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MICA and MICB are ligands of the NKG2D receptor and thereby influence NK and T

cell activity. MICA/B gene polymorphisms, expression levels and the amount of soluble

MICA/B in the serum have been linked to autoimmune diseases, infections, and cancer.

In hematopoietic stem cell transplantation, MICA matching between donor and patient

has been correlated with reduced acute and chronic graft-vs.-host disease and improved

survival. Hence, we developed an extremely cost-efficient high-throughput workflow for

genotypingMICA/B for newly registered potential stem cell donors. Since mid-2017, we

have genotyped over two million samples using NGS amplicon sequencing for MICA/B

exons 2–5. In donors of German origin, MICA∗008 is the most common MICA allele

with a frequency of 42.3%. It is followed by MICA∗002 (11.7%) and MICA∗009 (8.8%).

The three most common MICB alleles are MICB∗005 (43.9%), MICB∗004 (21.7%), and

MICB∗002 (18.9%). In general,MICB is less diverse thanMICA and only 6 alleles, instead

of 15, account for a cumulative allele frequency of 99.5%. In 0.5% of the samples we

observed at least one allele of MICA or MICB which has so far not been reported to

the IPD/IMGT-HLA database. By providing MICA/B typed voluntary donors, clinicians

become empowered to include MICA/B into their donor selection process to further

improve unrelated hematopoietic stem cell transplantation.

Keywords: MICA, MICB, hematopoietic stem cell transplantation, allele, genotyping, next generation sequencing,

NGS, high-throughput

INTRODUCTION

The MICA (MHC class I polypeptide-related sequence A) and MICB (MHC class I
polypeptide-related sequence B) genes are located between the MHC class I and class
III genes inside the human major histocompatibility complex (MHC) (1). Although
being highly similar to the classical human leukocyte antigen (HLA) genes, they do
not present peptides and are not expressed at the surface of human leukocytes but
on endothelial cells, fibroblasts, epithelial cells, and tumor cells (2). There they act as
ligands for the NKG2D receptor which plays an important role in immune surveillance
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by activating NK cells and co-stimulating T cell subsets (3,
4). Therefore, the expression of NKG2D ligands is highly
regulated and induced by cellular stress (e.g., infection, oxidative
stress, transformation).

MICA and MICB are highly similar and share around 91% of
their coding sequence (1). Exon 1 encodes the leader peptide,
exons 2, 3, and 4 the three extracellular domains, exon 5
the transmembrane domain and exon 6 the cytoplasmic tail
(1, 2, 5). Even though MICA and MICB do not seem to be
as diverse as the conventional HLA genes, a large number
of distinct alleles have been described: release 3.37.0 of the
IPD-IMGT/HLA database contains 109 MICA and 47 MICB
alleles (6). MICA∗008 has been reported to be the most
common MICA allele with frequencies ranging from 25 to
55% depending on the population. Frequencies above 5% were
observed for MICA∗002, MICA∗009, MICA∗004, MICA∗010,
and MICA∗007 in Europeans. In Chinese cohorts, the alleles
MICA∗019, MICA∗027, and MICA∗045 are also common (7–
11). The less diverseMICB gene has been predominantly studied
in Asian populations. There, the allele MICB∗005 is the most
common allele with frequencies of over 50%. It is followed
by MICB∗002 and MICB∗004 with frequencies over 10% and
MICB∗008 and the null alleleMICB∗009N with frequencies over
5% (10–13).

Themost frequentMICA alleleMICA∗008 differs substantially
from most other alleles since it lacks the transmembrane domain
due to a frameshift in exon 5. Alleles sharing this feature
are also referred to as “A5.1” alleles (14). Their products are
bound to the cellular membrane by a GPI-anchor and are
frequently released into exosomes thereby triggering a systemic
downregulation of the NKG2D receptor on effector cells. Other
MICA and MICB alleles do this to a lesser extent using a soluble
form caused by a proteolytic shedding mechanism (15, 16).
Since high levels of both forms of soluble MICA and MICB
(sMICA/B) have been found in various cancers, the release of
MIC proteins is thought to be one cause for cancer immune
escape. sMICA/B are therefore considered promising targets for
immunotherapy (17–20).

Several studies looked into the general impact of MICA/B
polymorphisms on different diseases. Especially the MICA-
129Met/Val dimorphism encoded by the SNP rs1051792 has
received attention because it separates the different MICA
alleles into NKG2D-receptor low (Val)- and high (Met)-
affinity binding alleles (21). Health risk associations have
been shown for several autoimmune diseases, cancer and viral
infections (22–27). Furthermore, matching of MICA, including
theMICA-129 dimorphism, between donor and patient has been
correlated with improved outcome of unrelated hematopoietic
stem cell transplantation and reduced acute and chronic graft-
vs.-host disease (28–32). Because MICA is in strong linkage
disequilibrium with HLA-B, over 90% of 10/10 HLA-matched
donor/patient pairs are also matched for MICA (8, 30). In
partially matched cases, in particular in HLA-B mismatch
situations,MICAmismatches are more frequent.

To facilitate further studies on MICA and/or MICB matching
in unrelated hematopoietic stem cell transplantation, we included
both genes into our high-throughput genotyping workflow

for newly registered potential stem cell donors in 2017. This
workflow was initially developed for the six classical HLA genes
HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, and HLA-
DPB1 and was then gradually extended to also include CCR5,
the blood groups ABO and Rh as well as the several KIR genes
and HLA-E (33–37). Today, this workflow has been applied to
genotype over seven million donors, among themmore than two
million includingMICA andMICB.

MATERIALS AND METHODS

Samples
Volunteers from Germany, Poland, UK, USA, Chile and India
provided over twomillion samples to DKMS for their registration
as potential stem cell donors between August 2017 and October
2019. We determined MICA and MICB allele frequencies
based on 1,201,896 samples of donors from DKMS Germany
who declared to be of German descent. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. The described genotyping is within the scope of
the consent forms signed at recruitment and performed as
genotyping service.

DNA Isolation and Quantification
The vast majority of samples were provided as buccal swabs
(Copan, Brescia, Italy). Few samples were provided as blood.
DNA was isolated using the chemagicTM Blood/Swab Kits
(PerkinElmer chemagen Technologie GmbH, Baesweiler,
Germany) and quantified by fluorescence as described
before (36).

PCR Amplification
MICA and MICB were amplified in one multiplexed PCR
reaction targeting exons 2, 3, and 4/5. The resulting amplicons
had lengths between 417 and 480 bp (Figure 1). Exons 2 and
3 were amplified as separate amplicons and were completely
covered. In contrast, exons 4 and 5 were amplified together as
one joined amplicon with primers inside the exons. Therefore,
65 bases at the beginning of exon 4 and 13 bases at the end of
exon 5 were not covered. The 8µl PCR reactions were performed
in 384-well plates using FastStartTM Taq DNA Polymerase
(Roche, Basel, Switzerland) in its associated buffer system. After
amplification, products were pooled with other amplicons of
the same sample and subjected to a barcoding/indexing PCR as
described previously (33–37).

Library Preparation and Sequencing
After indexing PCR, 384 barcoded samples were pooled together
and purified using SPRIselect beads (BeckmanCoulter, Brea,
USA) with a ratio of 0.6:1 beads to DNA and subsequently
quantified by qPCR. Equimolar amounts of 10 pools were then
combined to a final sequencing library which contained all
amplicons from 3,840 donors. The library was denatured and
diluted as recommended by Illumina (MiSeq Reagent Kit V2-
Reagent Preparation Guide) and loaded at 12.5 pM onto HiSeq
flow cells. Paired-end sequencing was performed at 2 × 249

Frontiers in Immunology | www.frontiersin.org 2 February 2020 | Volume 11 | Article 314

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Klussmeier et al. Workflow for High-Throughput MICA/B Genotyping

bp using HiSeq Rapid SBS Kits V2 (500 cycles) on HiSeq2500
instruments (Illumina, San Diego, USA) (33–37).

Genotyping
The neXtype software was extended to supportMICA andMICB
genotyping (33, 36). It uses a decision-tree-based algorithm to
match the generated MICA/B amplicons to known alleles from
the official IPD/IMGT-HLA database. Since no known MICA
amplicon sequence matches a known MICB amplicon sequence,
reads could be unambiguously assigned to eitherMICA orMICB.
For more than 95% of the samples neXtype generated correct
results with only minor requirements for user interaction. In
case of insufficient read coverage, rare or questionable results,
a new PCR reaction was initiated from the original DNA. If a
low read coverage was limited to exons 4 and 5, trained analysts
could decide to generate a result based on exons 2 and 3 only.
Genotyping results were finally exported using the GL string
format (38).

Frequency Analysis of MICA and MICB

Alleles
MICA and MICB genotyping results of 1,201,896 samples of
German origin were analyzed based on the first field, which
identifies the unique MICA and MICB proteins. Homozygous
genotyping results were counted as two alleles. Allele groups
which could not be distinguished due to missing sequencing
information were reported by a representative allele which was
marked with a hash symbol (#) (Table 1). For samples with
phasing ambiguities, the probability of each possible result was
calculated based on the allele frequencies of unambiguously typed
samples. According to these probabilities, counts were added to
the different alleles. To verify rare allele calls, all alleles observed
<50 times were reconfirmed in at least two samples.

RESULTS

High-Throughput MICA/B Genotyping
Assay Validation and Performance

For assay validation, we exchanged DNA from 95 samples
with two labs with established workflows for MICA or MICB
genotyping (MICA: Institute of Clinical Transfusion Medicine
and Immunogenetics Ulm, Germany; MICB: Laboratoire
d’ImmunoRhumatologie Moléculaire, Strasbourg, France). For
MICA, we additionally used the UCLA MICA Panel Set (UCLA
Immunogenetic Center, USA), which consists of 24 samples
with diverse combinations of MICA alleles. The results obtained
from our newly established workflow were 100% concordant
with the reference genotypes for both MICA and MICB

(Supplementary File 1). Subsequently, MICA/B genotyping
was included into our standard genotyping workflow in August
2017 and applied for all newly registered donors. So far, we have
generatedMICA/B genotyping data for over twomillion samples,
on average more than 20,000 samples per week. BecauseMICA/B
amplicons are pooled with the HLA amplicons directly after the
initial PCR, additional costs for genotyping MICA/B are minor
and reflect the costs for one 8 µl PCR reaction, sequencing and
data analysis. We are targeting an average coverage of 1,000 reads
per locus and exon corresponding to a total of 6,000 reads for
MICA/B with associated costs of about 10 cents per sample for
sequencing. This efficient strategy makes it feasible to genotype
every newly registered donor forMICA/B.

Resolution and Ambiguities

Our MICA/B genotyping workflow targets and amplifies exons
2 and 3 separately and most of exons 4 and 5 using a combined
amplicon (Figure 1). Consequently, exons 1 and 6 and 78 bases
of exons 4 and 5 are not sequenced. This amplification strategy
promised a good genotyping resolution while being highly cost-
efficient. MICA/B exons 2, 3, and 5 were considered mandatory
because they encode the receptor-interacting domains or define
MICA∗008-like alleles. Expansion of the exon 5 amplicon made
it possible to also include most of exon 4. Exons 1 and 6
encode a leader peptide and the cytoplasmic tail. As these
regions do not encode extracellular domains of the proteins and
are characterized by a lower diversity they were not included
in the genotyping strategy. However, some alleles may only
be differentiated by sequence features within one of the not
covered regions. For example, SNPs in exon 6 are the only
way to distinguish MICA∗010 from MICA∗069 or MICA∗009:01
from MICA∗049. MICA∗009:02, on the other hand, can be
unambiguously genotyped because it differs fromMICA∗049 and

TABLE 1 | Overview of ambiguous genotyping results.

Allele group Alleles

MICA

MICA*009# MICA*009, MICA*049

MICA*010# MICA*010, MICA*065, MICA*069

MICA*027# MICA*027, MICA*048

MICB

MICB*004# MICB*004, MICB*028

MICB*005# MICB*003, MICB*005, MICB*006, MICB*010

MICB*014# MICB*014, MICB*015

Alleles which cannot be distinguished from each other by the workflow are combined in

an allele group marked with a hash symbol (#).

FIGURE 1 | Primer locations and PCR amplification products for exons 2–5 of MICA/B. Primers (arrows) bind to both MICA and MICB and generate three amplicons

per gene in one PCR reaction. Product lengths are between 417 and 480 bp. Note that not all bases of exons 4 and 5 are covered.
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FIGURE 2 | Allele frequencies of MICA. First-field-resolution allele frequencies are based on 1,201,896 samples from donors of German descent. Alleles contributing

to a cumulative allele frequency of 99.5% are shown against a colored background and allele frequencies below 0.003 are additionally plotted in an inlay. If ambiguities

exist, allele groups are used (#) and the ambiguity is described in Table 1.
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its synonymous alleleMICA∗009:01 in exon 3 (Table 1) (14). Due
to the primer location inside exon 4 our workflow also cannot
distinguish betweenMICA∗10 andMICA∗065.

For MICB, the most common allele MICB∗005:02 cannot be
distinguished fromMICB∗003,MICB∗006, andMICB∗010, while
other variants of MICB∗005 can be distinguished. Likewise, the
pairs MICB∗004 and MICA∗028 or MICB∗014 and MICA∗015
cannot be resolved (Table 1).

In addition to the ambiguities caused by missing sequence
information, we encounter phasing ambiguities. They occur
because the sequences of short amplicons cannot be phased
if the targeted regions are not overlapping. As a consequence,
some observed sequence combinations can be explained by
more than one allele pair. In our workflow, phasing ambiguities
occur in 3% of MICA and 24% of MICB samples. In over
99.9% of those cases, however, one possibility can statistically
be ruled out since the combination of two rare alleles would
be highly unlikely if the other option includes two common
alleles. This is in contrast to HLA genotyping where some
important phasing ambiguities cannot be solved statistically. For
example, the most common MICB phasing ambiguity result
is either the combination MICB∗002 and MICB∗005# or the
combination MICB∗018 and MICB∗019 [GL-String notation:
MICB∗002+MICB∗005#|MICB∗018+MICB∗019 (38)]. Based on
the allele frequencies determined in this study, the likelihood
of the allele combination MICB∗002+MICB∗005# is 0.039. In
contrast, the likelihood of MICB∗018+MICB∗019 is only 1.9
× 10−8. Hence, MICB∗018+MICB∗019 would be expected to
occur only once in 2.08 million samples with the given phasing
result. In our dataset of 1,201,896 samples, 182,383 samples
have the result MICB∗002+MICB∗005#|MICB∗018+MICB∗019.
Now, by claiming that MICB∗002+MICB∗005# is always the
correct result, we are making only one wrong call in 13.7 million
genotyped samples. Therefore, we have disregarded the highly
unlikely combinations of rare alleles in our allele frequency
calculations. This is not expected to introduce a relevant error. In
contrast, disregarding all samples with phasing results altogether
would substantially distort the results since the phasing events
predominantly involve certain alleles.

Novel Alleles

We encounter novel MICA or MICB alleles in 0.5% of the
samples, resulting in the observation of ∼100 novel alleles per
week (recurrences included). They are automatically flagged by
the genotyping software and trigger a new PCR reaction from
the original sample for verification. In general, the novel alleles
fall into two categories: Novel sequences or novel combinations
of previously reported exonic sequences. The task to characterize
them in full length and submit the sequences to IPD/IMGT-HLA
is currently in progress.

MICA Allele Frequencies
MICA allele frequencies were calculated on 1,201,896 samples
of German descent (Figure 2). These samples represent more
than 50% of our genotyped samples and were therefore the
largest ethnically defined population available. With a frequency
of 42.3%, the allele MICA∗008 is the most frequent MICA allele

TABLE 2 | MICA/B alleles described in IPD/IMGT-HLA release 3.37.0, but never

observed in our cohort of over two million samples.

MICA MICA*005, MICA*013, MICA*014, MICA*023, MICA*026, MICA*028,

MICA*031, MICA*032, MICA*034, MICA*036, MICA*039, MICA*042,

MICA*050, MICA*061, MICA*063N, MICA*065, MICA*081, MICA*083

MICB MICB*001, MICB*011, MICB*016, MICB*022, MICB*030, MICB*032

in Germany. It is followed by the alleles MICA∗002 (11.7%),
MICA∗009# (8.8%), MICA∗010# (7.7%), and MICA∗004 (6.5%).
The 15 most common alleles account for a cumulative allele
frequency of 99.5%. The other 41 alleles observed in the German
dataset account for the remaining 0.5%. We further identified
sixMICA alleles (MICA∗035,MICA∗037,MICA∗038,MICA∗040,
MICA∗060, and MICA∗064N) with very low frequencies in
samples not of German origin. Despite the huge sample size, we
have never observed the remaining 18 alleles contained in the
IPD-IMGT/HLA database (release 3.37.0) (Table 2).

MICB Allele Frequencies
MICB allele frequencies were calculated based on the same
sample cohort used for MICA (Figure 3). With a frequency
of 43.9%, MICB∗005# is by far the most frequent allele in
Germany. However, since our workflow cannot distinguish all
MICB∗005 variants fromMICB∗003,MICB∗006, andMICB∗010,
the true frequency of MICB∗005 might be lower (Table 1). In
our samples,MICB∗005# is followed byMICB∗004#,MICB∗002,
and MICB∗008, having frequencies of 21.7 18.9, and 11.0%,
respectively. Together with MICB∗014# (2.2%) and MICB∗013
(1.4%) they account for a cumulative allele frequency of
99.5%. 14 other alleles have been detected in the German
cohort. MICB∗007 has only been identified in a few samples
of non-German origin. We have never observed the six
remaining alleles described in the IPD-IMGT/HLA database
(release 3.37.0) (Table 2).

DISCUSSION

The regulation of NK/T cell activation is an elaborate interplay
between several receptors and their associated ligands. To further
add another layer of complexity, receptors like KIR or ligands like
MICA/B exist in a variety of distinct alleles with varying effects
on NK/T cell activity (6, 39). A comprehensive sequencing study
of the MHC complex indicated that the sequence of MICA is
more diverse than the sequence ofHLA-DQB1 orHLA-DPB1, but
the number of named MICA alleles is much lower (6, 10). And
even though MICA/B do not present antigenic peptides like the
classicalHLA class I genes, matching ofMICA/B between patient
and donor has been reported to improve outcome and reduce
acute and chronic graft-vs.-host disease in hematopoietic stem
cell transplantation, especially in partially matched scenarios
(30, 31, 40). Translation of these findings into clinical practice
is, amongst others, hampered by the lack ofMICA/B genotyping
data. Hence, we present a workflow to genotype both MICA
and MICB with a mean throughput of over 20,000 samples
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FIGURE 3 | Allele frequencies of MICB. First-field-resolution allele frequencies are based on 1,201,896 samples from donors of German descent. Alleles contributing

to a cumulative allele frequency of 99.5% are shown against a colored background and allele frequencies below 0.004 are additionally plotted in an inlay. If ambiguities

exist, allele groups are used (#) and the ambiguity is described in Table 1.

per week. To date, we have processed more than two million
donor samples.

Based on 1.2 million samples of German origin we
identified MICA∗008 as the most common MICA allele (42.3%),
followed by MICA∗002 (11.7%) and MICA∗009# (8.8%). This is
concordant to previous studies which present allele frequencies
between 43 and 55% for MICA∗008, 8–14% for MICA∗002 and
4–8% for MICA∗009 in European/American populations (7–9).
Although MICA∗008 is also the most common allele in China,
with a frequency of about 25% it is far less abundant than in
European/American populations (10, 11, 41). Since MICA∗008
and other rare alleles bearing the A5.1 microsatellite marker
are more prone to produce sMICA than other alleles, they are
more effective in inactivating NKG2D and NK/T cell activity
(15). Therefore, these alleles might contribute to the disease
prevalence in different populations. Indeed, A5.1-carriers have
been associated with an increased risk for several types of cancer
and higher levels of sMICA seem to have a negative prognostic
value for tumor patient survival (18, 27, 42–44). To reactivate a
patient’s NK cells, the reduction of soluble NKG2D ligands is a
promising approach. Current strategies comprise the inhibition

of enzymes responsible for shedding as well as blocking the
cleavage sites with therapeutic antibodies. Most likely, the efficacy
of some of these new drugs will be limited to certain MICA/B
alleles which increases the need for reliable genotyping (18, 45).

MICB is less diverse than MICA. The most common
allele MICB∗005# was detected at 43.9% allele frequency
in the German population. However, given the incomplete
sequence coverage, our workflow cannot distinguish MICB∗003,
MICB∗005,MICB∗006, andMICB∗010. Studies on Asian cohorts
report allele frequencies of at least 55% for MICB∗005, 3% for
MICB∗003 and no observations of MICB∗006 or MICB∗010 (10,
11, 13). Limited full gene analysis of 51 samples withMICB∗005#
pre-typing results indicated a similar distribution in our dataset
(data not shown).

TheMICB∗003/005:02 ambiguity with its distinguishing bases
at the beginning of exon 4 and in exon 6 is one case in which our
workflow cannot differentiate between two presumably common
alleles. However, an amplicon of at least 530 bp would be
necessary to include the SNP at the beginning of exon 4 and
to not lose sequencing information for the microsatellite region
in MICA exon 5. Since this exceeds Illumina’s 2 × 250 bp read
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length, bases at the end of exon 4 would not be sequenced,
thereby creating other ambiguities. Consequently, to clearly
distinguish between MICB∗005:02 and MICB∗003 a separate
fourth PCR amplicon would be required. But given the lack of
clinical data for the relevance of regions outside exons 2, 3, and 5,
one might wonder if a higher resolution forMICA/B genotyping
is necessary. In HLA genotyping transplantation compatible
allele groups have been defined (G or P Codes) combining
all alleles harboring the same sequence across the antigen
recognition domain (2, 46, 47). For MICA/B, there is no similar
system yet. Consequently, we do not think that it is proportionate
to increase the sequencing costs for all samples without further
evidence of the clinical importance of remaining ambiguities. For
individual samples, genotyping results with three-field resolution
can be generated using long-read sequencing technologies (48).
Moreover, our amplicon strategy does not include the 5′ and
3′ UTRs of MICA/B which contain additional polymorphic
positions (49, 50). Some of them influence (s)MICA/B expression
which varies between different alleles (18, 51–53). However, to
the best of our knowledge, there are no studies, which address
the effects of donor MICA/B variations outside the exons in
hematopoietic stem cell transplantation.

Although we genotyped over two million samples, we have
not encountered some of the MICA/B alleles described in
the IPD/IMGT-HLA database (Table 2). This may be due to
several reasons. First of all, the majority of our samples are of
European origin. Therefore, we might lack rare alleles occurring
predominantly in other ethnicities. One example is MICB∗032
which was originally isolated from an Uyghur individual (54).
In other cases, initial submissions to IPD/IMGT-HLA could
be erroneous. This might especially be true for the alleles that
have never been independently confirmed. For example, all
heterozygous positions defining MICA∗005 or MICA∗013 also
occur in one of the two most common alleles MICA∗008 and
MICA∗002. If those positions were not correctly phased during
Sanger sequence analysis, MICA∗005 and MICA∗013 could have
been erroneously reported. However, the sequencing of cloned
PCR fragments should have prevented such errors (1, 55). Other
not observed alleles, like MICA∗081, MICB∗011, MICB∗016, or
MICB∗022, differ frommore common alleles in only one position
(56, 57).While this may reflect sequencing errors, it is more likely
that the more recent submissions represent very low frequency
observations as we discover on a daily basis. However, for the
individual allele this may only be resolved by resequencing the
original DNA which is often no longer available.

In conclusion, our workflow demonstrates that upfront
MICA/B genotyping for potential stem cell donors can be
performed with only minor increases in expenses and workload.

So far, MICA/B informed donor selection has not yet found
widespread application in clinical practice. Clearly, additional
confirmatory studies would be worthwhile. However, the
availability of genotyping information remains a major hurdle
for the translation of new markers into clinical practice. With the
MICA/B genotyping of millions of donors we provide that data
to facilitateMICA/B informed donor selection.
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