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Abstract

The biotrophic protist Plasmodiophora brassicae causes serious damage to Brassicaceae

crops grown worldwide. However, the molecular mechanism of the Brassica rapa response

remains has not been determined. Long noncoding RNA and mRNA expression profiles in

response to Plasmodiophora brassicae infection were investigated using RNA-seq on the

Chinese cabbage inbred line C22 infected with P. brassicae. Approximately 5,193 mRNAs

were significantly differentially expressed, among which 1,345 were upregulated and 3,848

were downregulated. The GO enrichment analysis shows that most of these mRNAs are

related to the defense response. Meanwhile, 114 significantly differentially expressed

lncRNAs were identified, including 31 upregulated and 83 downregulated. Furthermore, a

total of 2,344 interaction relationships were detected between 1,725 mRNAs and 103

lncRNAs with a correlation coefficient greater than 0.8. We also found 15 P. brassicaere-

lated mRNAs and 16 lncRNA interactions within the correlation network. The functional

annotation showed that 15 mRNAs belong to defense response proteins (66.67%), protein

phosphorylation (13.33%), root hair cell differentiation (13.33%) and regulation of salicylic

acid biosynthetic process (6.67%). KEGG annotation showed that the vast majority of these

genes are involved in the biosynthesis of secondary metabolism pathways and plant-patho-

gen interactions. These results provide a new perspective on lncRNA-mRNA network func-

tion and help to elucidate the molecular mechanism of P. brassicae infection.

Introduction

Clubroot, a soil-borne disease, has caused considerable damage to Brassicaceae crops [1, 2].

This disease is caused by the protist Plasmodiophora brassicae (P. brassicae), which can survive

for up to 20 years in soil [3]. The two stages of P. brassicae, root-hair infection and cortical
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infection, play an important role in the infection process and make it difficult to control [4].

The Pakchoi (Brassica campestris ssp. chinensis Makino), also called non-heading Chinese cab-

bage, is one of the most important Brassica vegetable crops in China and other eastern Asian

countries. Most Pakchoi cultivars are highly susceptible to the P. brassicae.
To date, considerable progress has been made in cultivating clubroot resistant (CR) crops.

Genetic analysis and QTL mapping have identified some CR genes or loci in Brassica crops:

CRa [5], Crr1a and Crr1b [6], CRb [7], Crr2 [8], Crr3 [9, 10], Crr4 [11], CRc and CRk [12],

Rcr1 [13, 14], PbBa3.1 and PbBa3.3 [15], QS_B1.1 [16], and Pb-Br8 [17]. Three loci for club-

root resistance, Rcr4, Rcr8, Rcr9, have been revealed by Genotyping-by-sequencing, but they

cannot be distinguished from the abovementioned loci [18]. Among them, CRa, Crr1a and

CRb have been cloned. CRa and Crr1a contain Toll-interleukin receptor (TIR)—nucleotide-

binding (NB)—leucine -rich repeats (LRRs) and CRb contains NB-LRRs, which are known to

be responsible for race-specific resistance in higher plants [19, 20]. However, these genes or

loci have been demonstrated to be responsible for race-dependent resistance [21], and the

molecular mechanism of the Brassica rapa responsehas not been determined.

To date, a number of transcriptome sequencing projects have been employed to explore the

molecular basis of the interaction between Brassica crops and P. brassicae. Twenty protein

spots that were observed with changes in expression played a role in lignin synthesis, cytokinin

synthesis, calcium steady-state, glycolysis, and oxygen activity in Brassica napus [22]. Then,

the signaling and metabolic activity of jasmonate acid (JA) and ethylene (ET) were found to be

upregulated significantly in resistant populations while genes involved in salicylic acid meta-

bolic (SA) and signaling pathways were generally not elevated at 15 days post inoculation (dpi)

[13]. Moreover, genes associated with pathogen-associated molecular patterns (PAMPs) and

effector recognition, calcium ion influx, hormone signaling, pathogenesis-related (PR) genes,

transcription factors, and cell wall modification showed different expression patterns between

CR and clubroot-susceptible (CS) lines in Brassica rapa [23]. PR genes are involved in SA sig-

naling which is important to clubroot resistance at the early stage after inoculation. In addi-

tion, it was proven that response changes in transcript levels under P. brassicae infection were

primarily activated at the primary stage between Broccoli (Brassica oleracea var. italica) and

wild Cabbage (Brassica macrocarpa Guss.) [24]. By comparing the transcriptome landscape

between CS and CR Chinese cabbage lines, Jia et al. (2017) confirmed that the differentially

expressed genes related to disease-resistance in CR lines enriched in calcium ion influx, gluco-

sinolate biosynthesis, cell wall thickening, SA homeostasis, chitin metabolism and PR pathway.

The upregulated genes in CS lines were mostly related to cell cycle control, cell division and

energy production and conversion [2]. In addition, the Indole acetic acid (IAA) and cytoki-

nin-related genes were found to affect the root swelling in clubroot development [2, 25].

LncRNAs are a set of RNA transcripts (>200 nt in length) which have no protein-coding

ability. During the past several decades, a small number of long noncoding RNAs (lncRNAs)

have been identified and shown to mediate various biological processes in plants [26], such as

biotic and abiotic stress responses [27, 28]. In plant-pathogen interactions, some lncRNAs

have been identified and shown to respond to (1) stripe rust pathogen stress in wheat [24]; (2)

Fusarium oxysporum infection [29] and Pseudomonas syringe pv tomato DC3000 (ELF18-in-

duced lncRNA) [30] in Arabidopsis thaliana; (3) Pectobacterium carotovorum in potato [31];

(4) Phytophthora infestans (lncRNA 16397) [32], tomato yellow leaf curl virus [33] and Phy-
tophthora infestans in tomato (lncRNA23468) [34]; and (5) Sclerotinia sclerotiorum in Brassica
napus [35]. The B. rapa and B. napus genome has a large number of lncRNAs [36, 37]. In addi-

tion, lncRNAs are demonstrated with the ability to be expressed broadly across many develop-

mental times and in different tissue types [37]. However, only a few lncRNAs coexpressed with

genes of temperature expression patterns were reported in Brassica rapa [36].
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In this study, we first conducted a comprehensive analysis of intergrating long noncoding

RNAs and mRNA expression profiles of response to Plasmodiophora brassicae infection in

Brassica rapa L. and identified a great number of significant differentially expressed genes and

some lncRNAs. The regulatory network of mRNA and lncRNA helps to elucide the Brassica
rapa responses during P. brassicae infection and breeding of resistant CR cultivars.

Materials and methods

Ethics statement

This study was carried out in a phytotron. No specific permissions were required. The study

did not involve any endangered or protected species.

Sample collection

Pakchoi inbred line CS22 is a cold tolerant type and susceptible to the 7th physiology race of

Plasmodiophora Brassicae by using the inoculation method of Williams [38]. The pathogen

was propagated on CS22 named CS22A, and the clubs in infected roots were stored at -20˚C

until required. All plants were sown in a growth chamber at 25/20˚C (day/night) with a photo-

period of 14h containing. The CS22A plants were inoculated in a pot containing 5×106 spores

per gram of dry soil. The root tissue samples were obtained by 6 weeks post inoculation. No

infected root samples of CS22 were the control. For each treatment, the samples were immedi-

ately frozen in liquid nitrogen and then stored at −80˚C until use. All plant materials examined

in this study were obtained from Shanghai Academy of Agricultural Sciences.

RNA extraction, library construction, and sequencing

Total RNA was extracted from each root tissue sample using the mirVana miRNA Isolation

Kit (Ambion) following the manufacturer’s protocol. RNA integrity was evaluated using the

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The samples with

RNA Integrity Number (RIN)� 7 were subjected to the subsequent analysis. The libraries

were constructed using TruSeq Stranded Total RNA with Ribo-Zero Gold according to the

manufacturer’s instructions. The main steps of library construction and sequencing are as fol-

lows: (1) removing rRNA from total RNA, (2) breaking RNA into fragments, (3) RNA frag-

ments are reverse-transcribed into cDNA, (4) adapter sequences are added to cDNA, and

suitable fragment sizes are selected for the next step, and (5) PCR amplification. Then these

libraries were sequenced in the Illumina HiSeqTM 2500 sequencing platform and 150 bp

paired-end reads were generated.

Data filtering and transcriptome assembly

The RNA-seq data sets were analyzed as previously described [39]. High quality clean data

were kept for downstream analysis after we use Trimmomatic v0.32 with ‘LEADING:3 TRAIL-

ING:3 SLIDINGWINDOW:4:15 MINLEN:50’ to remove low-quality reads from the raw data,

such as the reads containing adapters, the reads containing over 10% of poly (N), and low-

quality reads (> 50% of the bases having Phred quality scores<10). Basic information of clean

data was calculated, such as read number, base contents, Phred score (Q30) and GC content.

Brassica rapa reference genome and gene model annotation files, which were downloaded

from the Genome Database (http://brassicadb.org/). First, the index of the reference genome

was built with Hisat-build, and then paired-end clean reads were aligned to the reference

genome using Hisat with default parameters [40]. Second, the sam format result from hisat2

was translated to bam format by samtools [41], and then bam files from each library were
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assembled with Stringtie [42]. Stringtie was run with ‘-library-type fr-firststrand’, and other

parameters were set as default. Last, each library results from Stringtie were merged to a final

genome transcript feature file by cuffmerge [43].

Pipeline for LncRNA identify

To obtain putative lncRNAs, assembled novel transcripts were filtered following the steps

according to the assembly results. (1) First, cuffcompare was used to compare the assembly

transcript and reference transcript one by one [43], only transcripts annotated as “i”, “u”, “x”,

and “o” representing a transfrag falling entirely within a reference intron, unknown intergenic

transcript, exonic overlap with reference on the opposite strand, and generic exonic overlap

with a reference transcript, respectively, were retained. (2) Second, the transcripts with a length

of above 200 bp and with an exon number of more than 1 were kept for the next step. (3)

Finally, four different methods were used to identify the coding potential of new transcripts,

namely, Coding Potential Calculator (CPC) [44], Coding-Non-Coding Index (CNCI) [45],

PLEK [46] and Pfam [47]. The methods were used to assess the coding potential of the remain-

ing transcripts from step 2. Transcripts that were likely to contain a known protein-coding

domain removed. Only transcripts considered to be lncRNAs via four methods will be kept for

downstream analysis.

Identification of differentially expressed mRNA and lncRNA

Express [48] and bowtie2 [49] were used to calculate FPKM scores for the lncRNAs and coding

genes in each library. Differentially expressed lncRNAs and mRNAs between any two libraries

were identified by DESeq (release 3.2) [50]. P value < 0.05 and an absolute value of the fold

change� 2 were used as a threshold to evaluate the statistical significance of lncRNA and

mRNA expression differences.

Quantitative real-time PCR validation

To validate the credibility of the findings of RNA analysis, mRNAs and lncRNAs were ran-

domly selected for real-time PCR. Total RNA was collected from the root tissue samples of the

two groups using TruSeq Stranded Total RNA LT—(with Ribo-Zero Plant). The SuperScript

III First-Strand Synthesis System was used to reverse the transcription to cDNA. Quantitative

RT-PCR was conducted in a ViiA 7 Real-time PCR System (Applied Biosystems) using Pow-

erUp™ SYBR Green Master Mix (Applied Biosystems, Carlsbad, CA, USA). Tubulin beta-6

(TUB6) was used as an internal control to normalize the data [51]. The primers used in

qRT-PCR and cDNA synthesis were designed in the laboratory and synthesized by OEBiotech

(Shanghai OEBiotech. Co., Ltd, Shanghai, China) based on the sequences. Primers are listed in

S1 Table. The reaction conditions were as follows: incubation at 95˚C for 10 min, followed by

40 cycles of 95˚C for 10 s and 60˚C for 1 min. The relative expression levels were calculated

using the 2−ΔΔCt method and were normalized to TUB6, as an endogenous reference

transcript.

Functional enrichment of differentially expressed mRNA

The Gene Ontology (GO) database (http://www.geneontology.org) is a description database

that was usually applied to elucidate the genetic regulatory network of interest by forming hier-

archical categories according to the molecular function, biological process, and cellular com-

ponent. The Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/

kegg/) is the main public database about pathways. GO annotation and pathway analysis were
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used to study the effects of all significant differentially expressed mRNAs. The p value is calcu-

lated using hypergeometric test. R program packages were used to elucidate the GO and

KEGG for targets of significant differential enrichment. GO and KEGG terms with P

values< 0.05 were recognized as significant enrichment.

Target gene prediction

The function of lncRNAs is mainly realized by cis acting on target genes. The basic principle of

cis-acting target gene prediction holds that the function of lncRNA is related to the protein-

coding genes adjacent to its coordinates; therefore, the mRNA adjacent to lncRNA is selected

as its target gene. Target gene analysis method: Pearson correlation coefficients of lncRNA and

mRNA� 0.8 were required. LncRNA is determined as regulator if it is within 100 k upstream

or within 100 k downstream of mRNAs.

LncRNA-mRNA co-expression network construction

According to the differentially expressed lncRNA and mRNA results, we constructed a regula-

tory network to identify the relationships between lncRNA genes and mRNA genes. The Pear-

son correlation test was used to calculate the correlation between differential lncRNA and

mRNA expression data. Pearson’s correlation coefficients equal to or greater than 0.8 and a P

value less than 0.05 were considered to be lncRNA-mRNA pairs. Arranging from small to

large according to the p-value, we chose 600 top results to construct the regulatory network,

and the lncRNA-mRNA pairs associated with disease resistance were also used for the network

construction. Cytoscape software (Cytoscape Consortium, San Diego, CA, USA) was used to

present the lncRNA-mRNA regulatory network relationship.

Accession number

The RNA-seq datasets used in this study can be found in the NCBI Gene Expression Omnibus

under accession number: PRJNA528807.

Results

Overview of RNA sequencing

To elucidate lncRNA and mRNA expression patterns in response to Plasmodiophora brassicae
infection in Brassica rapa L., 6 libraries were constructed from control and clubroot tissues

(CS22A) (Fig 1) for three biological replicates and sequenced using the Illumina platform [52].

The raw data obtained from RNA-seq are available in the National Center for Biotechnology

Information (NCBI) Sequence Read Archive (SRA). A total of 296.14 million and 295.29 mil-

lion raw data reads were obtained in the control and clubroot libraries, respectively. The num-

ber of reads after quality filtering of the above two libraries were 289.57 million and 289.73

million respectively. Approximately 61.45% of the reads were mapped to the reference genome

(BRAD database http://brassicadb.org/) [53]. Q30 (reads with an average quality score> 30)

reads were more than 93% and the GC content of all sequencing libraries were less than 52%.

In this study, we identified 38,483 mRNAs and 1,492 lncRNAs in the control and clubroot

libraries. Gene expression levels were calculated using the FPKM (fragments per kilobase of

exon model per million mapped) method [54]. Among the identified lncRNAs, 659 lncRNAs

were known based on the database of CANTATAdb 2.0 (http://cantata.amu.edu.pl/) [55]. The

mRNA expression level varied from 0 to 9,527.5 among all libraries, with an average value of

20.2. The lncRNA expression level varied from 0 to 65,092.9 among the six libraries, with an

average value of 218.5. Principle component analysis (PCA) of the transcriptome and lncRNA
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FPKM values for all samples showed more separation between control and clubroot samples,

respectively. This result showed that the sequencing data could be used for further analysis.

mRNA and lncRNA expression profiles in Pakchoi

Compared to the control samples, 5,193 mRNAs were observed to be significantly differen-

tially expressed (fold change� 2 and P�0.05), including 1,345 upregulated and 3,848 downre-

gulated in CS22A. In total, a number of 114 significantiy differentially expressed lncRNAs

were identified, including 31 upregulated and 83 downregulated. The number of downregu-

lated mRNAs and lncRNAs was higher than the number of upregulated. Clustering analysis of

the top 40 most significantly differentially expressed mRNAs between control and CS22A is

shown with a heatmap (Fig 2A, S2 Table), and the heatmap of the top 40 significantly differen-

tially expressed lncRNAs is shown in Fig 2B

The length distribution and categorization of identified lncRNAs were also analyzed (Fig

3). The length of lncRNAs ranged from 200 to 4,483 bp, with an average length of 658 bp. The

most abundant lncRNAs were between 200–400 bp. The number of lncRNAs decreased as the

length increased. The lncRNA lengths were mostly less than 2,000 bp. lncRNAs were catego-

rized into four groups, intronic, intergenic, sense and antisense based on their location on the

genome [56, 57]. The majority of lncRNAs (55.16%) were intergenic and located in intergenic

regions. The rates of lncRNAs were 2.41%, 27.82% and 14.61% for intronic, sense and anti-

sense, respectively. Because lncRNAs encode small RNAs, the sequences of the lncRNAs were

mapped to small RNA precursors. Twenty-five small RNA families were mapped to fifteen

lncRNAs.

To confirm the expression level of differentially expressed RNAs identified from the RNA

sequencing data, qRT-PCR analysis was used to assay the expression level of 10 randomly

selected differentially expressed RNAs and lncRNAs. The trend of expression changes of these

Fig 1. Clubroot symptoms of CS22. Plants were inoculated with the 7th physiology race of P. brassicae (CS22A),

while the control was not subjected to pathogen inoculation.

https://doi.org/10.1371/journal.pone.0224927.g001
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select genes based on the qRT-PCR was similar to the sequencing data, which suggested that

the RNA-seq data were reliable (Fig 4).

Functional annotation analysis of significant differentially expressed

mRNAs

GO enrichment analysis was conducted on the significantly differentially expressed mRNAs

(fold change� 2 and P� 0.05) to gain more insights into the function of these mRNAs which

can be divided into three main functional groups (Fig 5). In biological processes, the top 40

GO terms of the upregulated mRNAs showed that the majority of the functions related to the

defense response to bacterium (GO:0042742), the defense response to fungus (GO:0050832),

the response to wounding (GO:0009611), the response to jasmonic acid (GO:0009753) and the

response to toxic substances (GO:0009636) (Fig 5, S3 Table). GO categories of the downregu-

lated genes were shown to be closely related to defense response (GO:0006952), defense

response to bacterium (GO:0042742), auxin-activated signaling pathway (GO:0009734),

response to wounding (GO:0009611), response to auxin (GO:0009733) and response to jasmo-

nic acid (GO:0009753) (Fig 5, S3 Table). It can be assumed that the genes or proteins that the

mRNAs code for are involved in the reaction. In the cellular component, upregulated genes

were mapped to membrane (GO:0016020), thylakoid (GO:0009579 and GO:0044436) and

membrane protein complex (GO:0098796), while downregulated genes were mapped to

Fig 2. Heatmap of 40 significantly differentially expressed mRNAs (A) and lncRNAs (B).

https://doi.org/10.1371/journal.pone.0224927.g002
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intrinsic component of membrane (GO:0031224), integral component of membrane

(GO:0016021), and membrane (GO:0044425 and GO:0016020). Regarding the molecular

function, the enriched GO terms targeted by upregulated genes included catalytic activity

(GO:0003824), oxidoreductase activity (GO:0016491), cofactor binding (GO:0048037) and

transporter activity (GO:0005215), the enriched GO terms targeted by downregulated genes

included catalytic activity (GO:0003824), transferase activity (GO:0016740) and oxidoreduc-

tase activity (GO:0016491).

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the

significantly differentially expressed mRNAs indicated that the top 3 KEGG terms for downre-

gulated mRNAs were associated with plant hormone signal transduction (ko04075), MAPK

(mitogen-activated protein kinase) signaling pathway (ko04016) and ABC (ATP-binding cas-

sette transporters) transporters (ko02010), while the top 3 KEGG terms for upregulated

mRNAs were associated with biofilm formation (ko02026), drug metabolism (ko00982) and

metabolism of xenobiotics by cytochrome (ko00980). The plant hormone signal transduction

pathway included 8 plant hormones that contained such acides as jasmonic acid and salicylic

acid (https://www.genome.jp/dbget-bin/www_bget?ko04075). Therefore, these genes likely

play an important role in the interaction in the infected process.

Target analysis for cis-regulated lncRNAs and their function annotation in

significantly differentially expressed lncRNAs

Previous studies reported that lncRNAs regulated neighboring or overlapping genes and

might show linked function or co-expression with their target genes [58–60]. Significant dif-

ferentially expressed mRNAs located within 100 kb windows upstream or downstream of the

Fig 3. Length distribution and categorization of identified lncRNAs. (A) The length distribution of identified lncRNAs. X-axis: the length of LncRNAs. (B) The rate

of lncRNAs based on their location on the genome.

https://doi.org/10.1371/journal.pone.0224927.g003
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lncRNAs were used to calculate the Pearson correlation coefficient for further analysis. A total

of 2,344 interaction relationships (1,479 positive and 865 negative correlation) were detected

between 1,725 mRNA and 103 lncRNA with a correlation coefficient greater than 0.8. The GO

analysis was based on biological processes for all potential target mRNAs. Functional analysis

showed that the upregulated co-expressed mRNAs of the neighboring lncRNAs were enriched

in 39 GO terms in biological processes, and many of the GO terms were closely related to the

regulation of gene expression (Table 1). The downregulated mRNAs of the potential lncRNA

targets showed that the term GO enrichment was closely related to the response to stimulus

(GO:0050896), response to stress (GO:0006950), defense response (GO:0006952) and response

Fig 4. Randomly selected differentially expressed RNAs were analyzed using qRT-PCR. The expression level was normalized using TUB6. Y-axis: the relative

expression of selected genes compared with control as indicated. Data are shown as the mean ± standard deviation of three independent experiments.

https://doi.org/10.1371/journal.pone.0224927.g004
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to biotic stimulus (GO:0009607) (Table 2). Regarding the molecular function, the enriched

GO terms targeted by upregulated genes included oxidoreductase activity (GO:0016491),

cofactor binding (GO:0048037), and transmembrane transporter activity (GO:0022857), and

the enriched GO terms targeted by downregulated genes included catalytic activity

(GO:0003824), transferase activity (GO:0016740), and oxidoreductase activity (GO:0016491).

In the cellular component, the upregulated gene showed that the majority of the function

related to membrane protein complex (GO:0098796) and thylakoid (GO:0044436 and

GO:0009579). GO categories of the downregulated genes were shown to be closely related to

integral component of membrane (GO:0016021), intrinsic component of membrane

(GO:0031224), and membrane (GO:0044425 and GO:0016020). The expression levels of the

downregulated mRNAs for the above four GO terms (40 mRNAs) and 16 lncRNAs that regu-

lated these RNAs are shown in Fig 6 and S4 Table, and all these mRNAs and lncRNAs were

Fig 5. Heatmaps of significantly differentially expressed mRNAs classified by biological process.

https://doi.org/10.1371/journal.pone.0224927.g005
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significantly differentially expressed between the control and clubroot groups. These results

suggest that the principal functions of these lncRNAs may be the regulation of gene expression

and play an important role in the clubroot infection process.

Table 1. Gene Ontology (GO) enrichment for the significantly upregulated co-expressed mRNAs of the neighboring lncRNAs.

GO ID Term Annotated Significant Expected Classic Fisher

GO:0015979 photosynthesis 122 9 1.65 3.90E-05

GO:0006091 generation of precursor metabolites and energy 75 7 1.01 6.50E-05

GO:0009765 photosynthesis, light harvesting 34 5 0.46 8.50E-05

GO:0019684 photosynthesis, light reaction 51 5 0.69 0.0006

GO:0009414 response to water deprivation 9 2 0.12 0.0061

GO:0055114 oxidation-reduction process 1431 30 19.31 0.0088

GO:0019438 aromatic compound biosynthetic process 1660 33 22.4 0.0129

GO:0018130 heterocycle biosynthetic process 1667 33 22.49 0.0136

GO:0006811 ion transport 485 13 6.54 0.0141

GO:0005985 sucrose metabolic process 14 2 0.19 0.0148

GO:1901362 organic cyclic compound biosynthetic process 1677 33 22.63 0.0148

GO:0006355 regulation of transcription, DNA-template 1507 30 20.33 0.0175

GO:1903506 regulation of nucleic acid-templated transcription 1507 30 20.33 0.0175

GO:2001141 regulation of RNA biosynthetic process 1507 30 20.33 0.0175

GO:0051252 regulation of RNA metabolic process 1512 30 20.4 0.0183

GO:0010556 regulation of macromolecule biosynthetic 1513 30 20.42 0.0184

GO:2000112 regulation of cellular macromolecule biosynthetic 1513 30 20.42 0.0184

GO:0009889 regulation of biosynthetic process 1515 30 20.44 0.0187

GO:0031326 regulation of cellular biosynthetic process 1515 30 20.44 0.0187

GO:0019219 regulation of nucleobase-containing compound metabolic process 1517 30 20.47 0.019

GO:0034654 nucleobase-containing compound biosynthetic 1649 32 22.25 0.0198

GO:0051171 regulation of nitrogen compound metabolic 1538 30 20.75 0.0226

GO:0080090 regulation of primary metabolic process 1540 30 20.78 0.023

GO:0009415 response to water 18 2 0.24 0.024

GO:0031323 regulation of cellular metabolic process 1549 30 20.9 0.0247

GO:0006487 protein N-linked glycosylation 2 1 0.03 0.0268

GO:0009072 aromatic amino acid family metabolic process 2 1 0.03 0.0268

GO:0006351 transcription, DNA-templated 1630 31 21.99 0.0281

GO:0032774 RNA biosynthetic process 1630 31 21.99 0.0281

GO:0097659 nucleic acid-templated transcription 1630 31 21.99 0.0281

GO:0010468 regulation of gene expression 1599 30 21.58 0.0361

GO:0006772 thiamine metabolic process 3 1 0.04 0.0399

GO:0009228 thiamine biosynthetic process 3 1 0.04 0.0399

GO:0042723 thiamine-containing compound metabolic process 3 1 0.04 0.0399

GO:0042724 thiamine-containing compound biosynthetic 3 1 0.04 0.0399

GO:0044070 regulation of anion transport 3 1 0.04 0.0399

GO:0060255 regulation of macromolecule metabolic process 1624 30 21.91 0.0431

GO:0019222 regulation of metabolic process 1635 30 22.06 0.0466

GO:0006812 cation transport 350 9 4.72 0.0475

Annotated: number of genes that are annotated with the GO-term.

Significant: number of genes belonging to the term that are annotated with the GO-term.

Expected: an estimate of the number of genes a node of size annotated would have if the significant genes were to be randomly selected from the gene universe.

Classic Fisher: p-values computed by Fisher’s exact test

https://doi.org/10.1371/journal.pone.0224927.t001
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LncRNA-mRNA co-expression analysis of response to clubroot infection

process

In this study, all significant differentially expressed lncRNAs and mRNAs were used to calcu-

late the Pearsoncorrelation coefficients based on their expression level. The top 600 potential

Table 2. Gene Ontology enrichment for the significantly downregulated co-expressed mRNAs of the neighboring lncRNAs.

GO ID Term Annotated Significant Expected classicFisher

GO:0006979 response to oxidative stress 136 20 5.22 2.20E-07

GO:0006950 response to stress 552 42 21.18 1.60E-05

GO:0032989 cellular component morphogenesis 10 4 0.38 0.00037

GO:0055114 oxidation-reduction process 1431 78 54.9 0.00073

GO:0050896 response to stimulus 1190 67 45.65 0.00078

GO:0048869 cellular developmental process 14 4 0.54 0.00157

GO:0001558 regulation of cell growth 8 3 0.31 0.00272

GO:0009826 unidimensional cell growth 8 3 0.31 0.00272

GO:0042814 monopolar cell growth 8 3 0.31 0.00272

GO:0051510 regulation of unidimensional cell growth 8 3 0.31 0.00272

GO:0051513 regulation of monopolar cell growth 8 3 0.31 0.00272

GO:0060560 developmental growth involved in morphogenesis 8 3 0.31 0.00272

GO:0000902 cell morphogenesis 9 3 0.35 0.00396

GO:0022603 regulation of anatomical structure morphogenesis 9 3 0.35 0.00396

GO:0022604 regulation of cell morphogenesis 9 3 0.35 0.00396

GO:0009653 anatomical structure morphogenesis 19 4 0.73 0.00523

GO:0031667 response to nutrient levels 10 3 0.38 0.0055

GO:0031669 cellular response to nutrient levels 10 3 0.38 0.0055

GO:0040008 regulation of growth 10 3 0.38 0.0055

GO:0048589 developmental growth 10 3 0.38 0.0055

GO:0048638 regulation of developmental growth 10 3 0.38 0.0055

GO:0006952 defense response 155 13 5.95 0.00664

GO:0008272 sulfate transport 22 4 0.84 0.00902

GO:0072348 sulfur compound transport 22 4 0.84 0.00902

GO:0015698 inorganic anion transport 63 7 2.42 0.01011

GO:0009991 response to extracellular stimulus 13 3 0.5 0.01203

GO:0031668 cellular response to extracellular stimulus 13 3 0.5 0.01203

GO:0071496 cellular response to external stimulus 13 3 0.5 0.01203

GO:0006820 anion transport 115 10 4.41 0.01285

GO:0009267 cellular response to starvation 5 2 0.19 0.01359

GO:0016036 cellular response to phosphate starvation 5 2 0.19 0.01359

GO:0042594 response to starvation 5 2 0.19 0.01359

GO:0050793 regulation of developmental process 25 4 0.96 0.01425

GO:0051128 regulation of cellular component organization 26 4 1 0.01635

GO:0005984 disaccharide metabolic process 46 5 1.76 0.03061

GO:0009311 oligosaccharide metabolic process 47 5 1.8 0.03321

GO:0009607 response to biotic stimulus 65 6 2.49 0.0379

GO:0010208 pollen wall assembly 1 1 0.04 0.03836

GO:0010584 pollen exine formation 1 1 0.04 0.03836

GO:0010927 cellular component assembly involved in morphogenesis 1 1 0.04 0.03836

GO:0080110 sporopollenin biosynthetic process 1 1 0.04 0.03836

GO:0085029 extracellular matrix assembly 1 1 0.04 0.03836

https://doi.org/10.1371/journal.pone.0224927.t002
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lncRNA-mRNA regulated pairs whose Pearson correlation coefficient greater than 0.8 were

used to construct the regulatory network (S1 Fig). The 40 clubroot diseases related to mRNAs

and 16 lncRNAs targeting these significantly differentially expressed mRNAs were also used to

construct the correlation network of lncRNA-mRNA. In total, the resulting lncRNA:mRNA

association network had 31 nodes and 19 connections between the 15 mRNAs and 16

lncRNAs (Fig 7, S5 Table). Among these molecules, most of mRNAs and lncRNAs are signifi-

cantly downregulated.This regulation network indicated that four lncRNAs were predicted to

be targets of 2 lncRNAs. BraA07g029760.3C and BraA07g0285503C were both targeted by

lncRNA TCONS-00034121. In addition, the other three genes were all targeted by lncRNA

TCONS-00049044. These results suggest that the expression profiles of mRNA and lncRNA

are significantly correlated.

To elucidate the lncRNA-mRNA co-expression network, we annotated the function of the

target genes by comparison with Arabidopsis. The annotation showed that they belonged to

defense response proteins (66.67%), protein phosphorylation (13.33%), root hair cell differen-

tiation (13.33%) and regulation of the salicylic acid biosynthetic process (6.67%) (Table 3).

KEGG annotation showed that the vast majority of the genes involved in the biosynthesis of

secondary metabolism pathways and plant-pathogen interactions.

Discussion

In the present study, RNA–seq technology was used to investigate the global lncRNA-mRNA

regulatory network between the B. rapa line before and after P. brassicae infection. The results

Fig 6. Expression levels of the 40 downregulated mRNAs (A) and 16 lncRNAs (B).

https://doi.org/10.1371/journal.pone.0224927.g006
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of the differentially expressed analysis showed that the number of significantly differentially

expressed mRNAs and lncRNAs were approximately 3 times higher in downregulated than in

upregulated number. A total of 5193 and 114 mRNAs and lncRNAs were significantly differ-

entially expressed. These results showed that a more complicated regulatory network exists in

the clubroot infected plant. The GO annotation of the potential lncRNA targets showed that

most upregulated significantly differentially expressed mRNAs were involved in the regulation

of gene expression, and the downregulated significantly expressed mRNAs were closely related

to stimulus, response to stress, defense response and response to biotic stimulus. The results of

KEGG pathway analysis for the above mentioned lncRNA targets showed that they involved in

the plant hormone signal transduction. The same conclusion was also reported in previous

research [2, 23, 25, 61]. Jasmonic acid and salicylic acid regulate disease resistance in Arabi-

dopsis [62]. The MAPK signaling pathway plays a pivotal role in the cellular processes such as

proliferation, apoptosis, and gene regulation [63]. The metabolism of drug and xenobiotic

pathway function is to oxidize small foreign organic molecules, such as toxins or drugs [64].

These results suggest that clubroot resistance and some cellular biological processes may be

repressed during pathogen infection. The reaction mechanism that responds to xenobiotics

may be activated during pathogen infection. Our results provide a distinct landscape in regard

to the molecular mechanisms underlying P. brassicae infection.

Fig 7. LncRNA-mRNA correlation network of respose to clubroot infection process.

https://doi.org/10.1371/journal.pone.0224927.g007
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Some quantitative trait loci (QTLs) related to clubroot diseases have been identified [8–10,

13, 18, 65, 66]. LncRNAs are a group of endogenous RNAs that function as regulators of gene

expression, and may play an important role in several biological processes of plants [24].

LncRNA COLDAIR was reported to be required for establishing stable repressive chromatin

at FLOWERING LOCUS [67]. LncRNA ASL can be regulated by ATRRP6L to modulate

H3K27me3 levels functions in the autonomous pathway in Arabidopsis [68]. Therefore, we

first investigated the lncRNA response to Plasmodiophora brassicae infection in Pakchoi and

attempted to identify genes regulated by lncRNAs. The markers of QTL intervals that have

been identified were mapped to the genome to examine the position relation of the QTLs and

the genes (a total of 15 mRNAs and 16 lncRNAs) that were identified as related to clubroot

disease in this study. The results show that lncRNA TCONS_00007793 localizes near the

QTL Anju1 region on Chromosome A02 [11], two lncRNAs (TCONS_00007004, TCONS_

00007046) localize near the QTL Rcr8, which was identified on Chromosome A02 [18],

lncRNA TCONS_00014032 localizes near the QTL CRd, which was identified on Chromo-

some A3 [65], lncRNA TCONS_00038153 localizes near the QTL CRs, which were identified

on Chromosome A8 [66], lncRNAs (TCONS_00034121 and TCONS_00036594) localizes near

Table 3. Annotation of 15 mRNAs involved in LncRNA-mRNA co-expression network by comparison with the Arabidopsis genome.

Gene Gene description Arabidopsis Functional annotation

BraA01g015860.3C U-box domain-containing

protein 35

AT4G25160 protein phosphorylation, protein ubiquitination

BraA02g012160.3C calmodulin-binding protein

60 B-like

AT5G57580 regulation of salicylic acid biosynthetic process

BraA02g015930.3C U-box domain-containing

protein 35

AT5G51270 protein phosphorylation, protein ubiquitination,

BraA02g044230.3C defensin-like protein 6 AT5G63660 defense response,

defense response to fungus,

killing of cells of other organisms,

BraA05g006080.3C nematode resistance

protein-like HSPRO2

AT2G40000 defense response to bacterium, incompatible interaction, response to oxidative stress, response to

salicylic acid, tryptophan catabolic process to kynurenine

BraA06g039160.3C universal stress protein

PHOS32

AT2G03720 root hair cell differentiation,

BraA07g028550.3C protein SAR DEFICIENT

1-like

AT1G73805 cellular response to molecule of bacterial origin, defense response to bacterium,defense response to

oomycetes, plant-type hypersensitive response, positive regulation of defense response to

bacterium, regulation of salicylic acid biosynthetic process, regulation of systemic acquired

resistance,

regulation of transcription, DNA-templated,

response to UV-B, response to bacterium

BraA07g029760.3C MLP-like protein 31 AT1G70850 defense response

BraA08g026660.3C MLP-like protein 31 AT1G70830 defense response

BraA09g016310.3C MLO-like protein 6 AT1G61560 defense response, defense response to fungus,

incompatible interaction, response to biotic stimulus

BraA09g023180.3C MLP-like protein 328 AT2G01520 defense response, response to phenylpropanoid, response to zinc ion, vegetative to reproductive

phase transition of meristem

BraA09g023480.3C defensin-like protein 1 AT2G02130 defense response, defense response to fungus,

killing of cells of other organism

BraA09g024130.3C universal stress protein

PHOS32-like

AT2G03720 root hair cell differentiation

BraA09g040010.3C MLP-like protein 43 AT1G35310 defense response

BraA10g020100.3C Polyketide cyclase/

dehydrase and

lipid transport superfamily

protein

AT1G70860 defense response

https://doi.org/10.1371/journal.pone.0224927.t003

Gene expression profiles of response to Plasmodiophora brassicae infection in Pakchoi

PLOS ONE | https://doi.org/10.1371/journal.pone.0224927 December 5, 2019 15 / 20

https://doi.org/10.1371/journal.pone.0224927.t003
https://doi.org/10.1371/journal.pone.0224927


the QTL qBrCR38-1, identified by the bulked segregant analysis (BSA) method [69] on Chro-

mosome A07, lncRNA TCONS_00041523 localized near the QTL qBrCR38-2, which has been

identified on Chromosome A08 in the same experience. These lncRNAs associated with the

QTL regions maybe have the function of regulating gene expression [70].

We investigated the expression patterns of lncRNAs and mRNAs and constructed a

lncRNA-mRNA regulatory network for P. brassicae infected Pakchoi and control. This net-

work can provide a global view of all possible lncRNA-coding gene expression associations

based on high-through RNA-seq data. The functional annotation shows that these lncRNAs

might exhibit coordinating roles towards transcriptional regulation of the defense responsive

genes. KEGG annotation shows that these genes, targeted by lncRNAs, are involved in the bio-

synthesis of secondary metabolism pathways which are essential for many physiological pro-

cesses in plants, including pathogen invasion [71]. Although many lncRNAs have been found,

their biological functions remain unclear. Further research on the specific role(s) of these

lncRNAs will provide additional information regarding their detailed roles in pathogen

defense.
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