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Abstract

In this study, we aimed at exploring the feasibility of functional near-infrared spectroscopy

(fNIRS) for studying the observation and/or motor imagination of various postural tasks.

Thirteen healthy adult subjects followed five trials of static and dynamic standing balance

tasks, throughout three different experimental setups of action observation (AO), a combi-

nation of action observation and motor imagery (AO+MI), and motor imagery (MI). During

static and dynamic standing tasks, both the AO+MI and MI experiments revealed that many

channels in prefrontal or motor regions are significantly activated while the AO experiment

showed almost no significant increase in activations in most of the channels. The contrast

between static and dynamic standing tasks showed that with more demanding balance

tasks, relative higher activation patterns were observed, particularly during AO and in AO

+MI experiments in the frontopolar area. Moreover, the AO+MI experiment revealed a signif-

icant difference in premotor and supplementary motor cortices that are related to balance

control. Furthermore, it has been observed that the AO+MI experiment induced relatively

higher activation patterns in comparison to AO or MI alone. Remarkably, the results of this

work match its counterpart from previous functional magnetic resonance imaging studies.

Therefore, they may pave the way for using the fNIRS as a diagnostic tool for evaluating the

performance of the non-physical balance training during the rehabilitation period of tempo-

rally immobilized patients.

Introduction

Physical training on balance tasks has shown to be an effective approach for young and elderly

subjects to enhance their postural control and decrease the falling risks [1, 2]. However,

patients suffering from immobilization due to some injuries or diseases are not able to perform

this kind of training. The rate of falling, loss of mobility, and mortality risk dramatically

increase for people with long-term immobilization [3]. Thus, several studies have suggested an

alternative, non-physical balance training to reduce postural control loss after the immobility

period, such as action observation (AO) or motor imagery (MI) [4, 5]. Training by AO has
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shown to be an effective method for enhancing the performance of standing, sitting, and walk-

ing activities in elderly participants and chronic stroke patients [6–8]. Also, MI training was

demonstrated to enhance balance and gait abilities within older adults and post-stroke patients

[9–11]. Moreover, a combination of AO and MI (AO+MI) training of balance tasks has been

shown to enhance postural control on highly variable and unpredictable balance movements

with healthy participants that followed an actor performing balance task [12]. The enhance-

ment of physical task performance after the AO experiment is perhaps due to the overlap

between the activated brain regions during the actual motor execution and the AO. This also

has been observed during actual motor execution and MI [13, 14]. Moreover, an accepted

hypothesis states that the motor system is activated during multiple conditions that are related

to either self-intended actions or observed actions from another person [15]. Therefore, from

these studies, it is concluded that AO, MI, and AO+MI training tasks have a positive effect in

enhancing postural control.

Positron emission tomography (PET) was utilized to study brain activation during MI of

static balance task. This task induces activation in the dorsal premotor area bilaterally, left dor-

solateral prefrontal cortex, left inferior parietal lobule, precuneus bilaterally, and right poste-

rior cingulate cortex [16]. Taub et al., utilized functional magnetic resonance imaging (fMRI)

to locate the neural sites related to AO and MI during different postural control tasks [17].

They reported that the AO+MI experiment of dynamic standing balance task evokes activation

in the supplementary motor area (SMA), premotor cortex, primary motor cortex, basal ganglia

(putamen), and cerebellum. The study also showed that the more challenging balance task

such as mediolateral perturbation on an inclined surface evokes a higher activation in the

brain in comparison to normal standing. The authors concluded that AO+MI is the best

scheme for training on challenging balance tasks in comparison to the balance training tasks

by AO or MI only. More recently, another fMRI study reported that elderly subjects have

higher brain activation compared to young participants, particularly in the demanding

dynamic balance task when following AO + MI training tasks [18]. Despite the evidence from

these findings that training by AO, MI, or AO+MI evoked different brain regions, the full

understanding and evaluation of the brain activation patterns during these non-physical bal-

ance control training tasks have not been fully explored using all available neuroimaging

modalities.

Among the neuroimaging modalities, fNIRS has the potential to facilitate the measure-

ments of task-related cortical responses since it has a lower cost and a higher temporal resolu-

tion in comparison to PET or fMRI [19]. Also, EEG is limited with spatial resolution because

of the volume conduction effect [20, 21]. Thus, many studies considered fNIRS to have a better

spatial resolution in comparison to EEG [19, 22, 23]. Furthermore, fNIRS is a portable modal-

ity that allows the study of neurocognitive processes in real environments without any restric-

tions on the subject’s posture and motion. Moreover, it can be integrated with other

neuroimaging modalities, such as EEG [24]. Due to these advantages of fNIRS over other neu-

roimaging modalities, several studies utilized fNIRS modality for not only studying the real

execution of motor tasks but also for studying motor imagery and action observation-based

tasks [25–27]. fNIRS measures the relative change in hemoglobin concentrations by the means

of backscattered near-infrared light from the human brain tissues [28]. Conventionally, fNIRS

detects brain activities by utilizing two wavelengths to measure the variations in oxyhemoglo-

bin (HbO) and deoxy-hemoglobin (HbR) concentration [29, 30]. fNIRS has been used in

lower limb rehabilitation for investigating the brain activation patterns during standing and

sitting [26], walking [31, 32], running [33], precision stepping [34], and many other applica-

tions reviewed in Refs. [35–38].
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Previous fNIRS studies have shown significant activations in the prefrontal cortex during

the actual execution of a board balance task [39–42]. Other groups used fNIRS to illustrate the

role of SMA in postural balance control [43, 44]. Moreover, some other studies were carried

out and investigated hemodynamic responses measured by fNIRS during the actual execution

of balance tasks [37]. However, studying hemodynamic responses using fNIRS during the

non-physical balance training has not been yet investigated. More specifically, it is important

to have a cost-effective and easy-to-use neuroimaging modality, such as fNIRS, as a diagnostic

tool to evaluate the performance and the progress of the non-physical balance training, espe-

cially during the rehabilitation period of temporally immobilized patients.

In this work, we aim to investigate the ability of fNIRS to measure the hemodynamic

response evoked by AO, AO+MI, and MI of different demanding balance tasks, namely static

and dynamic standing, in healthy participants. We expect an activation in the motor areas

from the concept of the motor neuron system that states that the motor areas are activated dur-

ing the observation of a task performed by another person [45]. Furthermore, the prefrontal

cortex was previously shown to be active when observing other’s person tasks [46] as well as its

important role in motor imagery tasks, and more specifically in the tasks related to gait and

lower limb movements [47, 48]. Thus, the motor and prefrontal areas are studied in this work.

We hypothesized that: (i) a higher level of activations with the increase of balance task com-

plexity in comparison to a lower demanding balance task; and (ii) a higher level of activations

during AO+MI experiment than during AO or MI experiments during dynamic balance task.

Methods

Experimental setup

In this study, we used a continuous wave fNIRS system (tandem NIRSPORT 2 fNIRS system,

from NIRx Medical Technologies, LLC) that operate on two wavelengths, 760, and 850 nm.

Previous fNIRS studies showed significant hemodynamic activation in prefrontal and motor

cortices during the actual execution of balance tasks [39–44]. Hence, sixteen sources and fif-

teen detectors were placed in the prefrontal cortex as well as in the right and left hemispheres

of the motor cortex. As a result, the data from 40 different channels were recorded. The

source-detector distance in the experimental setup ranges between 2.9 cm to 3.1 cm with a

nominal value of 3.0 cm in most cases. Fig 1 illustrates the source-detector configuration with

the channel numbers used for recording the brain activations data. fOLD toolbox was used to

find out the position of fNIRS optodes based on the 10–20 EEG coordinates system according

to a set of brain regions of interest [49]. Seventeen healthy subjects with no history of any neu-

rological orthopedic or visual disorders were participated in this study (mean age of 32±11, fif-

teen male subjects, and two female subjects). The acquired data from four subjects showed

very low data quality, due to dense dark hair with a variation coefficient higher than 7.5% for

most of the channels. Therefore, their data were excluded from the analysis, leaving the data of

thirteen subjects for the analysis. Before the experiments, the participants were briefed on the

experiments and asked to sign a written informed consent. All the experiments were con-

ducted in accordance with the Institutional Review Board for research ethics at Imam Abdul-

rahman Bin Faisal University.

Experimental paradigm, stimuli, and procedure

Prior to the start of the study, each participant was asked to be familiarized with the tasks

before the start of data recordings. In this familiarization period, the subjects were asked to

watch two videos of balance tasks: static standing and dynamic standing. The static standing

balance task video showed a person standing normally with an upright posture and without
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any movements. The dynamic standing balance task video presented a person balancing a

mediolateral perturbation while standing on a balance board.

Next, AO, AO+MI, and MI conditions were performed in order, with three minutes break

period between each experiment and the other. Fig 2 illustrates the experimental paradigm of

the three experiments. The experiments started and ended with a resting period of 15s where

the subjects were sitting on a chair during the whole period of the experiments, at a distance of

1.25m from a screen measuring 1.80m×1.20m. The paradigm included static standing and

dynamic standing balance tasks repeated five times for each condition. The length of each task

was 10s followed by 10s of resting period. The trials were altered alternatively between static

standing and dynamic standing balance tasks.

Fig 1. Optodes placement with channel numbers configuration placed on prefrontal and motor regions. Sources are indicated by red, detectors are

indicated by yellow, and channels are indicated by blue. Cz point is indicated by green as a reference point.

https://doi.org/10.1371/journal.pone.0265898.g001
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During the AO experiment, the participants were instructed to simply watch the videos of

the static and dynamic balance tasks when they presented on the screen and to relax if a black

screen appeared. Another session was performed for AO+MI where the subjects were

instructed to watch the two videos and imagine themselves as the ones who are performing the

static and dynamic balance tasks Moreover, participants were asked to relax when the black

screen is presented. Finally, for the MI experiment, the participants were instructed to close

their eyes, and follow the instructions from the played audio to imagine themselves doing

either the static standing task, dynamic standing task, or to relax. The experimental paradigm

procedures were coded and presented by the PsychoPy software platform [50].

Data analysis

The fNIRS data analysis was computed by NIRS Brain AnalyzIR Toolbox [51] working on

MATLAB 2018 (MathWorks, Natick, MA, USA). In the beginning, the optical density signals

were calculated from time series data and then the changes in HbO and HbR were calculated

using modified Beer-Lambert Law [52] with a differential pathlength factor of 6 for both wave-

lengths. The subject-level analysis was based on a statistical autoregressively whitened

Fig 2. Experimental paradigm of the three (AO, AO+MI, and MI) experiments. Subjects watched two videos: static standing balance task (normal

standing) and dynamic standing balance task (balancing a mediolateral perturbation), during two experiments: (AO) and while imagining themselves as

the person performing the tasks (AO+MI). During the third experiment, participants verbally instructed, through previously recorded voice

instructions, to close their eyes and imagine themselves performing static and dynamic balance tasks. Each subject repeated each task five times with a

resting period of 10s between the two balance tasks.

https://doi.org/10.1371/journal.pone.0265898.g002
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weighted least-squares regression model [53]. In the last few years, this model has been

increasingly used for the analysis of fNIRS data in several studies such as in Refs. [54–56]. The

algorithm of this model showed better sensitivity-specificity characteristics in comparison to

other analysis approaches of the general linear model, such as statistical parametric mapping

and the ordinary least-squares model [57]. This model was designed to address the serially cor-

related noise errors coming with the physiological noise of fNIRS raw data by considering

them as statistical outliers. This model iteratively reweights all error terms to minimize the

effect of outliers using both pre-whitening and robust regression, thus making the algorithm

robust to physiological noise and motion artifacts as well. Therefore, using any pre-processing

technique (such as principal component analysis or band-pass filtering) was not explicitly

required to remove these components [58–60]. Furthermore, in order to remove the strong

noise component presented at very low frequencies, a high pass filter based on a discrete cosine

transform, with a 120s cut-off period, was utilized in this study [61, 62]. The conical hemody-

namic response function was applied as a basis function to model the hemodynamic response.

To generalize the results for all the subjects, the resulting data from the subject-level analysis

were submitted to a second, group-level analysis. The analysis of the group level was computed

through the linear mixed-effects model. To confirm the absence of physiological noise, HbO

and HbR chromophores are visually checked whether they are going in the same direction or

not. For each channel, t-tests with different types of contrasts were computed to evaluate the

hypotheses of this study. In order to avert Type I error presented in multiple comparisons,

false discovery rate (FDR) correction was applied [63, 64]. The threshold level of significance

was set to p< 0.05 (FDR corrected). The signal processing steps performed in this study were

checked to be aligned with the recommendations for using fNIRS in balance and gait research

proposed in Ref. [65].

To calculate the T-score for each channel independently, the contrast tests were performed

for HbO data. We concentrated in this study on HbO data rather than HbR data. That is

because the HbR signals have lower amplitude levels and accordingly a lower signal-to-noise

ratio in comparison to HbO signals. In this study, the first contrast was computed to evaluate

the significantly activated channels during AO, AO+MI, and MI experiments against the base-

line for both static and standing balance tasks (contrast: task > baseline). A contrast between

static and dynamic standing tasks was conducted to evaluate the effect of the complexity of the

balance task on the level of HbO (contrast: static standing < dynamic standing). Finally, a

comparison between AO+MI and the other two experiments (contrasts: AO

experiment < AO+MI experiment and AO+MI experiment > MI experiment) was

conducted.

Results

Hemodynamic responses for static and dynamic standing balance tasks

T-map of the changes in the HbO responses shown in Fig 3, depicts the activation patterns

related to each experimental task in comparison to the baseline. For the results of the AO

experiment shown in Fig 3(A), no significant increase in channels is observed in the static

standing condition. On the other hand, the dynamic standing condition revealed a significant

relative increase in activation in the right motor area. As shown in Fig 3(B), more significantly

activated channels are observed during the AO+MI experiment for both static and dynamic

balance tasks. The static condition showed significant activation in the prefrontal area, while

the dynamic condition induced activation in the prefrontal area, and both right and left motor

regions. Fig 3(C) demonstrates the MI experiment activation of the static standing task showed

significant activation in the prefrontal region and concentrated more with a relatively higher

PLOS ONE Evaluating balance tasks using fNIRS

PLOS ONE | https://doi.org/10.1371/journal.pone.0265898 March 23, 2022 6 / 16

https://doi.org/10.1371/journal.pone.0265898


Fig 3. T-map of oxy-hemodynamic response (HbO) corresponding to (A) action observation experiment, (B) a

combination of motor imagery and action observation experiment, and (C) motor imagery experiment during

static standing balance task (left) and dynamic standing balance task (right). These maps are generated by

contrasting each task against the baseline. Significantly activated channels at p< 0.05 (FDR corrected) are indicated by

thick and solid lines. The red colour indicates stronger task activity against the baseline. The dashed line shows the

channels that were not statistically significant. This map was generated by using NIRS Brain AnalyzIR Toolbox [51].

Fig 2 illustrates the referencing for the brain regions with 10–20 EEG system positions.

https://doi.org/10.1371/journal.pone.0265898.g003
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number of significant channels in the motor area. For the dynamic standing task, significant

channels are observed in the prefrontal area. Furthermore, HbR data for AO, AO+MI, and MI

during static and dynamic standing tasks against the baseline is shown in Fig 4. Comparing

the results presented in Fig 4 and the results shown in Fig 3, a confirmation for the absence of

any physiological noise contamination is validated through visually observing the opposite

trend of the HbO compared to HbR data for most of the channels. For instance, negatively cor-

related channels that are observed visually are channel 13, channel 19, and channel 1 in the

static condition of AO, AO+MI, and MI experiments, respectively. On the other hand, other

channels that are not negatively correlated were observed as well, for instance, channel 8 dur-

ing the static condition of the AO+MI experiment. Nevertheless, all the observed positively

correlated channels are not statically significant. Thus, the overall results and the conclusion

are not affected due to this observation.

Comparison between static and dynamic standing balance tasks

A dynamic standing balance task was contrasted against the static standing balance task to

examine the effect of balance task complexity on the level of HbO. For the AO experiment, this

contrast showed significant activities in the prefrontal and the motor areas as shown in Fig 5

(A). During the AO+MI experiment, more extended cortical areas involving most of the chan-

nels in prefrontal and motor cortices revealed a relatively higher activity for this comparison as

shown in Fig 5(B). The statistically significant channels are located in the prefrontal cortex,

with more concentration in the right region, and bilaterally in the motor cortex. Similarly, dur-

ing the MI experiment, a relatively higher activation for the dynamic standing in comparison

to static standing is observed in the prefrontal region only.

Comparisons of AO+MI experiment against AO and MI experiments

The contrasts between the AO+MI experiment and the other two experiments were computed

to show the effect of combining AO and MI on the changes of HbO level. Furthermore, this

contrast was conducted to help in recommending the best experiment that can give a better

response and accordingly can be used during the rehabilitation period of temporally immobi-

lized patients. Fig 6(A) shows a comparison between the HbO changes in AO+MI and AO

experiments (contrast: AO+MI > AO) during the dynamic standing balance task. This con-

trast showed relatively higher significant activities for AO+MI in many channels in the pre-

frontal and motor regions. To validate the preference of AO+MI over other experiments, the

AO+MI experiment was also contrasted against the MI experiment (contrast: AO+MI > MI)

during the dynamic standing balance task. As illustrated in Fig 6(B), the AO+MI experiment

induced relatively higher activities in most of the channels. Only three statistically significant

channels are observed in the right prefrontal cortex and left motor cortex.

Discussion

In this study, we examined the feasibility of using fNIRS to measure the hemodynamic

responses in prefrontal and motor cortices for three different types of subject engagements

(AO, AO+MI, and MI) during different postural tasks. In each of the three designed experi-

ments, the subjects were asked to follow both static and dynamic standing balance tasks. As

shown in Fig 3(A), there is no significant increase in the activations of HbO levels during the

AO experiment with respect to the baseline. Interestingly, the results show deactivation pat-

terns in HbO levels with respect to the baseline at some channels in both static and dynamic

standing tasks. This observation about the inverse oxygenation response was found at both

individual and group levels data in which the HbO response relative decrease and HbR
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Fig 4. T-map of deoxy-hemodynamic response (HbR) corresponding to (A) action observation experiment, (B) a

combination of motor imagery and action observation experiment, and (C) motor imagery experiment during

static standing balance task (left) and dynamic standing balance task (right). These maps are generated by

contrasting each task against the baseline. Significantly activated channels at p< 0.05 (FDR corrected) are indicated by

thick and solid lines. The red colour indicates stronger task activity against the baseline. The dashed line shows the

channels that were not statistically significant. This map was generated by using NIRS Brain AnalyzIR Toolbox [51].

Fig 2 illustrates the referencing for the brain regions with 10–20 EEG system positions.

https://doi.org/10.1371/journal.pone.0265898.g004
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Fig 5. T-map of oxy-hemodynamic response (HbO) corresponding to the contrast between the dynamic standing and static standing balance

tasks for (A) action observation experiment, and (B) a combination of motor imagery and action observation experiment. Significantly activated

channels at p< 0.05 (FDR corrected) are indicated by thick, solid lines, red colour indicates stronger activity from the dynamic standing task than the

static standing task. The dashed line shows the channels that were not statistically significant. This map was generated by using NIRS Brain AnalyzIR

Toolbox [51]. Fig 2 illustrates the referencing for the brain regions with 10–20 EEG system positions.

https://doi.org/10.1371/journal.pone.0265898.g005

Fig 6. T-map of oxy-hemodynamic response (HbO) corresponding to the contrast between (A) AO + MI and AO experiments, (B) AO + MI and

MI experiments of the dynamic standing task. Significantly activated channels at p< 0.05 (FDR corrected) are indicated by thick, solid lines, red

colour indicates stronger activity from AO + MI experiment than the AO experiment in (A) and MI experiment in (B). The dashed line shows the

channels that were not statistically significant. This map was generated by using NIRS Brain AnalyzIR Toolbox [51]. Fig 2 illustrates the referencing for

the brain regions with 10–20 EEG system positions.

https://doi.org/10.1371/journal.pone.0265898.g006
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response relative increase. Indeed, this phenomenon of inverse oxygenation was found in

some of the previous fNIRS studies for MI experiments [66, 67]. Inadvertent participant move-

ment during resting periods was shown as an explanation for this phenomenon [68]. This rea-

son might be also reflected in AO experiment data. Another possible reason is the usage of the

resting period as a control condition, in which participants might evoke another type of acti-

vates, like planning, instead of just resting. Nevertheless, further investigations regarding this

point are needed to find out if the AO tasks always show deactivation patterns.

For the AO+MI and MI experiments, there are many statistically significant activated chan-

nels in prefrontal or motor regions of both static and dynamic standing balance tasks as pre-

sented in Fig 3(B) and 3(C). More specifically, channels 6 and 14 are relatively activated in the

frontopolar area for static and dynamic standing tasks during the AO+MI experiment, respec-

tively. Moreover, the dynamic standing balance task of AO+MI activates the premotor and

supplementary motor cortex (channel 24). These areas are also activated during the static

standing balance task of the MI experiment (channel 31). However, no activations are indi-

cated in the frontopolar area during the MI experiment, which perhaps is due to the absence of

visual input. The premotor and supplementary motor areas are known to be important for the

actual execution of postural control [17, 18]. Hence, the fNIRS systems might be a potential

neuroimaging modality to track the non-physical balance training from prefrontal and motor

cortices. Specifically, in premotor and supplementary motor cortices during AO+MI and MI

experiments. As fNIRS systems are quite compact and offer reliable information in this regard,

it has a huge potential over the fMRI.

For most of the channels shown in Fig 5, we found that the increase of balance task com-

plexity results in a greater significant hemodynamic response (HbO) level in comparison to

less demanding balance tasks during AO and AO+MI experiments This finding agrees with a

recent study that showed an increase in prefrontal cortical activity with progressively more dif-

ficult actual balance behaviors [69]. The statistically significant differences between static and

dynamic balance tasks are in the frontopolar area for both AO (channel 14) and AO+MI

(channel 11 to channel 14 and channel 16) experiments. Moreover, the AO+MI experiment

showed a significant difference between the two tasks in areas that are thought to be related to

balance control, which are premotor and supplementary motor cortices (channel 31). Previous

fMRI studies showed no significant activation between dynamic and static standing balance

tasks during the MI experiment [17, 18]. Interestingly, this study shows that the static standing

task induces higher activation patterns in comparison to the dynamic standing task on the

motor region during the MI experiment. This finding was unexpected, which might indicate

that the participants used an alternative strategy instead of the exact simulation of static or

dynamic balance tasks during the imagination. Furthermore, this also may result from the

motor imagery abilities differences between one participant and another.

The results of the contrast between the AO+MI experiment and the other two experiments

show that the AO+MI experiment evoked higher HbO responses in comparison to AO or MI

alone (Fig 6). Thus, suggesting the AO+MI experiment as the best experiment that can be used

during the rehabilitation period of temporally immobilized patients. A possible reason for this

finding is that combining AO with MI might enable the participants to have a much better

kinaesthetic experience and physiological sensations of the followed balance tasks. Remark-

ably, the results of this study are in line with those findings from an earlier fMRI study [17].

Furthermore, the results of contrasting static and dynamic standing balance tasks tie well with

a previous fMRI study [18]. Nevertheless, the fNIRS technique has many advantages over the

fMRI including robustness to noise, and portability that allows the measurements to be carried

out in a much more realistic environment without any restrictions on the subject’s
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movements. Furthermore, it has a much higher temporal resolution, lower cost, and is capable

of integrating with other neuroimaging modalities.

In this study, due to the lengthy tasks that the participants had to perform, active balancing

experiments were not conducted. The participants were rather exhausted after performing the

steps of the three different types of experiments. In the future, comparing the results of this

study and the active balancing condition could be conducted to show the similarity of the

obtained signals with the AO+MI condition only, to reduce the overall experimental paradigm

time. Another possible limitation of this study is the use of the resting period as a control con-

dition. A resting state might evoke brain activation related to the subject thought, for instance,

planning, thinking of others, or sleepiness. Therefore, comparing these activities with the AO

condition showed a relative decrease in brain activation. Future studies could be conducted

with another type of criterion for the baseline such as showing someone sitting instead of rest-

ing. Moreover, randomization of experiments order was not considered in the study to be con-

sistent with the pervious fMRI study [17], to enable the comparison between fNIRS and fMRI

modalities. Finally, the current work could be extended to study the influence of AO, AO+MI,

and MI in enhancing the postural control of mobilized participants with female and male

participants.

Conclusion

In conclusion, we have examined in this study the prospect of fNIRS to be utilized for studying

static and dynamic standing balance tasks through AO, AO+MI, and MI experiments. In the

rehabilitation period of temporally immobilized patients, it is quite essential to assess the per-

formance and the progress of the non-physical balance training through an easy-to-use and

cost-effective neuroimaging modality such as fNIRS. We found that many channels in prefron-

tal or motor regions are significantly activated during the AO+MI experiment of static and

dynamic standing balance tasks. These activations are also persistent in the MI experiment.

Furthermore, the AO experiment showed almost no significant increase in activations in most

of the channels for both balance tasks. Contrasting between static and dynamic balance tasks

revealed higher activation patterns during the more demanding task, specifically during AO

and AO+MI experiments. Moreover, we showed that AO+MI activated greater HbO responses

in comparison to having MI or AO alone. The results of this study may pave the way for fNIRS

to become an alternative modality over fMRI in this regard. Furthermore, these findings sug-

gest that fNIRS can perhaps be utilized as a diagnostic tool for evaluating the performance of

the non-physical balance training during the rehabilitation period of temporally immobilized

patients. Further experiments could be carried out on temporally immobilized patients to ver-

ify the potential feasibility of utilizing fNIRS as a diagnostic tool. This was a preliminary study

that aimed at showing the feasibility of using fNIRS in measuring the hemodynamic response

evoked by AO, AO+MI, and MI of different demanding balance tasks. In the future, it would

be useful to include non-healthy subjects to shed more light on the feasibility of using fNIRS in

this regard.
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