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New antibiotic combinations are needed to improve the treatment of tuberculosis. Larkins-Ford and col-
leagues share a framework that combines in vitro pairwise drug response data andmachine learning to ratio-
nally prioritize combinations for clinical development.1
Tuberculosis has been a global health

emergency for the past 25 years, with

more than 10 million new infections a

year.2 The current standard treatment is

a combination of four antibiotics that pa-

tients receive for up to 9 months. Despite

this prolonged multi-drug therapy, anti-

biotic resistance develops in around

10% of cases (over a million people a

year), so superior antibiotic combinations

are sorely needed to increase the efficacy

and shorten treatment time for patients.

The development of 30+ new antibi-

otics for tuberculosis is a mixed blessing:

the space of possiblemulti-drug regimens

is too vast to test in human studies, or

even in mice.3 Therefore, strategies are

needed to prioritize drug combinations

for in vivo and clinical development.

Larkins-Ford used pairwise drug res-

ponse data inmultiple in vitro growth envi-

ronments, coupled with existing results of

novel regimens tested in mice or humans,

to train machine learning models to pre-

dict in vivo efficacy from in vitro properties

of drug pairs (Figure 1).1 This publication

is a continuation of a previous study

where Larkins-Ford and colleagues

tested antibiotic combinations across

different growth environments.4 They

discovered that while no drug pair was

the best for all environments, effective

regimens contain drugs whose collective

activity spans diverse environments,

particularly dormant growth conditions

where tuberculosis is hardest to kill.

Here, this new publication expands the

in vitro response data to 12 antibiotics,

testing 60 drug pairs across 7 different

growth environments. Again, growth con-
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ditions that induce drug-refractory states

(lipid-rich and non-replicating/dormant

states) were among the best indicators

of in vivo and clinical potency.

The authors trained their machine

learning algorithm to predict the in vivo ef-

ficacy of combinations of 3–5 drugs,

which had been previously tested in

�40 mouse experiments and �10 phase

2 human trials. The algorithm used a com-

mon technique, random forest, to classify

each candidate drug combination as be-

ing better or worse than the standard of

care. Consistent with existing mouse

and human trials, the results suggest

that finding superior combinations is not

searching for a ‘‘needle in a haystack’’,

but rather, many combinations of novel

agents may be able to improve efficacy.

Given many candidate combinations,

future pre-clinical development could pri-

oritize the top performing ‘‘hits’’, such as

the top 10% of combinations. There is

likely to be substantial redundancy

among top candidates, for example,

many regimens could contain the same

drug pair that is synergistic against

dormant tuberculosis. Therefore, the

search space of possible combinations

should be more manageable than raw

numbers suggest. As a result, the system

successfully reduces thousands of com-

bination choices to tens—an amount

that can be more practically evaluated.

Unsurprisingly, past trials have found

that not all combinations with promise in

mouse models prove effective in humans.

To address these discrepancies, Larkins-

Ford and colleagues trained separate

random forest models for mouse and
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interpretable design principles, which for

some environments emphasized po-

tency, and in other environments, drug-

drug interactions were important. Several

principles were shared between the

mouse and human trainedmodels, partic-

ularly, which in vitro growth environments

were best predictive of in vivo outcomes.

However, there are substantial differ-

ences in predicted success in mice or hu-

mans. Ultimately, the ability to predict the

results of mouse experiments is chiefly a

proof of concept for the most important

task of predicting efficacy in humans. On

the basis of these results, we are opti-

mistic that this task should be increasingly

possible as training data from human tri-

als grows.

This study further advances a concep-

tion of high-order combination regimens

as a set of drug pairs with unique charac-

teristics. Studies in a variety of bacteria

and cancer have consistently shown that

dose responses of high-order drug com-

binations can be predicted from their pair-

wise drug interactions, showing again

that both potency and drug interactions

are important when designing antibiotic

combinations.5–7 In the present article,

promising drug combinations commonly

included potent drug pairs, but one pair

alone was not responsible for predicting

the overall effect of a combination. Each

pair within a regimen seemed to add a

unique benefit to a combination like build-

ing blocks, an idea represented in

Figure 1. Different pairs were potent in

different growth environments, and strong

combinations diversified their pairwise
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Figure 1. Combination therapy design strategy uses in vitro drug pair response with ma-

chine learning trained on mouse and human data
Top: pairwise drug combinations (AB, CD, EF) have varying properties, such as potencies and drug in-
teractions, across different growth conditions in vitro, which can represent diverse physiological envi-
ronments. Promising combinations have drug pairs that are active across multiple growth states. Bottom:
combination therapy data from mice and humans were used to train two separate models to predict
whether candidate combinations were likely to be better than a standard of care regimen, based from the
in vitro drug responses.
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potencies across multiple growth envi-

ronments to maximize bactericidal activ-

ity. Speculatively, it may be ideal to have

at least two highly active agents for every

physiologically relevant environment, in

order to thwart the evolution of drug resis-

tance in all circumstances.

The studies by Larkins-Ford and col-

leagues indicate that training machine

learning on matched in vitro and in vivo

experiments can help to bridge this diffi-

cult step in the development of new drug
2 Cell Reports Medicine 3, 100745, Septembe
combinations. The framework could in

principle be applied to different diseases

where drug combinations are used,

including cancer and other pathogens.8,9

The primary caveat of this approach is

that existing combination response data

are required to train an accurate model,

and in many diseases a limited number

of drug combinations have been tested

in human trials. Overall, this study ex-

plores a new system pairing in vitro drug

responses with in vivo-trained machine
r 20, 2022
learning to select drug regimens with the

best likelihood of clinical success.
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