrate how and when regression and ANOVA biases ERP 
results, we conducted simulations wherein the population parameters of 
ERPs were specified and therefore known. These simulations enabled 
systematic evaluation of the extent to which the use of casewise deletion 
in mean averaging biased parameter estimates compared to the alter
native LME approach. We measured bias in both estimated marginal 
mean amplitudes (e.g., condition mean for one predictor averaged over 
presentation number) and standard deviations such that greater bias was 
evident when (1) estimated marginal mean amplitudes were more 
different from the population mean, and (2) had larger standard de
viations. We examined bias in 3 separate simulations in which we sys
tematically varied the type of missingness to approximate the different 
characteristics of real ERP data in existing studies, and to illustrate the 
capabilities of LME versus casewise deletion in ANOVA to handle these 
missingness patterns. Specifically, we simulated: (1) greater missing 
data for later trials and for younger subjects (missingness at both within- 
and between-subjects levels), (2) greater missing data for later trials 
with a uniform distribution across subject ages (missingness at within- 
subjects level only), and (3) a uniform distribution of missing trials 
across stimulus presentation number and subject ages (i.e., MCAR). For 
each of these three sets of simulations, we also systematically varied the 
number of subjects who would be casewise deleted due to too few 
artifact-free trials (10 trials/condition) in an ANOVA framework. These 
subjects were included in LME analyses. Therefore, the percentage of 
casewise deleted subjects was varied to create different amounts of 
casewise deletion that matched common percentages revealed in our 
review of developmental ERP studies (i.e., 0%, 6%, 11%, 32%; see 
Appendix Table A.3). In this way, simulations were used to determine 
how different percentages of casewise deletion bias measurements of 

ERP amplitude and increase standard deviation in estimates. 
We simulated the Negative Central (NC) ERP component from a 

hypothetical experiment in which subjects in two groups (e.g., ‘younger 
group’ and ‘older group’) passively viewed still images of actors 
expressing emotions in two conditions (e.g., emotion A ‘happy’; emotion 
B ‘angry’). NC is a commonly elicited component to face processing in 
developmental ERP research with infants, and children (Dennis et al., 
2009; Leppänen et al., 2007; Todd et al., 2008; Xie et al., 2019; for a 
review, see de Haan, 2001). To best approximate real ERP studies, we 
built the simulated data based on characteristics of real NC ERP data in 
existing developmental research. That is, we drew from the literature to 
determine population mean NC amplitude (Leppänen et al., 2007; Smith 
et al., 2020), age differences in NC mean amplitude (Di Lorenzo et al., 
2020), and NC amplitude decay across trials (Borgström et al., 2016). 
We also modeled fixed and random effects commonly found in real ERP 
data such as condition differences and subject-level variability. 

3.1. Methods 

3.1.1. Data simulation 
Data were simulated in MATLAB (Version 2019a; MATLAB, 2019) 

using the SEREEGA toolbox (Version 1.1.0; Krol et al., 2018) for a hy
pothetical ERP experiment presenting two emotional face conditions: A 
and B. SEREEGA is a toolbox designed to simulate realistic ERP data 
using a neural source (e.g., coordinates of neural sources from prior 
fMRI and source-localization ERP research), and allows researchers to 
induce noise in the simulated ERP waveform to model noise in 
single-trial ERP data. For the present study, we generated single-trial 
Negative Central (NC) mean amplitude values using the prefrontal ICA 
component cluster reported in Reynolds and Richards (2005) and the 
Atlas 1 (0–2 years old) lead field from the Pediatric Head Atlas (Version 
1.1; Song et al., 2013). 

Simulated data for each condition were drawn from a normal dis
tribution with a mean of − 10 and − 12 μV, respectively, and a standard 
deviation of 5 μV. These mean and standard deviation values were 
chosen based on those reported in previous infant NC studies (Leppänen 
et al., 2007; Smith et al., 2020). 

Each emotional face condition was displayed by 5 different ‘actors’ 
with 10 presentations each (total of 50 trials/condition). A within- 
subjects fixed effect of presentation number was simulated in order to 
model the ‘decay’ phenomena that ERP components reduce in amplitude 
in response to a repeated stimulus. Based on values reported in 
Borgström and colleagues (2016), the amplitude for a specific emotion 
and actor was reduced by 1.5 μV for each successive presentation. This 
amplitude decay or habituation has been documented in the NC 
component by several other studies (Friedrich and Friederici, 2017; 
Junge et al., 2012; Karrer et al., 1998; Nikkel and Karrer, 1994; Reynolds 
and Richards, 2019; Snyder et al., 2010; Wiebe et al., 2006). Given 
age-related changes in NC reported by Di Lorenzo and colleagues 
(2020), a categorical fixed effect of age (younger group vs. older group) 
was assigned, in which 2 μV were subtracted from each trial-level 
amplitude value for subjects in the ‘older’ group and were added to 
each trial-level amplitude to the ‘younger’ group. In each simulation 
sample, there were random intercepts for each actor and for each sub
ject. Within each sample, the random intercept for each actor was drawn 
from a normal distribution with means [− 10, − 5, 0, 5, 10 μV] and a 
standard deviation of 5 μV. Within each sample, the random intercept 
for each subject was drawn from a normal distribution with a mean of 
0 μV and a standard deviation of 10 μV. Finally, trial-level noise in EEG 
data was simulated using pink Gaussian noise (Doyle and Evans, 2018). 
For more information, see Appendix B which includes the full simulation 
methods, a link to a GitHub containing the MATLAB and R code for 
reproducing the simulation results, and an example simulated datafile. 

The simulated datasets met the LME assumptions discussed above: 
linearity, normal distribution of residuals, homoscedasticy. That is, the 
effects of emotion condition, presentation number, age, subject, and 
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actor were linearly related to the outcome variable (NC mean ampli
tude). The distribution of residuals for the LME model (see Eq. (3) 
below) was confirmed for each sample using the Shapiro-Wilk test and a 
low number of samples did not have normal residuals (8.5% of samples 
with p < .05). Finally, the variance across each condition (e.g., emotion 
A and emotion B) was simulated using the same standard deviation 
values in order to be comparable. Levene’s test for homogeneity of 
variance was conducted for each sample and identified only a few 
samples that did not meet this assumption (3.9% of samples with 
p < .05). In addition to the LME assumptions, the intraclass correlation 
coefficients (ICC) for subject in the simulated datasets ranged from .23 
to .70, which indicates nested data and the appropriate application of 
LME analysis (Aarts et al., 2014; Aitkin and Longford, 1986; McCoach 
and Adelson, 2010; Musca et al., 2011). 

3.1.2. Inducing missing data patterns in the simulated datasets 
As stated above in Section 1.2.3, an assumption of casewise deletion 

is that data are missing completely at random (MCAR). However, in ERP 
designs, particularly with young children, it is more likely that data will 
be missing at random (MAR) in that the probability of missingness for 
within- and between-subjects effects can be predicted by measured 
variables. Missing data are often related to measured variables in 
developmental ERP studies because subjects often differ in age, 
temperament (de Haan et al., 2004), or other characteristics that can be 
correlated with the probability of missing data. For example, there are 
commonly fewer artifact-free trials in younger subjects compared to 
older ones. Moreover, there are commonly fewer artifact-free trials 
occurring at the end of the experiment, resulting in relations between 
missing data and trial presentation number. Thus, to best approximate 
real ERP data, we systematically varied patterns of missingness 
following common patterns in existing studies. Specifically, in Missing
ness Pattern #1, we induced more missing data for ‘younger’ than ‘older’ 
subjects, and more missing trials toward the end of the experiment. That 
is, of children assigned to have fewer than 10 trials in one or both 
conditions, 70% were in the ‘younger’ group and 30% were in the ‘older’ 
group. Additionally, of the trials assigned to be removed, 70% were from 
trials 6–10 and 30% were from trials 1–5. In Missingness Pattern #2, we 
induced more missing data in trials toward the end of the experiment (of 
the trials removed, 70% were from trials 6–10 and 30% were from trials 
1–5) across both age groups. These two patterns of missingness were 
compared to Missingness Pattern #3, in which data were MCAR—which 
is likely uncommon in actual data (Raghunathan, 2004). In Missingness 
Pattern #3, missing trials were drawn uniformly from both age groups 
(50% from ‘younger’ and 50% from ‘older’), and from all trial numbers 
(each trial number was equally likely to be missing). The aim of these 
simulations was to illustrate different biases that commonly occur in 
developmental ERP data, and that result in violations of missingness 
assumptions when using casewise deletion in ordinary least squares. 
These biases increase as levels of casewise deletion increase, but are 
absent in LME models in which missingness assumptions are met. 
Because LME is able to account for trial-level missingness (e.g., by 
modeling trial presentation number), Missingness Patterns #1 and #2 
would meet MAR assumptions for LME. In contrast, these same patterns 
would fall under MNAR in ANOVA because after mean averaging trials 
within subjects, ANOVA is unable to account for the trial-level 
missingness. 

Given that mean amplitude was less negative over repeated trials (i. 
e., for the simulated negative component, mean amplitude reduced over 
the course of the experiment), we expected that removing more trials 
from presentation numbers 6–10 (which had less negative amplitudes) 
would downward bias parameter estimates extracted from ANOVA 
compared to the population mean in both Missingness Patterns #1 and 
#2. Additionally, given that younger children had less negative mean 
amplitudes, we expected that removing more young children would 
further downward bias marginal mean estimates in Missingness Pattern 
#1 in which there were both more later trials removed and more 

younger children removed. In contrast, we expected Missingness Pattern 
#3 (MCAR for both trial number and subject ages) to produce unbiased 
parameter estimates for both LME and ANOVA because missing trials 
were not systematically correlated with measured variables, which is a 
criteria for the appropriate employment of casewise deletion. 

Simulated datasets (N = 1000) were generated using the parameters 
discussed in Section 3.1.1. For each dataset, missing trials were removed 
following Missingness Pattern #1, #2 or #3. For each Missingness 
Pattern, the proportion of subjects assigned to have fewer than 10 trials 
per condition in one or both emotion conditions were assigned to be 
either 0% (trial-level data were assigned to be missing, but no subjects 
had fewer than 10 trials/condition), 6% (missing trial-level data were 
induced so that 6% of subjects had fewer than 10 trials/condition in at 
least one emotion condition), 11%, and 32%. These percentages were 
taken to match the percentages common in our review of developmental 
ERP studies (see Section 1.2 and Appendix Table A.3). In line with 
common developmental ERP practices, subjects with fewer than 10 
trials per condition were casewise deleted and thus removed from the 
ANOVA analyses. In contrast, no subjects were removed from LME an
alyses, and therefore the LME analysis included subjects who had fewer 
than 10 trials in any condition. In the sections that follow, we refer to the 
different percentages of subjects with fewer than 10 trials in one or more 
conditions as ‘percentages of casewise deleted subjects’ when empha
sizing results from ANOVAs, and as ‘percentages of low trial-count 
subjects’ when emphasizing results from LME. In addition, a ‘popula
tion model’ in both ANOVA and LME frameworks were fit to each of the 
1000 datasets, and in this model zero trials were missing. We expected 
that at the population model with zero trials removed, ANOVA and LME 
would produce identical NC mean estimates. Given that casewise dele
tion is only appropriate when data are MCAR, in our simulations in 
which data were not MCAR, we expected increasing bias in ANOVA at 
greater percentages of casewise deletion; whereas LME would remain 
unbiased at all percentages of low trial-count subjects. 

3.1.3. Analysis models 
Two models were used to analyze the simulated dataset in R (Version 

3.6.1; R Core Team, 2019): a two-way repeated measures ANOVA 
examining emotion condition and age as factors, and an LME model with 
fixed effects of emotion condition, presentation number, and age (see 
Eq. 3). The ANOVA model was fitted using the afex package (Version 
0.28–1; Singmann et al., 2021) and the LME model was fitted using the 
lme4 package (Version 1.1–25; Bates et al., 2015). P-values were 
calculated using the lmerTest package (Version 3.1–3; Kuznetsova et al., 
2017). The ANOVA was designed to reflect traditional ERP analyses, as 
ANOVA/regression appeared in 90.16% percent of developmental ERP 
studies we reviewed (see Appendix Table A.1). In ANOVA models, 
subjects with a low ERP trial count are casewise deleted and the 
remaining data are averaged within subjects for each condition. In 
comparison, the LME model was fit to data at the trial level after induced 
missingness, and all subjects were included in this analysis. Restricted 
maximum likelihood estimation was used to fit all LME models because 
it produces less biased random variance components, and is recom
mended for fitting the final model (Zuur et al., 2009). These two models 
were fit to each of the 1000 simulated datasets to examine whether 
simulated mean amplitude estimates were accurate (i.e., matched the 
population values assigned) in LME and ANOVA. A small percentage of 
LME models did not converge with the random effects structure in Eq. 
(3), and these datasets were not included in analyses (see 
Appendix Table B.2).  

Eq. (3): LME model for simulated datasets. 
Level 1 (within-subjects): MeanAmplitudeij = β0j + β1jEmotionij 

+ β2jPresentationNumberij + Ɛij. 

Level 2 (between-subjects): 
β0j = γ00 + γ01Agej (coefficient of the fixed effect of Age) + u0j + v0a. 
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β1j = γ10 (coefficient of the fixed effect of Emotion). 
β2j = γ20 (coefficient of the fixed effect of Presentation Number). 
i represents trial-level estimates. 
j represents subject-level estimates. 
γ represents mean estimates for predictors. 
u represents Subject-level deviation from the grand mean (i.e., 

random intercept for Subject). 
v represents Actor-level deviation from the grand mean (i.e., random 

intercept for Actor [a]). 
For each simulated dataset, the marginal means (averaged over age) 

for emotion A and emotion B were extracted from the ANOVA and LME 
models (Appendix Table B.3 and Table B.7) using the emmeans package 
(Version 1.5.3; Lenth, 2021). For the LME model only, the estimated 
marginal means were specified at presentation number 5.5 (i.e., the 
average presentation number simulated in the dataset), in order for the 
values to be comparable to the averaged dataset used for the ANOVA 
model. Therefore, the population parameter for emotion A corresponds 
to − 3.25 μV and the population parameter for emotion B corresponds to 
− 5.25 μV. 

The two models’ marginal means were then assessed with two 
measures. First, we examined root mean squared error (RMSE) of each 
model’s mean estimate’s divergence from the population mean. RMSE 
values are in the same unit of measurement and therefore correspond to 
how many μV of bias and variance were in the sample. Lower RMSE 
values are associated with models that are less biased and more precise. 
Second, we examined percent relative bias, which assesses the degree 
(as a percentage) that model’s parameter estimates differ from the 
population value (Enders et al., 2020). Based on previous simulation 
literature, less than 10% bias is an acceptable value (Enders et al., 2020; 
Finch et al., 1997; Kaplan, 1988). These procedures were repeated for 
1000 simulated datasets. We report the estimated marginal means, 
RMSE, and percent relative bias in line with reports from other research 
with simulated data (Demirtas and Doganay, 2012; Enders et al., 2020; 
Lee and Carlin, 2017; Schielzeth et al., 2020). All reported results below 
correspond to emotion A (see also Appendix Tables B.3–B.6). Similar 
results for emotion B are reported in Appendix Tables B.7–B.10. 

3.2. Results 

When no missing trials were removed (the population model), 
ANOVA and LME had identical marginal means and standard deviations, 
illustrating that these models are identical in modeling mean estimates 
(see Fig. 4, far left panel in all rows). In contrast, LME and ANOVA re
sults differed substantially when data were missing, as demonstrated in 
sections below. 

3.2.1. Missingness pattern #1: more missing data in later trials and in 
younger subjects 

More missing data induced for both later trials and younger subjects 
resulted in biased (more negative) ANOVA mean estimates compared to 
LME, even when no subjects were casewise deleted (see Fig. 4, and 
Appendix Fig. B.1 for similar results with emotion B). As the percentage 
of casewise deletion increased, the ANOVA marginal means became 
even more negatively biased. In contrast, the LME provided unbiased 
means at all percentages of low trial-count subjects. Further the error 
variance (i.e., standard deviation) of the ANOVA marginal means 
increased with greater percentages of casewise deletions, but LME error 
variance was unchanged. 

To quantify the increasing negative bias in the ANOVA and assess its 
significance, we examined the ANOVA model’s RMSE and relative bias 
values. The increase in the ANOVA model’s error variance contributed 
to a greater RMSE value at all percentages of casewise deletion (0%−

32%). Furthermore, the ANOVA model’s RMSE increased with greater 
percentages of casewise deletion (reported in Appendix Tables B.4 and 
B.8). In comparison, the LME model’s RMSE value remained low at all 
percentages of low trial-count subjects. Similarly for relative bias, the 

ANOVA model’s bias values were greater than the acceptable 10% 
threshold at every percentage of casewise deletion, and increased as 
percentages increased (reported in Appendix Tables B.5 and B.9). In 
comparison, the LME model’s relative bias remained below the 10% 
relative bias threshold and remained comparable at all percentages of 
low trial-count subjects. Paired t-tests with a Bonferroni correction of 
α = 0.003 indicated that the relative bias values for the LME and 
ANOVA significantly differed starting at 0% (see Appendix Tables B.6 
and B.10). 

These results illustrate the advantages of LME over ANOVA: there 
were clear detrimental effects of using ANOVA when data were missing 
for both within- and between-subjects effects, even when no subjects 
were casewise deleted, and the ANOVA’s biases increased with greater 
percentages of casewise deletion. Specifically, when an increasing 
number of later trials were removed, earlier trials that showed a greater 
negative amplitude were reflected in the marginal mean, and this 
decreasing amplitude over presentation number was not accounted for 
in the ANOVA. Further, when an increasing number of younger subjects 
were casewise deleted, this further biased the ANOVA model’s marginal 
means to reflect the mean amplitude of older subjects, who had more 
negative amplitudes. In contrast, by accounting for random effects 
(subject and actor) and including data from all subjects, LME remained 
unbiased even when data were missing for both within- and between- 
subjects effects. 

3.2.2. Missingness pattern #2: more missing data in later trials only 
More missing data for trials presented later in the experiment 

(reflecting greater missingness for a within-subjects effect and simu
lating a more ideal ERP data collection result) still resulted in biased 
(more negative) ANOVA mean estimates compared to LME. Comparable 
to results from Missingness Pattern #1, the ANOVA model’s marginal 
means were negatively biased from the population marginal means at all 
percentages of casewise deletion, as quantified by relative bias values 
that were greater than 10%. In addition, the ANOVA model’s marginal 
means had greater error variance and RMSE values that increased with 
greater percentages of casewise deletion. In contrast, the LME models’ 
marginal means were not biased, and all relative bias values were below 
the 10% threshold. As with Missingness Pattern #1, paired t-tests indi
cated that the relative bias values significantly differed between the LME 
and ANOVA models at all percentages of missing data examined 
(0–32%, Appendix Tables B.6 and B.10). 

There were also small improvements in the ANOVA model’s results 
compared to those from Missingness Pattern #1. Specifically, the mar
ginal means extracted from this ANOVA model with greater missing data 
for later trials only did not increase in bias at greater percentages of 
casewise deletion—the relative bias remained at approximately 25% (in 
contrast to the increasing bias at greater proportions of deletion in 
Missingness Pattern #1). In addition, the ANOVA model’s RMSE values 
at 6%, 11% and 32% casewise deletion were lower compared to the 
RMSE values from Missingness Pattern #1. Thus, compared to missing 
data for within- and between-subjects effects (e.g., both trial number 
and age), missingness in only the within-subjects effect (e.g., only trial 
number) was slightly less detrimental for the ANOVA model, but LME 
was still clearly advantageous, again producing unbiased and robust 
results at all percentages of low trial-count subjects. 

3.2.3. Missingness pattern #3: data missing completely at random 
In contrast to the prior two missingness patterns, when MCAR was 

induced for both between- and within-subjects effects (simulating an 
ideal, though less likely, ERP data collection result), the ANOVA and 
LME models performed more comparably. The ANOVA and LME mar
ginal means only differed by 0.04 μV or less at every percentage of 
missingness examined (0%, 6%, 11%, and 32%). The relative bias values 
for both models were below 10% and did not significantly differ at any 
percentage of casewise deletion/low trial-count subjects. 

However, even in this more ideal simulation, the ANOVA model’s 
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error variance and RMSE values still increased with greater percentages 
of casewise deletion, demonstrating that the ANOVA model is associated 
with less precise estimates even when assumptions of MCAR are met. In 
contrast, and in line with the prior two patterns of missingness, LME 
performed similarly at all percentages of low trial-count subjects. 
Therefore, although the marginal means did not differ between the 
ANOVA and LME when data were MCAR, the error around marginal 
means was still increased for ANOVA, illustrating a continued disad
vantage of the ANOVA model compared to LME. 

3.3. Discussion of simulation results 

Overall, analysis of the simulated data illustrates the limitations of 
ANOVA models in modeling the true population mean amplitude in a 
dataset, and the clear advantages of the LME model at realistic amounts 
of low trial counts (i.e., as reflected in our literature review, see Fig. 2 
and Appendix A). In the simulated data, following parameters of real NC 
ERP data (Borgström et al., 2016; Di Lorenzo et al., 2020; Leppänen 
et al., 2007; Smith et al., 2020), younger subjects had less negative 
amplitude compared to older subjects, and trials presented later in the 
experiment had less negative amplitude compared to earlier trials. We 
then simulated common patterns of missingness such that there were 
fewer artifact-free trials in younger subjects (missingness 
between-subjects), and fewer artifact-free trials occurring at the end of 
the experiment (missingness within-subjects). ANOVA results were 
biased by the following mechanisms: 1) ANOVA was unable to account 

for the within-subjects mean amplitude habituation over repeated trials 
(because data were mean averaged), 2) Casewise deletion resulted in 
fewer included subjects, and 3) Casewise deletion was inappropriately 
implemented in Missingness Patterns #1 and #2 because data were not 
MCAR. Thus, the ANOVA yielded estimates that were negatively biased 
compared to the population mean that were most evident when there 
was missing data for both within- and between-subjects effects. More
over, these biases increased at greater percentages of casewise deletion. 
Even in the simulation of ideal missingness—when data were missing 
completely at random across trial number and subject age (which is less 
likely in developmental ERP data collection)—the ANOVA still resulted 
in greater error in mean estimates compared to LME. In contrast, the 
LME model accounted for missing data using maximum likelihood, 
retained all subjects for analysis—even subjects assigned to have low 
trial counts—and moreover accounted for the decrease in amplitude 
over repeated trials through a fixed effect of trial number. The LME 
models thus yielded unbiased parameter estimates (that accurately 
captured the population mean) at all percentages of low trial-count 
subjects, in all three patterns of missingness. These results highlight 
two advantages of LME: 1) Casewise deletion is not needed to improve 
model performance or to extract the true population mean amplitude in 
a dataset, and 2) LME models can extract unbiased mean estimates even 
with missing data corresponding to 32% casewise deletion (approxi
mating the highest percentage of casewise deletion observed in our re
view of developmental ERP studies). 

Fig. 4. Marginal means of emotion A were extracted for 
1000 simulated datasets. The population parameter of 
emotion A (averaged over age and presentation number) is 
indicated by the dashed line at − 3.25 μV. Means were 
estimated from datasets in which no trials were removed 
(Population), all subjects were assigned to have 10 or more 
trials (0% Low Trial-Count), and at varying percentages of 
low trial-count subjects taken from the Developmental 
Cognitive Neuroscience literature review. Percentages of low 
trial-count subjects represent the average percentage of 
casewise deletion in older children (6%), preschoolers 
(11%), and infants/toddlers (32%). Marginal means were 
extracted from each of the three patterns of missingness. 
For Missingness Pattern #3, missing trials were uniformly 
drawn from early and late trials and older and younger 
children.   
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4. LME and ANOVA comparison in real ERP data from preschool 
children 

In addition to simulated data, we also use real developmental ERP 
data to demonstrate the advantages of LME over traditional ANOVA 
approaches that employ casewise deletion and mean averaging. Paral
leling the simulation, in this real dataset, we examined amplitude of the 
NC ERP component in typically developing 3- to 6-year-old children 
who passively viewed faces depicting different emotional expressions (e. 
g., happy, angry, fearful, neutral). As discussed above, the NC is an 
emotion-sensitive ERP component that can be elicited by emotional face 
stimuli (Grossmann et al., 2007; Leppänen et al., 2007). NC amplitude is 
maximal at central electrodes from approximately 300 to 600 ms in both 
infants and preschool children (Dennis et al., 2009; Todd et al., 2008; 
Xie et al., 2019), and commonly differs when viewing angry faces versus 
happy faces (Cicchetti and Curtis, 2005; Grossmann et al., 2007; Xie 
et al., 2019). 

Similar to the approach taken with the simulated data, we analyze 
these real NC data using both traditional ANOVAs with casewise dele
tion, and compare these results to LME analyses that utilized the whole 
sample of subjects and employed restricted maximum likelihood esti
mation to account for missing trial-level data. 

4.1. Methods 

4.1.1. Subjects 
A diverse sample of typically developing children (N = 44) was 

tested in a laboratory setting for a one-time visit when children were 3- 
to 6-years-old. Subjects were recruited from a database of families 
willing to participate in research, and compensated for their time with a 
toy, a photo of the child wearing the EEG cap, and a $5 giftcard. The 
Institutional Review Board approved all methods and procedures used in 
this study, and all parents gave informed consent prior to participation. 
Six subjects were excluded from the final sample: Five were excluded 
due to technical issues and one due to refusal to wear the EEG cap. Thus, 
the final sample for analysis was 38 preschool children (16 males, 22 
females, Mage = 59.92 months, SD = 6.85). Demographics for the final 
sample were representative of the community from which they were 
recruited: 26 were Caucasian (19% Latinx, Chicanx or Hispanic), 5 were 
multi-racial (80% Latinx, Chicanx or Hispanic), 2 were African or Afri
can American (not Latinx, Chicanx or Hispanic), 3 were Asian or Asian- 
American (not Latinx, Chicanx or Hispanic), 1 subject did not report 
race, and was Latinx, Chicanx or Hispanic, and 1 subject did not report 
race or ethnicity. The median educational attainment of the child’s 
mother was a four-year college degree (N = 14); 16 mothers had a 
graduate degree, 5 had an Associate’s or technical degree, 2 had a high 
school diploma or equivalent and 1 did not report educational attain
ment. The median educational attainment of the child’s father was a 
four-year college degree (N = 14); 12 fathers had a graduate degree, 1 
had an Associate’s or technical degree, 9 had a high school diploma or 
equivalent and 2 did not report educational attainment. Median family 
income was $100,000 and greater (N = 18); 9 families earned $75-$99k, 
5 earned $50–74k, 2 earned $35–49k, 1 earned less than $16k and 3 did 
not report income. 

4.1.2. Measures 
Stimuli for the ERP task paralleled common developmental ERP tasks 

designed to study the NC and other face- and emotion-sensitive ERP 
components (e.g., Xie et al., 2019). Face stimuli consisted of female faces 
expressing the following 6 emotions: happiness, anger, fear, neutral (no 
emotion), as well as two reduced intensity images—40% fear, and 40% 
anger—achieved by morphing the neutral and emotional exemplars 
until final images included 40% of the emotional expression and 60% of 
the neutral expression. Face stimuli were taken from the NimStim set of 
emotional faces (Tottenham et al., 2009). There were four face sets 
consisting of African American actors, East Asian actors, and two sets of 

Caucasian actors. Children saw the face set that best matched their own 
race as reported by their parent. Caucasian face sets were counter
balanced across Caucasian subjects, and represent the majority of 
stimuli used in the present study (81.58%). The face sets consisted of 
unique actors that each displayed all emotional expressions: There were 
five unique East Asian actors, four unique African American actors, and 
nine unique Caucasian actors distributed across the two Caucasian face 
sets with one actor repeated across both sets. Within each face set, 
subjects saw each actor express each of the 6 emotions 10 times (except 
where one actor was presented 20 times across each emotion in the 
African American set) for a total of 300 trials in the experiment. Faces 
were presented in a semi-randomized order via E-Prime (Version 3.0; 
Psychology Software Tools, 2016) such that the same emotion was not 
presented twice in a row. Faces were presented for 1000 ms and were 
preceded by a fixation cross for 800–1400 ms (see Fig. 5). ERPs were 
time-locked to the onset of the face stimulus. The ERP experiment lasted 
approximately 25 min, and children took a short break between each of 
the 20 blocks of 15 trials during which they placed a stamp on a colorful 
piece of paper, rested their eyes, or wiggled their fingers and shoulders 
briefly. For the present study, we examine NC amplitude across each of 
the 100% emotion categories (happiness, anger, fear, and neutral) for a 
maximum trial count of 200 trials across the experiment (see experi
mental design in Fig. 6). In our sample, trial counts per subject per 
emotion condition were not statistically different, F(3,111) = 1.62, p =
.189, and data met assumptions of sphericity, p’s > .168. The average 
number of trials in each condition was M = 27.24, SD = 11.60 for happy 
faces; M = 26.61, SD = 11.71 for angry faces; M = 27.05, SD = 10.50 for 
fearful faces; and M = 25.68, SD = 10.21 for neutral faces. 

4.1.3. Set-up to facilitate trial-level analysis with LME 
To facilitate analysis using LME, each individual trial presented to a 

given subject was tagged with a unique event marker code, applied at 
the time of data collection. In the present study, event markers were 
inserted via stimulus presentation software (E-Prime Version 3.0; Psy
chology Software Tools, 2016) corresponding to emotion condition and 
a unique actor code. After data collection, event markers were replaced 
with a five-digit code indicating the emotion condition (first digit), actor 
(second and third digits), and presentation number (fourth and fifth 
digits). For example, the first presentation of Caucasian actor 1 

Fig. 5. ERP experimental design illustrating inter-trial interval, stimulus 
duration, and ERP extraction window. Before each trial, a fixation cross was 
presented for a random interval between 800 and 1400 ms. A neutral, happy, 
angry or fearful face was presented for 1000 ms in a random order and the same 
emotion was not presented for two consecutive trials. ERPs were baseline 
corrected using the mean amplitude from − 200–0 ms, in which 0 ms is time- 
locked to stimulus onset. ERPs were analyzed from 0 to 1000 ms post stim
ulus onset. 
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expressing ‘happy’ corresponds to the five-digit code 60101; whereas 
the second presentation of the same actor and condition corresponds to 
code 60102 (see Appendix C). The EEG files were processed in EEGLAB 
(Version 2019_0; Delorme and Makeig, 2004) and ERPLAB (Version 
8.01; Lopez-Calderon and Luck, 2014; see Section 4.1.4), and epochs 
were extracted at the trial-level using ERPLAB’s BINLISTER function. 
See Appendix C and D for further details on how to create trial-level 
event marker codes. These appendices also include the GitHub link to 
our laboratory’s MATLAB and R code for a tutorial ERP LME analysis 
pipeline. 

4.1.4. ERP data processing 
Electroencephalographic (EEG) data were recorded continuously 

throughout the ERP experiment using a BrainVision Recorder (Version 
1.21.0303; Brain Products GmbH, Gilching, Germany), actiCHamp 
(2020c) amplifier (actiCHamp, Brain Products GmbH, Gilching, Ger
many), and a 64-channel montage High Precision fabric actiCAP snap 
(2020b) cap (actiCAP snap, Brain Products GmbH, Gilching, Germany) 
that positioned actiCAP slim electrodes in line with the 10–20 Interna
tional system (actiCAP slim (2020a), Brain Products GmbH, Gilching, 
Germany). Data were recorded bandpass filtered from 0 to 140 Hz, 
referenced online to Cz, and digitized at 500 Hz sampling rate. 

Data were analyzed offline in the MATLAB (Version 2019a; MAT
LAB, 2019) toolboxes EEGLAB (Version 2019_0; Delorme and Makeig, 
2004) and ERPLAB (Version 8.01; Lopez-Calderon and Luck, 2014). 
Continuous EEG was bandpass filtered using a Butterworth filter 
12 dB/octave from 0.1 to 30 Hz in line with prior research (Batty and 
Taylor, 2006; Cicchetti and Curtis, 2005). Data were then visually 
inspected to identify areas of egregious artifact due to excessive 
motion/noise: noisy segments were rejected, noisy channels were flag
ged for interpolation (mean channels interpolated = 0.26, SD = 0.72) 
using spherical spline. This practice is recommended (Debener et al., 
2010; Debnath et al., 2020) to improve the accuracy of subsequent In
dependent Components Analysis (ICA) to identify blinks. ICA was then 
performed in EEGLAB to identify blink components. A component 
resembling a blink (according to characteristics outlined in Debener 
et al., 2010) was identified in 92% of subjects and removed before 
epoching. Trials were epoched from − 200 to 1000 ms to constitute a 
1000 ms post-stimulus epoch with 200 ms baseline, in line with prior 
studies examining face- and emotion-sensitive components with similar 
study designs in infants and children (Cicchetti and Curtis, 2005; de 
Haan et al., 2004; Hoehl and Striano, 2010). In ERPLAB (Version 8.01; 
Lopez-Calderon and Luck, 2014) via automated processing, epochs were 
rejected if they contained an artifact in which any single channel 
exceeded − 120–120 µV (Batty and Taylor, 2006) or in which 
sample-to-sample µV exceeded 100 µV (Kungl et al., 2017; Todd et al., 
2008), in line with prior preschool ERP research pre-processing pa
rameters. After epoching and artifact rejection, subjects contributed an 
average of 26.64 trials/condition (SD = 10.63 trials). 

Mean amplitude was extracted in each remaining artifact-free epoch. 

We extracted mean amplitude rather than peak because it provides an 
unbiased amplitude estimate (Luck, 2014). In comparison, peak ampli
tude can be biased by noise, and may overestimate the true amplitude 
value (Clayson et al., 2013; Luck, 2014). In mean-averaged analyses, the 
probability of a Type 1 error increases when comparing the peak 
amplitude between conditions with different trial numbers (and subse
quently different noise levels, Luck, 2014). This increased error rate may 
affect developmental ERP research in particular, given that children’s 
data are noisy and may have an unequal number of trials across 
conditions. 

NC mean amplitude was extracted from the following channels based 
on previous ERP research with infants and children (Dennis et al., 2009; 
Stahl et al., 2010; Xie et al., 2019): C3, Cz, and C4. The time window for 
extracting mean amplitude was taken as 300–500 ms, in line with prior 
studies examining the NC (Quadrelli et al., 2019; Todd et al., 2008). To 
confirm that this extraction window was appropriate for our sample, the 
grand average waveform, collapsed across all conditions so as to avoid 
the possibility of visualizing any condition effects, was visually inspec
ted to verify that the time window symmetrically captured the negative 
deflection characteristic of the NC. Each subject’s condition-averaged 
waveforms were then examined to verify that the time window 
reasonably captured the NC across the entirety of the sample. 

4.2. Data analysis plan 

We examined whether NC mean amplitude was modulated by 
emotion condition in our sample of typically developing preschoolers. 
Based on previous research (Moulson et al., 2009; Grossmann et al., 
2007; Xie et al., 2019; but see also Dennis et al., 2009, Todd et al., 2008), 
we expected that NC would be modulated by emotion. To compare LME 
to traditional ANOVA approaches commonly employed in develop
mental ERP research, we examined emotion effects across three models: 
a linear mixed effects model and two repeated measures ANOVA models. 

The linear mixed effects model analyzed trial-level data at each 
electrode site from all subjects who contributed any number of clean 
trials, which included several fixed effects: the main effect of interest 
(emotion) and two control variables (electrode and trial presentation 
number), in addition to two random intercepts (subject and actor). 
Electrode was included as a fixed effect due to the low number of levels 
(3: C3, Cz, and C4) based on recommendations from previous literature 
(Volpert-Esmond et al., 2021). As with the simulation analysis, LME 
models were fit with restricted maximum likelihood (REML) to calculate 
less biased random variance components. REML has been recommended 
for testing fixed effects for small sample sizes (Snijders and Bosker, 
2012). Although centering is generally recommended in LMEs (see 
Raudenbush and Bryk, 2002), data were not centered in order for model 
coefficients to remain comparable to the ANOVA models, and all 
models’ coefficients are in µV. Data were analyzed in R (Version 3.6.1; R 
Core Team, 2019) using the lme4 package (Version 1.1–25; Bates et al., 
2015) and p-values were calculated using the lmerTest package (Version 

Fig. 6. ERP experimental design shown 
for two example subjects (Subject 1 and 
2). Data were analyzed from 3 electrode 
channels corresponding to the NC ERP 
component. In the present study’s final 
data set, there were 18 unique actors 
displaying emotions in 4 conditions. 
Electrode channel and emotion were 
fully-crossed within the study design (i. 
e., all subjects saw all emotions and had 
usable data from each electrode), and 
actor was partially-crossed (i.e., subjects 
in the same race condition saw the same 
set of actors, and subjects in other race 
conditions saw different actors).   
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3.1–3; Kuznetsova et al., 2017). 
Results from two repeated measures ANOVAs were compared to 

results from LME. The ANOVAs were conducted in R using the afex 
package (Version 0.28–1; Singmann et al., 2021). Assumptions of 
sphericity were met in all samples and therefore p-values were not 
Greenhouse-Geisser corrected. The two ANOVAs differed in the criteria 
used to determine casewise deletion of subjects. Specifically, two com
mon methods of casewise deletion were examined: deleting subjects 
with fewer than 10 trials in any one condition, and a more stringent 
criterion of deleting subjects with fewer than 15 trials in any one con
dition. These exclusion criteria represent the lower and upper limit of 
the most common trial-count cutoffs used in developmental ERP studies, 
as revealed in our review (see Appendix A). 

After testing for an omnibus effect of emotion in each of these three 
models, pairwise comparisons of marginal means for both LME and 
ANOVA were conducted using the emmeans package (Version 1.5.3; 
Lenth, 2021), and p-values were adjusted using the Sidak correction 
(Sidak, 1967) for 6 pairwise emotion comparisons. Based on results with 
the simulated data, we hypothesized that the LME would return different 
effects of emotion condition compared to the ANOVAs. 

4.3. LME analyses 

4.3.1. LME model 
We aimed to include the maximal number of random effects that 

would converge, in line with LME recommendations in the field (Barr 
et al., 2013; Brauer and Curtin, 2018). Our attempted maximal model 
was a 2-level random slope model in which the outcome was NC mean 
amplitude at the trial level; fixed effects were emotion, presentation 
number, and electrode; a random intercept for subject; random 
by-subject slopes for emotion and presentation number; a random 
intercept for actor; and random by-actor slopes for emotion and pre
sentation number. The maximal model did not converge and was thus 
simplified based on recommendations from Brauer and Curtin (2018) in 
which we incrementally removed random effects until the model would 
converge. The final model was a 2-level random intercept model in 
which the outcome was NC mean amplitude at the trial level; fixed ef
fects were emotion, presentation number, and electrode; and random 
intercepts were subject and actor (see Eq. 4). We report the full model 
selection process and accompanying R script in Appendix D.6. The LME 
assumptions of linearity and a normal distribution of residuals for the 
final model were confirmed based on visual inspection, and homoge
neity of variance was confirmed with a Levene’s test (p = .745). A 
normal distribution of residuals was confirmed with visual inspection, 
and not a Shapiro-Wilk test, because the number of samples exceeded 
5000 (Royston, 1995).  

Eq. (4): LME model for preschooler dataset. 
Level 1 (within-subjects): MeanAmplitudeij = β0j + β1jEmotionij 

+ β2jElectrodeij + β3jPresentationNumberij + Ɛij. 

Level 2 (between-subjects): 
β0j = γ00 + u0j + v0a. 
β1j = γ10 (coefficient of the fixed effect of Emotion). 
β2j = γ20 (coefficient of the fixed effect of Electrode). 
β3j = γ30 (coefficient of the fixed effect of Presentation Number). 
i represents trial-level estimates. 
j represents subject-level estimates. 
γ represents mean estimates for predictors. 
u represents Subject-level deviation from the grand mean (i.e., 

random intercept for Subject). 
v represents Actor-level deviation from the grand mean (i.e., random 

intercept for Actor [a]). 

4.3.2. LME results 
The LME model revealed a significant effect of presentation number, 

in which later trials showed less negative NC amplitude (β = 0.44, SE =
0.04, p < .001), see Fig. 7. This effect is in line with previous literature 
demonstrating a habituation effect in the NC (Borgström et al., 2016; 
Reynolds and Richards, 2019), and highlights the importance of con
trolling for trial presentation number in analyses. In addition, the LME 
model revealed a significant effect of electrode. Pairwise comparisons 
with Sidak-corrected p-values for 3 pairwise electrode comparisons 
indicated that Cz had a significantly more negative NC amplitude than 
C3 (t(12097) = − 4.21, p < .001) and C4 (t(12097) = − 3.19, p = .004). 
As discussed in Section 4.2, electrode was included as a nuisance fixed 
effect due to its low number of levels (3) so we do not further interpret 
this significance. 

The LME revealed an effect of emotion condition, which was detec
ted through model comparison of the full model, and a model that did 
not include a fixed effect of emotion (but did include all other predictors: 
presentation number and electrode, and random intercepts for subject 
and actor). Comparison of these two models revealed that including a 
fixed effect of emotion significantly improved model fit, and therefore 
that there were differences between the emotions’ means, χ2(3, 
N = 12,150) = 18.58, p < .001. Pairwise comparisons revealed signifi
cantly more negative NC amplitude for Angry versus Neutral faces, t 
(12114) = − 3.41, p = .004, and more negative amplitude for Angry 
versus Happy faces, t(12115) = − 3.69, p = .001. All other pairwise 
emotion comparisons were not significant (t’s > − 2.38, p’s > .100). 

Therefore, despite noise in single-trial waveforms (see Fig. 8 for an 
example of single-trial data from one subject), the LME model was able 

Fig. 7. The observed means of NC mean amplitude over repeated trial presentations (A, left). The marginal means of NC mean amplitude estimated by the LME 
model over repeated trial presentations (B, right). Error bars represent 95% confidence intervals. Trial repetitions for one actor in the African American condition 
presented 20 times are not plotted, but were estimated in the model. 
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to detect significant differences across conditions and account for error 
variability through random effects. 

4.4. ANOVA analyses 

4.4.1. ANOVA models 
To examine whether NC mean amplitude differed across the three 

electrodes analyzed, we first tested for an interaction between electrode 
and emotion in a two-way repeated measures ANOVA where predictors 
were emotion and electrode, and the outcome variable was NC mean 
amplitude. There was not a significant interaction between electrode 
and emotion at either the 10-trial threshold, F(6,204) = 0.67, p = .673, 

nor at the 15-trial threshold, F(6,162) = 2.05, p = .062. Therefore, 
cluster-level data (averaged across 3 electrodes) was averaged within 
each emotion at the subject-level, as is common in ERP analyses (see  
Fig. 9 for grand-mean averaged ERP waveforms). Unlike in the LME 
model, ANOVA does not model the effects of presentation number or 
actor because data are averaged over the entirety of the experiment 
within condition (across all actors) and within subject. Therefore, the 
final ANOVA model was a one-way repeated measures ANOVA. 

4.4.2. ANOVA results 
The one-way repeated measures ANOVA was conducted on each of 

the two subsets of data (10-trial casewise deletion, N = 35; and 15-trial 
casewise deletion, N = 28). In these ANOVAs, the outcome variable was 
NC mean amplitude averaged over the three electrode sites (C3, Cz, and 
C4) to form an NC ‘cluster’, and emotion was a within-subjects predictor. 
Shapiro-Wilk tests of both models confirmed the residuals were nor
mally distributed, p’s > .246, and Levene’s test showed that homoge
neity of variance was met, p’s > .750. Grand-mean averaged waveforms 
are visible in Fig. 9. 

Similar to the LME results, both ANOVAs revealed an omnibus sig
nificant effect of emotion: ANOVA on data with minimum 10 trials/ 
condition cutoff, F(3,102) = 4.20, p = .008; ANOVA on data with min
imum 15 trials/condition cutoff, F(3,81) = 3.92, p = .011. However, 
follow-up comparisons revealed that each ANOVA only yielded a single 
significant pairwise condition effect (compared to the two significant 
condition effects yielded with LME). Further, these ANOVA condition 
effects were different depending on which trial cutoff was used: For the 
10-trial cutoff data, NC amplitude was more negative for Angry versus 
Happy faces, t(102) = − 2.92, p = .026; whereas for the 15-trial cutoff 
data, NC amplitude was more negative for Angry versus Neutral faces t 
(81) = − 2.70, p = .050. 

4.5. Comparison of LME and ANOVA models 

The LME and ANOVA models differed in several ways: the observa
tions modeled, the inclusion of presentation number and random effects, 
and the sample size. Specifically, LME modeled trial-level data extracted 
at the electrode-level, whereas the ANOVA modeled mean-averaged 
data across electrode sites extracted at the ‘cluster’-level. The LME 
model included a fixed effect of presentation number to account for 
amplitude decay over repeated presentations, whereas data in the 
ANOVA was averaged across the repeated presentations and across ac
tors used in the four stimuli conditions. The LME model accounted for 

Fig. 8. Example single-trial waveforms for one subject in the dataset. For a 
single trial in a given condition, ERP data are noisy. However, LME is able to 
account for noise in single-trial data because it models the condition means and 
accounts for ‘nuisance’ variables that cause related trials to be more similar to 
each other. 

Fig. 9. Grand-mean average ERP waveforms for subjects with at least 10 trials/condition (N = 35, A, top) and at least 15 trials/condition (N = 28, B, bottom). 
Waveforms were collapsed across channels of interest (Cz, C3, and C4). 
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nesting of the trial-level data through two random intercepts: subject 
and actor. ANOVA accounted for nested data through mean averaging 
trials within subjects. Finally, given that LME analyzes trial-level data, 
all subjects (N = 38) were included in analyses, compared to the 10-trial 
casewise deletion ANOVA (N = 35) and to the 15-trial casewise deletion 
ANOVA (N = 28). Therefore, ANOVAs had a smaller sample size 
compared to LME due to casewise deletion of subjects with too few trials 
in each emotion condition. 

Each of these three models detected a significant omnibus effect of 
emotion on NC mean amplitude. However, whereas the LME was able to 
detect significantly greater (more negative) amplitude between Angry 
and both Happy and Neutral, the ANOVA models each only detected one 
of these significant effects. Moreover, different effects were detected 
across the two ANOVA models. 

The marginal means across these three models differed slightly (see  
Fig. 10), in which the ANOVA means were more negative across con
ditions compared to the LME model. As discussed in simulation results in 
Section 3, this may be because of greater missing data toward the end of 
the experiment (when children are fussier and have fewer clean trials) 
resulting in over-representation of the early presented trials which have 
more negative amplitudes. The ANOVAs cannot account for this effect of 
trial presentation and thus yielded more negative means. In addition to 
accounting for trial presentation order, the LME model was also able to 
account for other nuisance variables such as individual differences 
across subjects (e.g., some children have generally higher or lower 
amplitude EEG), actor (e.g., where a more salient actor, such as an actor 
with red hair, has similar amplitude across subjects), and electrode site 
(e.g., where Cz amplitude is similar across subjects because of scalp 
location). These advantages to LME were illustrated through better 
sensitivity to detect significant differences in NC mean amplitude 
compared to ANOVA. 

4.6. Discussion of real ERP data from preschool children 

Both LME and the ANOVAs revealed a significant effect of emotion. 
However, for the ANOVAs, the estimated marginal means analysis did 
not consistently identify the significant differences between both Angry 
and Happy, and Angry and Neutral, which were each revealed in the 
LME analysis. This reduced efficacy of the ANOVA was expected given 
that casewise deletion reduces the sample size, therefore lowering the 
power to detect a significant effect across conditions. The discrepant 
results from the two ANOVAs also illustrate the problem of arbitrary 
trial-count cutoffs for casewise deletion. Specifically, researchers’ de
cisions to set a 10 or 15 trial/condition minimum is arbitrary. In our 
dataset, setting a 10 versus a 15 trial/condition threshold resulted in (1) 
the inability to detect both condition differences in the sample, and (2) 
different effects detected across these two cutoffs. As these results illus
trate, the arbitrary selection of a given cutoff for casewise deletion may 
be associated with Type II error – accepting the null hypothesis when 
there is a significant effect in the population. 

This example dataset demonstrates how LME addresses issues in 
mean-averaging analyses and casewise deletion, using real develop
mental ERP data. Specifically, arbitrary trial-number thresholds for ERP 
data can result in ‘researcher degrees of freedom’ (Gelman and Loken, 
2013) in choosing which threshold to use, and therefore which condition 
difference to report. In contrast, LME may have been better able to 
detect all significant condition differences due to increased power by 
including all subjects, or by accounting for error in subject, actor, and 
electrode variability, which the ANOVA models were unable to account 
for. These results from real preschool ERP data support findings in 
simulated data previously presented in Section 3, and demonstrate the 
utility of applying LME models to developmental ERP data. 

5. Challenges and limitations to LME 

LME resolves issues in traditional grand-mean averaging in ANOVA, 

including issues relating to casewise deleting subjects resulting in loss of 
power and biased mean amplitude estimates, as well as issues of 
violating missingness assumptions when trial-level missingness is pre
dicted by a measured variable (i.e., MAR). However, implementing LME 
in ERP designs requires careful thought when planning the experimental 
design, fitting the LME model, and in reporting results and plotting 
ERPs. We break down issues that may arise during planning, fitting 
models, and reporting results, and present challenges and suggestions 
for researchers to consider. 

5.1. Considerations when planning an ERP experiment 

While not necessarily a challenge to LME, there are prerequisites in 
planning an ERP experimental design in order to fit LME models. Spe
cifically, the researcher must insert event markers during ERP data 
collection that indicate which stimulus is presented (as outlined in 
Section 4.1.3; see also tutorial on creating unique event markers and 
accompanying code for LME analysis in Appendix D. For an example 
spreadsheet with text descriptions for each numeric value, see LME_E
ventMarkerMappingKey.xlsx in https://github.com/basclab/LME_Mix
edEffectsERPTutorial/blob/main/LMETutorialScripts). Event markers 
should indicate both the trial type and which specific stimulus was 
presented (e.g., actor, emotion, presentation number). In addition to 
facilitating LME analyses, an added benefit to inserting trial-specific 
markers is that they allow the researcher to identify and remove spe
cific stimuli or trials that present as systematic outliers in post- 
processing. 

An additional issue in planning an ERP experiment using LME is in 
determining the required sample size to reach adequate power. 
Currently, there is a lack of convenient power analysis software to 
determine sample size (e.g., G*Power, Faul et al., 2007) for LME. 
However, in planning ERP experiments where data will be analyzed 
with LME, the available simulation code can be used to calculate power 
and required sample size before running an ERP experiment (see 
Appendix B for link to GitHub with simulation code and additional re
sources). Specifically, code can be adapted with the estimated number of 
trials each subject will complete in order to estimate the parameter 
coefficients of the experimental conditions (e.g., expected mean ampli
tude across conditions). Power can then be calculated by examining in 
how many simulations the effect of interest was observed. 

In addition, Baraldi and Enders (2010) recommend that researchers 
include auxiliary variables (described in Section 1.2.3). These additional 
variables allow researchers to examine mechanisms of missing data and 
give researchers greater confidence that their model’s data are likely 
MAR. For example, trial presentation number (in which more trials are 
missing toward the end of the experiment), age (in which younger 
children have less usable trials), executive function (in which children 
with greater inhibitory control can sit still for longer and have more 
usable trials), and temperament (in which children with more agreeable 
temperaments can tolerate longer experiments and yield more usable 
trials) are a few examples of auxiliary variables that developmental ERP 
researchers may want to collect in order to examine missing data pat
terns. In addition, infant researchers may want to collect data on the 
infant’s last feeding time or hours slept in the previous day. These 
additional variables allow for a more comprehensive examination of 
missing data patterns and can give researchers more confidence that 
their data are likely MAR and thus meets missingness assumptions of 
LME. 

Currently, there are limitations to LME in analyzing difference waves 
(e.g., as done in regression or correlational analyses with behavioral 
predictors). Typically, difference waves are calculated by subtracting 
the subject-level mean amplitude of a baseline condition (e.g., a neutral 
face) from the subject-level mean amplitude of a condition of interest (e. 
g., a happy face). For LME analyses, specific trials would need to be 
paired in order to calculate trial-level difference values. It is not 
straightforward how trials should be paired for this model. Some 
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potential workarounds would be pairing the same trial presentation 
number to account for amplitude decay after repeated trials, but high 
numbers of missing trials would make this approach challenging. A 
second approach may be to run permutations in which trials are 
randomly paired. In sum, more research is needed to document a reli
able approach to modeling difference waves using LME. 

Finally, LMEs may currently only be appropriate to fit to single-trial 
mean amplitude, and not to single-trial latency. Peak latency is sus
ceptible to noise at the single-trial level (e.g., high frequency noise). As 
such, extracting a subject’s peak latencies from each single trial and then 
taking the average of these values does not result in the same value as 
the peak latency of the subject’s mean-averaged waveform. An explor
atory analysis in our laboratory examined latency-to-peak ERP ampli
tude in the N170 to explore whether the advantages of LME over ANOVA 
for mean amplitude data were also evident in latency data. In line with 
the amplitude results, LME detected condition differences in N170 la
tency that were not captured by 10- and 15-trial casewise deletion 
ANOVAs. Thus, it is possible that LME can be used to examine single- 
trial peak latency for earlier-peaking ERP components, but using LMEs 
to model latency is under-explored, and requires further systematic 
investigation. In contrast to single-trial latency, LMEs are appropriate to 
model mean amplitude, and to compare across ANOVA and LME, 
because the subject’s averaged waveform across all trials has the same 
mean amplitude as the average of their single-trial mean amplitude. 

5.2. Challenges in fitting LME models to ERP data 

Once ERP data are collected, there are several considerations in 
fitting a model to best test a hypothesis. These considerations include 
centering variables and using effects coding to correctly interpret LME 
output, specifying the random effects structure, and how to handle non- 
convergence issues in fitting models. 

In our examples in Sections 3 and 4 above, we chose not to center 
ERP amplitude in order to extract coefficients that would be comparable 
across the LME and ANOVA models. However, centering variables in 
LME is generally advised (Raudenbush and Bryk, 2002), and is partic
ularly useful for interpreting interactions (Brauer and Curtin, 2018). 
There are several ways to center data before fitting LME models, and 
researchers should carefully select which reference group (e.g., 
grand-mean, within-clusters) to center on depending on their research 
question and design (Bliese et al., 2018; Snijders and Bosker, 2012; 
Volpert-Esmond et al., 2021). Centering is frequently done on predictors 
(e.g., behavioral responses associated with each trial), but can also be 
done on outcome variables (e.g., mean amplitude). Centering involves 

subtracting a value from each individual trial-level datapoint, and 
maintains the scale of the original data (e.g., when centering amplitude, 
centered data are still in µV). Centering should be done after any ex
clusions (e.g., some ERP studies exclude left handed subjects [e.g., 
Kayser et al., 1997; Kutas and Hillyard, 1980], and therefore these 
subjects who were not included in the final sample should also not be 
included in calculating the mean on which data are centered). 

The most common examples of centering are grand-mean centering 
(GMC; which is often used to examine between-subjects effects), and 
centering on the individual’s mean (also referred to as centering within 
clusters, CWC, which is often used to examine the within-subjects ef
fects). GMC can be done on level 2 predictors (e.g., the subject-level in 
our examples in Sections 3 and 4). In GMC of a predictor (e.g., age), the 
mean age of all subjects is calculated and then subtracted from each 
single subject’s age. Therefore, coefficients describe how variables in
fluence deviation from the grand mean in relation to the “averaged” 
subject (Nezlek, 2012; Snijders and Bosker, 2012). 

CWC is done on level 1 predictors (e.g., the trial level in our examples 
in Sections 3 and 4), and is recommended when researchers have a 
theory about a variable’s relative effect within-subjects influencing the 
outcome variable (Snijders and Bosker, 2012), although other scholars 
advocate to always CWC level 1 predictors (Brauer and Curtin, 2018; 
Raudenbush and Bryk, 2002) and a few advocate to never center level 1 
predictors (Antonakis et al., 2021). Examples of level 1 predictors are 
presentation number (e.g., in Sections 3 and 4) or behavioral responses 
(e.g., certainty levels, reaction time) associated with each trial. Param
eter estimates after CWC describe within-subjects variability, and 
therefore resulting centered data reflect relatively higher or lower levels 
of the predictor for each subject. For example, CWC of transformed re
action times (RT) when emotional expressions are repeated versus novel 
(e.g., in a design such as Naumann et al., 2020) would be done by 
averaging RT within each subject and subtracting the average RT from 
each subject’s single-trial data. Therefore, data for each subject is 
representative of relatively slower or faster RT trials compared to that 
subject’s mean RT. In general, either CWC or GMC may be appropriate 
depending on your research question (for further guidance see Anto
nakis et al., 2021; Enders and Tofighi, 2007; Raudenbush and Bryk, 
2002, Chapter 5; Snijders and Bosker, 2012; for an ERP-specific dis
cussion see Volpert-Esmond et al., 2021). 

Comparisons of categorical predictors (e.g., emotion condition, 
gender) can be examined through pairwise comparisons of the LME 
model (as conducted in Sections 3 and 4) or through applying contrasts 
(e.g., effects coding also known as sum contrasts; and treatment coding 
also known as dummy coding) to the categorical predictor before fitting 

Fig. 10. Marginal means compared across the three models: LME, repeated measures ANOVA at 10 trials/condition casewise deletion, and repeated measures 
ANOVA at 15 trials/condition casewise deletion. Error bars represent 95% confidence intervals. 
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the model. R defaults to using treatment coding for factors (R Core 
Team, 2019). In treatment coding of a binary categorical predictor, one 
factor level (assigned 0) is the reference group that the other is 
compared to (assigned 1). When using treatment coding, β’s represent 
the difference between the reference group’s mean and the other group’s 
mean (Baayen, 2012). In contrast, when using effects coding for a binary 
categorical predictor, the factors are assigned as − 1 and 1, or factors 
can be assigned as − 0.5 and 0.5 in order to extract the same slope as in 
dummy coding (Schad et al., 2020). In effects coding, β’s represent the 
difference between each group’s mean and the grand mean of the pre
dictor (i.e., the mean across both levels) (see Schad et al., 2020 for 
further discussion on applying contrasts in LME). Therefore, contrasts 
should be applied prior to fitting the final model given that they influ
ence coefficients and thus interpretation of LMEs. 

Identification of the appropriate model for a given ERP dataset re
quires careful consideration of the random effects structure. For 
example, there can be model misspecification if sources of random 
variance are not accounted for (e.g., if a random effect in the model is 
‘left out’). For example, in our dataset we included a random intercept of 
actor, but alternatively we may have left out this random intercept from 
the model, or we could have included a random intercept of actor race 
only, which would not be able to account for variance that may stem 
from other stimulus features (e.g., hair color, hair style). These alter
native models would be a poorer fit to the variance in our dataset and 
therefore may influence LME results and subsequent interpretation. 
Therefore, there can be issues in model misspecification if a random 
effect is not included in the model, because the model will not contain 
information about the relation between trial-level factors and error 
(Nezlek, 2012). Volpert-Esmond and colleagues (2021) recommend that 
random effects should have 5 or more levels, and therefore nuisance 
variables with fewer levels (e.g., electrode in Section 4) should be 
included as control variables as fixed effects. Researchers should 
thoughtfully consider which variables should be included in their 
random effects structure. 

Lastly, it is possible that when fitting an LME model to one’s data, the 
model may not converge (i.e., find a solution of coefficients that best 
explain the dataset). This lack of convergence can happen more often 
when attempting to fit particularly complex models, when there are 
especially low trial counts, and/or when there are a small number of 
subjects. Thus, developmental ERP researchers may be more likely to 
encounter problems with model convergence given they are limited by 
the number of artifact-free ERP trials they are able to collect, and by the 
time and cost of collecting more subjects. Barr and colleagues (2013) 
recommend fitting the maximal number of random effects in LME 
models (e.g., a maximum number of random intercepts and random 
slopes in the model) (but see also Matuschek et al., 2017 for alternative 
recommendations). However, in designs with low numbers of trials or 
subjects, or in cases where data are not very nested within groups (e.g., 
low ICCs for trials within subjects), fitting a maximal random effects 
structure may not converge. Maximal models may not converge because 
the model is estimating many parameters (e.g., all fixed effects, all 
random effects, all covariances of the random effects within each level, 
variances of residuals) (Brauer and Curtin, 2018). 

Including fixed effect interaction terms in an LME may also pose 
problems for model convergence because it compounds how many pa
rameters the model has to estimate (e.g., a fixed effect interaction be
tween categorical predictors in a 2x2 design would then result in 1 more 
fixed effect (the interaction) and an additional random slope for the 
interaction term to be estimated in order to fit the maximal model, as 
described in Brauer and Curtin, 2018). This issue is compounded in more 
complex designs (e.g., 2x2x2 design). The addition of interaction terms 
thus results in even higher numbers of parameters for the model to es
timate across fixed and random effects, thus increasing the likelihood 
that the model may not converge. 

In the case that a model does converge but has a singular fit (in which 
there is a singular covariance matrix for one or more random effects), 

coefficients should not be interpreted and the model should be simpli
fied. If a model does not converge, researchers should first center and/or 
rescale data and increase the iterations that the model will run before 
simplifying the model (Barr et al., 2013; Brauer and Curtin, 2018). If the 
model still does not converge, researchers can calculate the ICC within 
different random effects and remove the random effect with the lowest 
ICC until the model converges (Garson, 2013). An example of the pro
gression from the ideal maximal model to the final model that would 
converge for analyses in Section 4 is provided in Appendix D.6. See also 
Barr et al. (2013) and Bates et al. (2018), and Brauer and Curtin (2018) 
for further suggestions on model simplification. 

5.3. Challenges in reporting results from LME models 

Once an LME model has been fit, there may be several challenges in 
reporting results, particularly given that ERP researchers are accus
tomed to seeing results presented in an ANOVA or regression frame
work. For example, there are multiple methods of calculating degrees of 
freedom in an LME, including Satterthwaite and Kenward-Roger. 
Simulation results suggest that both Satterthwaite and Kenward-Roger 
produce acceptable Type I error rates (approximately .05), even with 
samples as small as 12 subjects (Luke, 2017). In our results in Sections 3 
and 4, we use the Satterthwaite approximation, which can be imple
mented easily in R using mode = "satterthwaite", and has been recom
mended for fitting LMEs to ERP data (Volpert-Esmond et al., 2021). 

There can be challenges in reporting effect size for LMEs, which can 
be problematic given that many journals now require effect size esti
mates to improve the field’s best practices. There is not a consensus in 
the LME literature about how to calculate effect size. However, as an 
alternative to conventional effect size estimates (e.g., R2 in linear 
regression), some scholars suggest using standardized β’s as a measure of 
the effect. Effect size is a standardized estimate of the relation between 
variables, so standardized β’s will indicate how much variance is 
explained by a predictor (Ferron et al., 2008; Snijders and Bosker, 2012). 

Finally, for visualizing the results of an LME analysis, we recommend 
plotting the LME model’s estimated marginal means for the fixed effects 
of interest. For example, in our NC preschooler analysis reported in 
Section 4, we plot the marginal means of NC mean amplitude over 
repeated trial presentations (see Fig. 7B) and for each emotion condition 
(see Fig. 10; see also additional examples in: Berry et al., 2019; Brush 
et al., 2018; Rodríguez-Gómez et al., 2020; and Volpert-Esmond et al., 
2018). To further visualize the effect and facilitate comparison with 
previous ERP studies, we also recommend plotting the grand-mean 
waveform averaged across all subjects (i.e., without casewise dele
tion). Finally, if a model includes random slopes (e.g., if the slope of 
presentation number varied across subjects), each subject’s random 
intercept and slope for presentation number could be plotted to visualize 
between-subjects variability in the effect of trial number. For an example 
of a random slope visualization, we recommend Volpert-Esmond and 
colleagues (2021). 

6. Conclusion 

The present study illustrates the utility of linear mixed effects (LME) 
models over ordinary least squares models (e.g., linear regression, 
ANOVA) to analyze ERP data. The use of casewise deletion and mean 
averaging in ordinary least squares models can decrease power, bias 
estimates of amplitude when data are not missing completely at random 
(e.g., systematically missing toward the end of an experiment due to 
fussiness/fatigue of infants and children), and result in incomplete 
interpretation of results when within- and between-subjects effects 
differ. In contrast, LME provides a more accurate estimate of effects 
through modeling both the effect of interest and random sampling 
variability, does not implement casewise deletion, and provides unbi
ased estimates even when the probability of missing data is dependent 
on a measured variable. 
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We demonstrated these advantages in simulated and real ERP data. 
Our simulation results demonstrated that ANOVA models had greater 
error than LME in estimating mean amplitude, and were biased when 
there were more missing data from the end of the experiment and in 
younger subjects. The advantages of the LME models over ANOVAs with 
casewise deletion were also evident in real ERP data from typically 
developing preschool children: the LME model detected two significant 
effects across emotion conditions, whereas ANOVAs following casewise 
deletion only detected one effect, and the effect detected was different 
depending on which trial cutoff exclusion criteria were used. 

We demonstrated advantages of the LME in analyzing NC ERP 
amplitude from a common emotion-perception paradigm, but LMEs can 
be used to analyze any ERP component in studies that examine other 
condition differences, that compare samples, and that analyze individ
ual differences. We include tutorials and example code in appendices to 
help researchers employ these methods in future ERP studies. 
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