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Neuroscience research shows a growing interest in the application of Near-Infrared

Spectroscopy (NIRS) in analysis and decoding of the brain activity of human subjects.

Given the correlation that is observed between the Blood Oxygen Dependent Level

(BOLD) responses that are exhibited by the time series data of functional Magnetic

Resonance Imaging (fMRI) and the hemoglobin oxy/deoxy-genation that is captured

by NIRS, linear models play a central role in these applications. This, in turn, results

in adaptation of the feature extraction strategies that are well-suited for discretization

of data that exhibit a high degree of linearity, namely, slope and the mean as well as

their combination, to summarize the informational contents of the NIRS time series. In

this article, we demonstrate that these features are inefficient in capturing the variational

information of NIRS data, limiting the reliability and the adequacy of the conclusion on

their results. Alternatively, we propose the linear estimate of differential entropy of these

time series as a natural representation of such information. We provide evidence for our

claim through comparative analysis of the application of these features on NIRS data

pertinent to several working memory tasks as well as naturalistic conversational stimuli.

Keywords: near-infrared spectroscopy, differential entropy, NIRS time series feature extraction, brain activity

decoding, working memory

1. INTRODUCTION

Recent years witness a growing interest in Near-Infrared Spectroscopy (Ferrari and Quaresima,
2012; Dix et al., 2013) as a promising tool for analysis of the brain activity of human subjects. Cui
et al. (2010a) define NIRS as a technology for functional brain imaging based on hemodynamic
signals from the cortex. The operational principle of NIRS devices is based on recording
of the optical absorption of light over time to estimate the functionally evoked changes in
cerebral oxy/deoxy-hemoglobin concentrations that result from local cerebral vascular and oxygen
metabolic effects during the brain activity (Huppert et al., 2009). This technology is successfully
applied in a variety of research areas, ranging from monitoring of the cerebral and myocardial
oxygen sufficiency (Jobsis, 1977) and effect of aging on working memory (Vermeij et al., 2012) to
decoding of vigilance (Bogler et al., 2014), complexity analysis of the neural activity of the children
with attention-deficit/hyperactivity disorder (ADHD) (Gu et al., 2017), behavioral differences
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between the genders (Baker et al., 2016), functioning of frontal
cortex (Ozawa et al., 2014; Perlman et al., 2015), as well as
determination of the level of difficulty of themental tasks (Verner
et al., 2013), to name a few.

Utilization of NIRS for monitoring the brain activity becomes
more attractive, considering the non-invasive operational setup
of NIRS-related devices. These devices are easy to use
with portable, light-weighted headsets that are comparatively
more immune to body movement (Dieler et al., 2012)
while preserving unrestrictiveness and accessibility along with
compact experimental setting (Moriai-Izawaa et al., 2012).
These advantages provide a tremendous opportunity for their
adaptation in naturalistic experiments through elimination of
the requirement for confining the human subject to fMRI
chamber (Naseer and Hong, 2015; Shin et al., 2016). It is worthy
of note that although NIRS has a weaker signal-to-noise ratio
(SNR) in comparison with fMRI (Gagon et al., 2011), research
suggests that the hemodynamic responses that it captures in the
form of blood oxy/deoxy-genation hemoglobin highly correlates
with the BOLD in fMRI (Strangman et al., 2002; Steinbrink
et al., 2006; Cui et al., 2011). Moreover, this correlation is
unaffected by the nature of cognitive tasks (Strangman et al.,
2002; Steinbrink et al., 2006; Cui et al., 2011). Such spatio-
temporal similarities between BOLD and blood oxygenation
(i.e., 1 oxy-Hb) are further supported by a number of research
findings (Okamoto et al., 2004; Strangman et al., 2002; Toronov
et al., 2007).

An important characteristic that is attributable to NIRS
and fMRI time series is the underlying linear property of the
hemodynamic responses that aremeasured by these devices (Dale
and Buckner, 1997; Henson et al., 2001; Henson, 2003; Penny
et al., 2005), particularly in prefrontal cortex (PFC) (Braver et al.,
1997; Mitchell et al., 2008; Fishbum et al., 2014). Friston et al.
(1994a) first investigate this linear property of hemodynamic
responses, leading to formalization of General Linear Model
(GLM) (Friston et al., 2011). Later, Schroeter et al. (2004)
and Plichta et al. (2007) independently validate the applicability
of GLM to NIRS time series. Along the same axis, Kamran and
Hong (2014) argue that NIRS time series is a linear combination
of various components, ranging from dynamical characteristics
of the oxy/deoxy-hemoglobin (HbO/HbR) changes in a specific
brain region to the baseline effect (Gusnard and Raichle, 2001),
thereby further extending the results in (Friston et al., 1994a;
Plichta et al., 2007; Friston et al., 2011). The overall acceptance of
such an underlying linear dynamics is strengthened, considering
the adaptation of GLM and its variation in fNIRS-fMRI
comparative studies (e.g., Steinbrink et al., 2006; Sato et al., 2013,
2016) as well as its inclusion in major f/NIRS statistical analysis
and modeling toolboxes (Koh et al., 2007; Huppert et al., 2009;
Strangmann, 2009; Ye et al., 2009; Fekete et al., 2011). Tak and Ye
(2013) present a comprehensive review of the statistical analysis
and modeling of f/NIRS time series.

These results, in turn, help explain the choice of feature
extraction methodologies that are well-suited for discretization
of data with a high degree of linearity (i.e., linear changes
in hemodynamics in response to a given stimulus), namely,
the slope (Herff et al., 2014), the mean (Fazli et al., 2012;

Khan et al., 2014) as well as their combination1 (Naseer and
Hong, 2013; Shin et al., 2016) to summarize the information
content of NIRS time series. This claim is further supported
by Cui et al. (2010b) whose comparative analysis suggest that
the slope (i.e., a linear correlate) of the NIRS data forms a
significantly informative feature in contrast to various feature
spaces. However, averaging-based feature extraction strategies
are ill-suited for capturing the essential information pertinent
to brain responses to stimuli (Spiers and Maguire, 2007; Erceg-
Hurn and Mirosevich, 2008; Hasson and Honey, 2012; Wilcox,
2012, 2017; Wehbe et al., 2014; Liu et al., 2017; Rousselet et al.,
2017). In fact, Ben-Yakov et al. (2012) show the shortcoming
of the averaging-based methods for detecting responses that are
highly context dependent, resulting in worsening the effective
signal-to-noise ratio. Moreover, Haynes and Rees (2007) claim
that averaging of the brain activity loses its functional state
at any given point in time. Rousselet et al. (2017) present a
comprehensive survey and analysis on this matter.

On the other hand, research suggests a direct correspondence
between variational behavior of the brain activity and its
information content (Miller, 2001; Friston, 2010; Bastos
et al., 2018; Lundqvist et al., 2018; Wutz et al., 2018).
For instance, Miller (2001) argues that there is a direct
correspondence between the “amount of information” and
variance since “anything that increases the variance also increases
the amount of information” (Miller, 2001). Along the same
direction, Eden and Kramer Fano (1947) note the utility of Fano
factor2 in characterization of neural spiking. Similarly, Cohen
et al. (2017) consider the ability to identify meaningful variation
in data pertinent to brain activation as an indicator of an effective
analysis approach. Accordingly, Lundqvist et al. (2018) show
that effect of working memory tasks is significantly captured
by the variance of the information content of neural activation,
thereby suggesting changes in variational information of spike
rate to best represent the burst of brain activity in response to
WM tasks. These results, collectively, suggest that the variation
in time series of brain activity summarizes the cognitive
load that is undertaken by the brain in processing a given
stimulus.

These findings are in line with the concept of entropy in
information theory (Cover and Thomas, 2006), as originally
formulated by Shannon (1948). It comes as no surprise that
entropy in its various formulations (Zanin et al., 2012; Gao et al.,
2015; Xiong et al., 2017) is utilized exhaustively for analysis of the
complexity and information content of biological signals (Costa
et al., 2002; Lungarella and Sporns, 2006; Sengupta et al., 2013). In
fact, its application expands over a wide spectrum, ranging from
analysis of the complexity of heartbeats (Richman andMoorman,
2000; Bian et al., 2012) and state of anesthesia (Silva et al., 2010) to
physiological complexity of aging and disease (Goldberger et al.,
2002b), detection of epileptic seizure (Srinivasan and Eswaran,

1Let mi and si be the mean and slope of the ith segment. Then their combination,

as it is practiced in NIRS analyses, implies the vector v = [mi, si].
2Fano factor or coefficient of variation is a measure of dispersion of a probability

distribution of a random process, X, that is expressed as FX =
σ 2
X

µX
with σ 2

X and µX

representing the variance and mean of X, respectively.
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2007) and investigation of vigilance and emotional states (Zhang
and Lu, 2015). In addition, there exists a number of excellent and
comprehensive entropy-based toolboxes for analysis of such time
series signals (Ince et al., 2009; Lindner et al., 2011; Lizier, 2014).

In particular, linear estimate of differential entropy (Xiong
et al., 2017) is used in study and analysis of a number of
neurophysiological signals such as cardiovascular control
mechanism (Porta et al., 2015) and cardiorespiratory
dynamics (Faes et al., 2015). Shi et al. (2013) suggest the
applicability of differential entropy (DE) i.e., the entropy of
a continuous random variable (Cover and Thomas, 2006)
in analysis of electroencephalography (EEG) time series.
Furthermore, Keshmiri et al. (2017) show that DE significantly
improves the classification accuracy of NIRS time series pertinent
to cognitive load in prefrontal cortex during working memory
task in comparison with a number of feature extraction and
classification strategies. These results suggest the utility of
DE to the solution concept of decoding of physiological and
neurophysiological signals. However, lack of a theoretical
evidence in its level of association for capturing the dynamical
information of such time series data is apparent. In other words,
there is a paucity of research in realization of the rationale
underlying the shortcomings of averaging-based feature
extraction strategies and, subsequently, the utility of adaptation
of information-theoretic and variational-based approaches in
calculating the summary statistics of brain activity.

In this article, we address these shortcomings through a
systematic investigation of the mathematical foundation of the
degree of correspondence between DE and these time series.
In line with this perspective, we argue that averaging-based
feature spaces are inefficient in representing the information
content of the NIRS time series of the brain activity of human
subjects. In doing so, we adapt the viewpoint of Miller (2001),
thereby synonymously interpreting the amount of information
conveyed by a NIRS time series as its variation, other than
its overall trend or expectation. We further validate our claim
by demonstrating the insensitivity of averaging-based feature
spaces to such variational information, implicit in NIRS time
series. Subsequently, we demonstrate that the linear estimate of
differential entropy (Xiong et al., 2017) of these series help resolve
this shortcoming.

Our contributions are twofold. Firstly, we present the
mathematical bases for the shortcomings of the averaging-
based feature spaces. Secondly, we prove that efficiency of
the linear estimate of differential entropy of the time series
of brain activity is due to its functional correspondence with
the underlying spiking rate of neural activity. This is in line
with the results in the literature, implying the correspondence
between brain regional activation and the increase of the
blood flow (Gusnard and Raichle, 2001). Additionally, we
show the effectiveness of DE through examination of the
feature extraction of the time series of the brain activity
of human subjects, performing several working memory
(WM) tasks. These WM tasks include Listening Span
Test (LST), N-Back, Stroop, and Mental Arithmetic (MA).
Moreover, we examine the utility of DE for capturing the
information content of NIRS time series associated with more

naturalistic scenarios using data pertinent to conversational
tasks.

Our results suggest the potential that utilization of the linear
estimate of the differential entropy of NIRS time series data can
provide to the solution concept of the analysis of the brain activity
of human subjects in response to working memory tasks whose
variational intensities are nontrivial.

2. MATERIALS AND METHODS

2.1. Investigation of the Feature Spaces
As we presented in section 1, the central role of linear models
in NIRS-based applications result in adaptation of the feature
extraction strategies that are well-suited for discretization of data
with a high degree of linearity, namely, the slope, the mean,
and their combination to summarize the informational contents
of the NIRS time series. In this section, we demonstrate the
shortcomings of such feature spaces. Subsequently, we propose
the use of linear estimate of DE of these time series as a natural
choice for extracting the information content of these series.

It is apparent that slope is optimum if the data of a given time
series is collinear and monotonic in its order. This is a substantial
limiting factor since most physical system, including the brain,
have their limits defined by their power limitation which
corresponds to a limit on the variance of their outcome (Stone,
2015). In fact, Miller (2001) considers the amount of information,
conceptually, synonymous with variance. Moreover, Pearl (1988)
associates the expected cost of the best estimate of a given
random variable to its variance. Furthermore, its significance
is evident in a tremendous amount of research, dedicated to
identifying themeaningful variation in the time series of the brain
activity (Cohen et al., 2017). Given these remarks, it is plausible
to interpret the efficiency of an adapted feature as its ability to
capture the amount of variation in the data that it is applied on.
We formalize the shortcoming of slope as a feature extraction
strategy in capturing such a variational information of NIRS time
series through following Proposition.

Proposition 2.1. Slope is inefficient in capturing the variational
information of the given time series.

Proof: Slope,m, of a time series, X, is a measure of its linear trend
with respect to the deviation of the observations from the fitted
line that best minimizes these deviations. As such, the variance of
the slope represents the estimate of the variational information of
the observations, given this fitted line, i.e., Devore (2009)

s2
m
=

∑N
i=1(xi − x̄)(ti − t̄)
∑N

i=1(ti − t̄)2

=

∑N
i=1(xi − x̂i)

2

(N − 1)
∑N

i=1(ti − t̄)2

(1)

where s2
m
is the variance of the slope of the sample time series data

xi ∈ X with ti ∈ T being its corresponding independent variable
(e.g., time stamps associated with the sample data and/or their
respective indices). ‖X‖ = N = ‖T‖, x̄, and t̄ are their cardinality
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and sample means, respectively. Furthermore,
∑N

i=1(xi−x̂i)
2

N−1 is the
estimate of the variation of the observations from the fitted line
and N − 1 is the degree-of-freedom. x̂i indicates the vertical
projection of the ith observation from the fitted line (i.e., its
deviation). It is apparent that:

N∑

i=1

(xi − x̂)2 ≤

N∑

i=1

(xi − x̄)2 (2)

Furthermore, for a monotonically increasing independent
variable (e.g., time and/or indices of data point in time series),
we have:

(N−1)

N∑

i=1

(ti−t̄)2 ≥ (N−1) ⇒
1

(N − 1)
∑N

i=1(ti − t̄i)2
≤

1

N − 1

(3)
Given the Equations (2) and (3), we have:

∑N
i=1(xi − x̂i)

2

(N − 1)
∑N

i=1(ti − t̄)2
≤

1

N − 1

N∑

i=1

(xi − x̄)2

⇒ s2
m
≤ s2X

(4)

where s2X is the sample variance.

�

A customary practice in NIRS analysis is the transformation
of data to ensure the reduction of the effect of the overall
brain activity that is unrelated to the events of interests. These
include subtraction/division of data with resting data (Fazli
et al., 2012; Verner et al., 2013) to cancel the effects such as
default mode (Gusnard and Raichle, 2001; Fransson, 2006; Fox
and Raichle, 2007) of the brain, z-normalization (Bogler et al.,
2014) i.e., x−µX

σX
, ∀x ∈ X, for NIRS time series X with mean

and standard deviation µX and σX , and scaling within [0 . . . 1]
interval (Hong et al., 2015) i.e., x−Xmin

Xmax−Xmin
, ∀x ∈ X, with Xmin

and Xmax indicating the minimum and maximum values in X. In
fact, these steps are necessary to ensure reduction of undesirable
effect such as biasing influence of outliers and/or residual effect
of any previous cognitive load due to some unrelated mental
activity. In other words, these steps help preserve the information
gain from appropriate part of signal, given the adapted cognitive
task. We utilize the concept of mutual information (Cover
and Thomas, 2006; Stone, 2015) and its invariance under such
transformations (Kinney and Atwal, 2014) to provide further
evidence on inefficiency of slope as a feature extraction strategy
for NIRS time series in the following Proposition.

Proposition 2.2. Information gain based on the slope of a NIRS
time series X under z-normalization and scaling is unwarranted.

Proof: Let X be the original NIRS time series data and y its
transformation such that:

y = g(X) (5)

where g(X) is of the forms x−µX
σX

or x−Xmin
Xmax−Xmin

, ∀x ∈ X where µX ,
σX , Xmin, and Xmax are mean, standard deviation, minimum, and

maximum values of X, respectively. The entropy of y is (Stone,
2015):

H(y) = H(X)+ E[log |
∂g

∂X
|] (6)

The mutual information between X and y is:

I(X, y) = H(X)−H(X|y)

= H(y)−H(y|X)

= H(X)+ E[log |
∂g

∂X
|]−H(y|X)

(7)

This implies that:

H(X|y) = H(y|X)− E[log |
∂g

∂X
|]

⇒ H(X|y)−H(y|X) = −E[log |
∂g

∂X
|]

(8)

Furthermore, I(X, y) attains its maximum (i.e., preservation
of the information of the original random variable, X) when
∂I(X,y)
∂g(X)

= 0 i.e., its slope with respect to the transformation g

is zero. Moreover, g :X → y without any external effect (e.g.,
difference between the input and output signals due to the effect
of the medium). Therefore, the amount of uncertainty in y, given
X must not exceed that of X:

H(y|X) ≤ H(X|y) ⇒ H(X|y)−H(y|X) ≥ 0 (9)

Using Equations (8) and (9), we have:

− E[log |
∂g

∂X
|] ≥ 0 ⇒ 0 ≤ |

∂g

∂X
| < 1 (10)

and
∂g
∂X i.e., the slope is 1

σX
or 1

Xmax−Xmin
, given the z-

normalization or the scaling transformations, respectively.
Therefore, Equation (10) holds iff 0 ≤ σX < 1, σX 6= 0 and
−1 ≤ Xmax − Xmin < 1, Xmax − Xmin 6= 0. However, this
requirement is unwarranted since Xmax − Xmin ∈ R and σX ∈ R.

�

Although averaging provides an effective tool for the analysis
of certain aspects of the naturalistic stimuli (e.g., neural coupling
between the speaker and the listener, Stephens et al., 2010), this
feature extraction strategy is ill-suited for capturing the essential
information pertinent to the responses to such stimuli in their
broader sense (e.g., storytelling and conversation, Spiers and
Maguire, 2007; Erceg-Hurn and Mirosevich, 2008; Hasson and
Honey, 2012; Wilcox, 2012, 2017; Wehbe et al., 2014; Liu et al.,
2017; Rousselet et al., 2017). In fact, Ben-Yakov et al. (2012) show
the shortcoming of the averaging-based methods for detecting
responses that are highly context dependent (e.g., listening to a
story), resulting in worsening the effective signal-to-noise ratio.
Moreover, Haynes and Rees (2007) claim that the averaging of
the brain activity loses its functional state at any given point
in time. We formalize these observations through following
Proposition.
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Proposition 2.3. Averaging results in an information
representation that tends to the overall expected value of the
underlying distribution of a given time series.

Proof: Let X represent a given time series. Furthermore, let xi ⊆
X be the ith segment of X with length k i.e., ‖xi‖ = k ≤ ‖X‖, and
x̄i → µX as k → ‖X‖, i.e.,

lim
k→‖X‖

P(|x̄i − µX| > ǫ) = 0 (11)

where x̄i and µX are the sample mean of xi and the mean of the
time series X. P(.) gives the probability of the occurrence of its
argument and |.| returns the absolute difference between its two

parameters. It is apparent that there exists ‖X‖
k

such segments
and:

µX =
1

‖X‖
k

‖X‖
k∑

i=1

x̄i (12)

due to the law of large numbers. Therefore, these values reveal the
general trend of their respective segments, thereby tending to the
overall trend i.e., the expected value of X as ‖X‖ → ∞:

lim
‖X‖→∞

P(µX −
1

‖X‖
k

‖X‖
k∑

i=1

x̄i > ǫ) = 0 (13)

�

A common practice in the literature pertinent to analysis
of the effect of the stimuli on the hemodynamic and/or the
neural activity of the human subjects is the application of the
sliding window on the given time series that is associated with
these signals. In such a setting, the two consecutive segments
that are extracted from the time series X share an overlapping
subsegment of length 0 ≤ n ≤ ‖X‖ − 1. Here, zero indicates
that the consecutive segments do not overlap, whereas the upper
limit means that the original series divided into two with only
a single data point uncommon between these segments (i.e., the
minimum requirement for the segmentation of ‖X‖ into two
distinct segments). An immediate implication of Proposition 2.3
is that the larger the overlap between the two consecutive
segments is, the closer their respective expected values are. In
other words, the overlap between the two segments results in
the greater loss of the variational information. Furthermore, it
indicates that the averaging becomes less effective if the events
that are associated with a stimulus are subtle in nature (e.g.,
emotional cues reflected in a story) as opposed to a rather trigger-
based event (e.g., appearance of a specific digit on a blank screen
at a well-defined, predetermined point in time).

On the other hand, Eden and Kramer (2010) note the Fano
factor (Fano, 1947) as an important characterization of neural
spiking. In addition, they point out that such action potentials
(i.e., neuronal spikes) often exhibit a high variability. What
the utilization of slope/mean of a NIRS time series falls short
on representing is indeed this variability. It is apparent that
these action potentials are in fact the underlying dynamics of

the brain activity, thereby reflecting the changes in the local
hemodynamic such as blood oxygen content and its subsequent
level of consumption (Gusnard and Raichle, 2001). In other
words, fluctuations that are observed in NIRS time series are in
fact an indirect representation of the responses that are induced
by these action potentials as their underlying dynamics of the
brain activity. In the following Proposition, we demonstrate the
ability of the linear estimate of differential entropy (DE) (Cover
and Thomas, 2006; Stone, 2015) in explicitly capturing this
variability.

Theorem 2.4. The expected rate of change in the linear estimate
of differential entropy of a time series X is inversely proportional to
the Fano factor, F.

Proof: Linear estimate of the differential entropy of a random
variable X is (Cover and Thomas, 2006; Xiong et al., 2017):

H(X) =
1

2
logb(g(X)) (14)

where,

g(X) = 2πeσ 2
X

= 2πe

∑
x∈X(x

2 − 2xµX + µ2
X)

N

= 2πe(

∑
x∈X x2

N
−

2µX
∑

x∈X x

N
+

Nµ2
X

N
)

= 2πe(

∑
x∈X x2

N
− µ2

X)

(15)

with N = ‖X‖ is the cardinality of X. Using Equation (15),
derivative of H with respect to µX is:

∂H

∂µX
=

1

2

∂g
∂µX

ln(b)g(X)

=
1

2

∂
∂µX

[(2πe(
∑

x∈X x2

N − µ2
X)]

ln(b)2πeσ 2
X

=
−4πeµX

ln(b)4πeσ 2
X

=
−µX

ln(b)σ 2
X

= −
µX

σ 2
X

= −F−1, b = e

(16)

�

2.2. Tasks
We conducted two series of experiments, referred to as
Working Memory Experiment (WME) and Conversational Task
Experiment (CTE), hereafter. We chose WME due to its utility
in analytical studies of the cognitive loads on the working
memory of human subjects. Moreover, we considered a number
of working memory tasks with well-established differences in
their imposed cognitive load on the WM (Cui et al., 2011;
Verner et al., 2013; Fishbum et al., 2014; Herff et al., 2014),
thereby allowing for investigation of the ability of DE in capturing
the underlying dynamics and variation of the brain activity in
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response to differing cognitive loads. On the other hand, we
chose CTE to analyze the utility of the linear estimate of DE in
response to more subtle variation in brain activity in response to
naturalistic stimuli (e.g., conversation, listening to a story, etc.).
Results of these analyses contribute in realization of the utility of
linear estimate of DE in analytical as well as decoding domains
of NIRS-based modeling of brain activity of human subjects.
Description of WME and CTE are as follows.

1. WME: It consisted of four different working memory tasks,
namely, Listening Span Test (LST) (Osaka et al., 2003), N-
Back (B), Stroop (S), andMental Arithmetic (M). Each of these
working memory (WM) tasks consists of two subtasks. Their
descriptions are as follows.

a. LST: There were two subtasks, namely, L1 and L2,
consisting of two and three sentences, respectively. These
sentences were readout to the participants sequentially.
Participants were instructed to judge the validity of each
sentence once its reading was over [e.g., Sun sets in the west.
(yes/no?)]. Once reading of sentences of a given subtask
were complete, participants were required to recall the first
word of each of the sentences. This resulted in two and
three words recall in case of L1 and L2, respectively.

b. B: It included a one-back (B1) and a two-back (B2) WM
tasks. We used a recorded call-out of numerical sequences
(0 through 9) in which participants were required to
respond to sequential (i.e., B1) and every-other (i.e., B2)
repetition of these digits via clicking the arrow keys on the
computer keyboard.

c. S: It contained two subtasks, involving two-color (i.e., S1)
and three-color (i.e., S2) streams. Both of these subtasks
consisted of a sequence of twenty words (i.e., name of
a color such as “red,” or “green”) that were randomly
matched/mismatched with their corresponding colors (e.g.,
word “red” was shown with its matching color, red, or a
mismatching color such as blue). We used the color/word
“red, blue“ in S1 and “red, blue, green” in S2.

d. M: It comprised of two subtasks, requiring the mental
addition of a two-digit number with a single-digit number
(M1) and two two-digit numbers (M2), respectively. There
were four addition operations in each of these subtasks,
resulting in eight arithmetic operations in total. In case of
M2, half of these operations resulted in carryover.

Every subject participated in all of these four WM tasks.
We acquired a 1-min-long resting data of the participants
(with their eyes closed) prior to start of each subtask which
was followed by its corresponding task. Furthermore, we
randomized the ordering of these WM tasks while keeping
the order of their corresponding subtasks intact for all
participants. We used the PsychoPy (Peirce, 2003) in WME.

2. CTE: This paradigm comprised of 3-min-long conversation
sessions in which we discussed four different topics (two
easy and two difficult) with the participants (in Japanese).
We communicated with our participants through minimalist
anthropomorphic android, the Telenoid, to eliminate the
potential effect of human characteristics such as gender and

age. This resulted in four separate sessions, per participant. In
every session, we began with acquiring a 1-min-long resting
data, followed by its corresponding 3-min-long experimental
session. We kept the content of conversations intact in all
sessions. Every subject participated in all of these settings.
However, we randomized the order of the easy/difficult among
our participants. We provided our participants with a 1-min-
long resting break (while staying at their seat with their eyes
closed) prior to the commencement of each of these session.
We maintained an approximately 1.2 m distance between
the seat of the participant and the Telenoid. A male person
conversed with our participants in all four conversational
sessions.

2.3. Subjects
1. WME: Thirteen young adults (nine females and four males,

M = 21.87, SD= 2.61) participated in these tasks.
2. CTE: Our participants included twenty two individuals

(fourteen females and eight males,M = 46.55, SD= 10.62).

All participants were right-handed [confirmed using
FLANDERS (Nicholls et al., 2013) handedness questionnaire],
were free of neurological and psychiatric disorders, and had no
history of hearing impairment. Prior to the data collection, we
received approval (approval code: 16-601-1) from the ethical
committee at the Advanced Telecommunications Research
Institute International (ATR), Kyoto, Japan. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. Subjects were seated on an easy armchair in the
sound-attenuated experimental room, with instructions to fully
relax and their eyes closed while resting.

2.4. Data Acquisition
We used Near-Infrared Spectroscopy (Ferrari and Quaresima,
2012; Dix et al., 2013) to collect the brain activities in the
frontal area of our participants. We acquired the NIRS time
series of our participants using a wearable optical topography
system “HOT-1000,” developed by Hitachi High-Technologies
Corporation (please refer to Figure 1). Participants wore this
device on their forehead in our experiments. This device collects
data through four channels (i.e., Left1, Left3, Right1, and Right3,
as shown in Figure 1). Furthermore, it allows for recording of
the measurement of brain activity through detection of total
blood flow via emitting a wavelength laser light (810 nm) at
10 Hz sampling frequency. The postfix numerical values that
are assigned to these channels specify their respective source-
detector distances. In other words, Left1 and Right1 have a
1.0 cm and Left3 and Right3 have 3.0 cm source-detector
distances, respectively. Findings in the literature on brain region
activation duringmemory and language processing suggest a left-
lateralized activation in both genders with higher specificity in
females (Haut and Barch, 2006; Li et al., 2010). Therefore, we
primarily utilize the NIRS time series that is acquired through the
channel Left3 of this device in the present study. It is worth noting
that the source-detector distance of 3.0 cm is adequate for proper
data acquisition of cortical brain activity using NIRS-based
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FIGURE 1 | The NIRS device (Left) along with the schematic of the locations of the left and right channels associated with the data collection procedure during the

experiment (Right). The numbered squares refer to the left and right channels, respectively.

devices (Ferrari and Quaresima, 2012; León-Carrión and León-
Domínguez, 2012; Dix et al., 2013).

2.5. Data Preprocessing
First, we normalized the data corresponding to the selected NIRS
channel via subtracting the mean of the 1 min resting period as a
baseline from its data. Next, we applied a one-degree polynomial
butter worth filter on this normalized data with 0.01 Hz and
0.6 Hz for low and high bandpass values, respectively. This was
followed by its linear detrending.

2.6. Analyses
After data preprocessing step, we applied Wilcoxon signed-rank
test on calculated features of time series data of our participants
in both, WME and CTE experimental paradigms, to investigate
the utility of different feature spaces in capturing potential
differences in NIRS time series of brain activity. It is worth noting
that we chose this non-parametric test to avoid any assumption
on the underlying distribution of the data, as it is the case for
two-sample t-test for example.

In case of WME, we first computed the mean, combined
mean & slope, moving average, and DE features from the
entire time series of corresponding subtasks, per participant.
Figure 2A, illustrates this process. For combined mean & slope
computation, we computed the mean and the slope of the entire
time series, separately, and combined them into a single vector.
We considered the slope of the fitted line to a given time
series sequence for the latter. For moving average computation,
we started with the first 5-s-long segment of a given NIRS
time series and applied a 1-s moving window (i.e., 4 s of
overlap between consecutive segments), calculating the mean
of each of these segments. Figure 2C, shows this process. We
used the mean of these averages (i.e., mean value of entries
of V in Figure 2C) in our analysis. Furthermore, we used the
normalized values of these features in comparative analysis
of effectiveness of different feature spaces after application of
normalization.

In case of CTE, we segmented each time series data into non-
overlapping 5-s-long segments. For each segment, we extracted

a feature using mean, mean & slope, moving average, and DE.
Figure 2B, depicts this process. For combined mean & slope
computation, we computed the mean and the slope (i.e., per
segment), separately, and combined them into a single vector.
We considered the slope of the fitted line to a given 5-s-long time
series segment for the latter. Then, we computed the averaged
mean & slope vector of these 5-s-long segments. We followed
the same protocol as in WME for computing moving average
(i.e., Figure 2C). We applied Wilcoxon signed-rank test on mean
value (i.e., mean of entires of V in Figure 2B in case of mean,
mean & slope, and DE and Figure 2C in case of moving average)
of these extracted features.

For cluster analysis in Figure 5, we segmented each time
series data pertinent to conversational task (i.e., CTE) into 20-s-
long non-overlapping segments. For each segment, we computed
a feature for every 5-s-long non-overlapping data sequence,
resulting in a feature vector of length four in case of mean and
DE (i.e., eight in combined mean & slope) for each 20-s worth
of NIRS time series. Figure 3A, illustrates this process for the
ith 20-s-long segment. On the other hand, we started with the
first 5-s-long subsegment of each of these 20-s-long segments
and applied 1-s moving window (i.e., 4 s of overlap between
every consecutive subsegments) to calculate the feature vector
based on moving average strategy. This resulted in a feature
vector of length sixteen, per 20-s-long worth of data (Figure 3B).
Next, we applied K-mean (Liao, 2005) algorithm (with two
clusters) on these feature vectors (i.e., V in Figure 2A through
Figure 2C).

3. RESULTS

In this section, We validate our mathematical proofs on
effectiveness of the linear estimate of differential entropy (DE)
of NIRS time series in contrast with the conventional averaging-
based feature extraction strategies through statistical analysis
(Wilcoxon test) of the brain activity of human subjects. Our
analyses pertain to two different experiments, namely, Working
Memory Tasks Experiment (WME) and Conversational Tasks
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FIGURE 2 | Feature extraction from (A) entire NIRS time series (B) consecutive non-overlapping windows of length 5-s (C) first initial window of 5-s and following with

subsequent 1-s moving windows (i.e., 4 s of overlap between consecutive sequences). F (.) computes a desired feature from its argument, namely, differential entropy

(DE), mean, slope, combination of mean & slope, or moving average. X is the entire time series of brain activity. xi ∈ X refers to ith 5-s-long segment of a given time

series. V represents the feature vector, resulting from application of an adapted feature extraction strategy. For instance, F (x1) implies calculating mean of the 1st

5-s-long segment while adapting mean feature extraction strategy with V as its resulting mean-based feature vector. We used mean value of elements of V for

statistical analyeses (i.e., both WME and CTE). On the other hand, we use V in its vector form during cluster analysis of brain activity pertinent to CTE.

FIGURE 3 | (A) Feature calculation for every 5-s-long non-overlapping sequence of ith 20-s-long segment of NIRS time series of brain activity. This results in a feature

vector V of length four in case of mean or DE feature spaces and length eight in case of combined mean & slope feature extraction strategy. (B) Extracting moving

average feature vector. We started with first 5-s-long segment of NIRS time series data and applied a 1-s-long moving window (i.e., 4 s of overlap between

consecutive sequences). For every 5-s-long segment, we computed the mean value. This resulted in a feature vector V of length sixteen. F (.) computes a desired

feature, namely, differential entropy (DE), mean, slope, combination of mean & slope, or moving average from its argument, X. xj ∈ Xi refers to jth 5-s-long segment of

ith 20-s-long NIRS segment. Vi represents the feature vector of this ith 20-s-long segment. We applied K-mean (Liao, 2005) clustering (with two centroids) on these

feature vectors during cluster analysis of CTE.
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Experiment (CTE). Results in each of these sections are
structured as follows.

1. WME: section 3.1.1 includes the analyses of Listening Span
Test (LST), N-Back, Stroop, and Mental Arithmetic (MA)
Working Memory (WM) tasks where each of these tasks
comprised of two subtasks of different cognitive loads. In this
subsection, we use features that are calculated based on actual
value of NIRS time series data of the participants. On the other
hand, we present results of this test on normalized NIRS time
series data of the participants in section 3.1.2.

2. CTE: section 3.2 provide evidence on ability of linear estimate
of DE in resolving the shortcoming of the averaging-based
features in case of naturalistic stimuli (Spiers and Maguire,
2007; Erceg-Hurn and Mirosevich, 2008; Ben-Yakov et al.,
2012; Hasson and Honey, 2012; Wilcox, 2012; Wehbe et al.,
2014; Liu et al., 2017; Rousselet et al., 2017) via analyses
of the brain activity of human subjects involved in four
conversations with the content of whose varied in their level
of difficulty.

3.1. WME
3.1.1. Original Feature Spaces
Wilcoxon test on application of mean as adapted feature space
implied significant difference between two subtasks of Listening
Span Test (LST) Working Memory (WM) tasks, i.e., L1 and L2
[p < 0.001, T(24) = −4.31], as well as subtasks S1 and S2 in
Stroop WM [p < 0.001, T(24) = −6.65]. However, it indicated
non-significant with respect to Mental Arithmetic M1 and M2
[p= 0.23, T(24) = 1.20] as as well as N-Back B1 and B2 [p= 0.47,
T(24) = 0.72] WM tasks.

Similarly, combination of mean & slope indicated significant
difference between L1 and L2 [p < 0.001, T(24) = −4.31], as well
as S1 and S2 [p< 0.001, T(24) =−6.65]. However, it implied non-
significant with respect to M1 and M2 (p = 0.231124) as well as
B1 and B2 [p= 0.47, T(24) = 0.72].

Although, application of moving average showed significant
difference between L1 and L2 [p < 0.001, T(24) = −4.31] as well
as S1 and S2 [p< 0.001,T(24) =−6.65], it implied non-significant

with regards to M1 and M2 [p = 0.24, T(24) = 1.17] as well as B1
and B2 [p= 0.81, T(24) =−0.23].

On the other hand, DE indicated significant differences
between L1 and L2 [p < 0.001, T(24) = −4.31], S1 and S2
[p < 0.01, T(24) = −4.72], as well as M1 and M2 [p = 0.03,
T(24) = −2.55] while suggesting non-significant difference
between B1 and B2 [p = 0.64, T(24) = −0.47]. Table 1 provides
summary statistics of these results.

3.1.2. Normalized Feature Spaces
Figure 4 shows discrimination of two subtasks of each of these
WM tasks based on application of DE, mean, combined mean &
slope, as well as moving average as feature extraction strategies
on normalized NIRS time series data of the participants. In
particular, Figures 4A,B show the ability of DE in capturing the
significant different between the two subtasks in LST, i.e., L1 and
L2 [p < 0.05, T(24) = −2.41, SD = 0.26] and Stroop, i.e., S1
and S2 [p < 0.05, T(24) = −1.99, SD = 0.22] where mean [LST:
p= 0.96,T(24) = 0.05, SD= 0.27, Stroop: p= 0.15,T(24) =−1.42,
SD = 0.24], mean & slope [LST: p = 0.15, T(24) = −1.43,
SD = 0.27, Stroop: p = 0.15, T(24) = −1.43, SD = 0.24], as
well as moving average [LST: p = 1.0, T(24) = 0.0, SD = 0.28,
Stroop: p = 0.08, T(24) = −1.65, SD = 0.23] were unable to
determine such differences. Most interesting is the result of
utilization of these features in analysis of mental arithmetic (MA)
where DE indicated an apparent significant between M1 and M2
(p< 0.05, T(24) =−2.02, SD= 0.28] while other features implied
a tendency [Mean: p = 0.15, T(24) = 1.43, SD = 0.28, Mean
& Slope: p = 0.15, T(24) = 1.43, SD = 0.28, Moving Average:
p= 0.14, T(24) = 1.48, SD= 0.28].

3.2. CTE
Wilcoxon test implied non-significant between NIRS time series
of the participant with respect to the topic of conversation, i.e.,
easy and hard, using mean [p = 0.37, T(746) = 0.76], moving
average [p = 0.41, T(746) = 0.83], as well as combined mean &
slope [p = 0.32, T(746) = 0.69]. However, it indicated significant
based on application of DE on these time series [p < 0.001,
T(746) = 4.00]. Table 2 provides the summary statistics of the
mean- and DE-based features in conversational task experiment.

TABLE 1 | Working Memory Experiment (WME): Mean (M), Standard Deviation (SD), and Standard Error (SE) of Moving Average, DE, Mean, and combined Mean & Slope

feature spaces with respect to N-Back (B1 and B2), Listening Span Test (L1 and L2), Stroop (S1 and S2), and Mental Arithmetic (M1 and M2) WM tasks.

WME Moving Average DE Mean Mean & Slope

M SD SE M SD SE M SD SE M SD SE

B1 763.20 2.54 0.48 10.39 0.20 0.04 374.54 0.13 0.02 374.54 0.13 0.02

B2 762.81 3.71 0.70 10.39 0.17 0.03 376.85 48.57 0.09 374.52 0.09 0.02

M1 87.83 26.95 5.01 5.86 1.12 0.21 42.60 13.27 2.46 42.62 13.26 2.46

M2 80.44 29.06 5.40 6.68 1.03 0.19 39.10 14.25 2.65 39.12 14.25 2.64

S1 106.03 14.70 2.68 6.22 0.77 0.14 50.90 7.23 1.32 50.91 7.23 1.32

S2 212.98 27.80 5.08 7.51 1.24 0.23 105.82 14.12 2.58 105.82 14.12 2.58

L1 286.48 33.48 9.29 7.61 1.95 0.54 142.85 16.61 4.61 142.85 16.61 4.61

L2 771.07 0.69 27.93 10.47 0.31 0.09 376.85 48.57 13.47 376.85 48.57 13.47

These descriptive statistics are based on actual NIRS time series data of the participants (i.e., after preprocesing of the NIRS data and prior to application of normalization).
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FIGURE 4 | DE, mean, combined mean & slope, and moving average of the feature vectors of NIRS time series of our participants, scaled to fit within [0. . . .1] interval

using v−min(V )
max(V )−min(V )

, ∀v ∈ V. Subtasks with significant differences are marked by asterisk. The dotted double-arrow lines indicate the tendency between the subtasks,

as implied by a given feature space. Non-significant effect of inclusion of slope is apparent, comparing “Mean” and “Mean & Slope” entries in this table. (A) Listening

Span Test (LST). (B) Mental Arithmetic (MA). (C) N-Back (NB). (D) Stroop (S).

TABLE 2 | Conversational Tasks Experiment (CTE): Mean (M), Standard Deviation (SD), and Standard Error (SE) of Moving Average, DE, Mean, and combined Mean &

Slope feature spaces with respect to easy and hard conversational topics during CTE.

CTE Moving Average DE Mean Mean & Slope

M SD SE M SD SE M SD SE M SD SE

Easy −20.31 179.05 9.46 1.73 0.84 0.04 −14.87 63.25 5.16 −14.83 61.20 7.16

Hard −15.82 149.23 7.56 2.73 1.99 0.07 −8.62 76.61 9.26 −8.90 78.67 10.26

These descriptive statistics are based on actual NIRS time series data of the participants.
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4. DISCUSSION

In this article, we argued that averaging-based feature extraction
strategies that are inspired by high degree of linearity in
NIRS time series of brain activity of human subjects results
in suboptimal solution in capturing the variational information
of these signals, thereby limiting the reliability of an adequate
conclusion on their outcomes. Alternatively, we proposed the
linear estimate of differential entropy of these time series as
a natural representation of such information. We provided
evidence for our claim through theoretical and empirical
comparative analyses of the application of these features on NIRS
data pertinent to a number of WM tasks with varying level of
cognitive loads. Concretely, we demonstrated the utility of DE in
contrast with mean, combination of mean & slope, and moving
average feature spaces in analysis as well as differentiation
of subtasks of a several WM tasks into their corresponding
classes. These WM tasks included Listening Span Tests (L1
and L2), Stroop (S1 and S2), N-Back (B1 and B2), and Mental
Arithmetic (M1 and M2). We further showed the confounding
effect of these averaging-based feature extraction strategies via
analysis of a naturalistic conversational tasks with differing
level of difficulty in their respective topics, thereby providing
evidence on inability of these features in representing the
significance in responses of our participants to varying contextual
complexity of conversational topics. Subsequently, we presented
the sensitivity of DE in extracting this information. Moreover,
we illustrated the substantial similarities between distribution
of data based on mean and combination of mean & slope,
thereby indicating the negligible contribution of the slope in
representation of the information content of the brain activity
of human subjects in response to WM as well as naturalistic
conversational tasks with varying degree of difficulty in their
topics.

Although we found similar indication of non-significant
difference between N-back subtasks through application of DE
as well as averaging-based feature spaces of the NIRS time
series of the brain activity of the participants, we suggest
that such a similarity is due to the significant resembling
dynamics of these subtasks, and consequently, their equivalence
in imposed cognitive loads on human subjects. This claim is due
to comprehensive results in study and analysis of N-Back WM
task (Owen et al., 2005; Fishbum et al., 2014). This observation
is further supported by non-significant difference in induced
level of complexity by B1 and B2 WM tasks on brain activity of
our participants, as implied through result of multiscale entropy
(MSE) analysis (Costa et al., 2002, 2005) of NIRS time series
of their brain activity (please refer to Appendix for further
details).

Fano factor (Fano, 1947) characterizes the neural spiking as a
deviation of activation of neural population from their expected
spiking rate. In other words, it signifies the expected brain
activity in response to a given stimulus as per variation that
is exhibited by neural population. In this regards, application
of averaging-based feature spaces is equivalent to constraining
such an activity within one standard deviation of its expected

or average value (i.e., σ 2 ≤ 1 in F = σ 2

µ
, Fano, 1947). It is

apparent that such a constraint is unwarranted, resulting in an
information loss on functional state of neural population (Haynes
and Rees, 2007). This interpretation finds evidence in recent
findings that imply the effect of working memory tasks is
significantly captured by the variance of the information content
of neural activity (Lundqvist et al., 2018). In fact, change in
brain activity of human subjects during WM tasks is quantified
by its variational information (Miller, 2001) than its average
activity or expectation. On the other hand, the mathematical
bound between linear estimate of DE and Fano factor, as shown
through Theorem 2.4, along with our empirical results on NIRS
time series of brain activity during WM and conversational tasks
suggest the effectiveness of DE in quantification of this variational
information of brain activity of human subjects. However, further
validation of these results on a larger sample size for drawing an
informed conclusion on utility of DE in analysis of NIRS time
series of brain activity of human subjects during WM tasks is
necessary.

Another source of evidence on significance of the variational
information of brain activity is due to the results of the analyses
of physiological systems from perspective of their dynamical
complexity. Research suggests that increase in complexity is an
inherent attribute of healthy physiological systems (Lipsitz and
Goldberger, 1992; Costa et al., 2002, 2005; Goldberger et al.,
2002a,b; Takahashi et al., 2009). Additionally, it implies that
such an increase in complexity strongly correlates with such
cognitive functions as attention, memory, mental manipulation,
verbal fluency, and language (Manor and Lipsitz, 2013; Yang
et al., 2013). Interestingly, an increase in complexity implies a
direct correspondence to variational information that is exhibited
by such dynamical and physiological systems (Zhang, 1991;
Fogedby, 1992; Gao et al., 2015). On the other hand, feature
spaces such as event-specific mean activity and slope (i.e.,
a regression coefficient) follow the key assumption of linear
model that the neuronal dynamics and their transients can be
ignored (Friston et al., 1994a). As a result, they are suitable
for scenarios in which neural responses are monotonic and,
subsequently, fail if monotonicity in variational information is
violated (Pouget et al., 2016).

Research on working memory (WM) (Baddeley, 2003, 2012)
suggests activation of prefrontal cortex (PFC) in a variety of tasks,
ranging frommental tasks with high cognitive loads (Cohen et al.,
1997; Tsujimoto et al., 2004; Owen et al., 2005) (i.e., change in
activation in comparison with general/baseline activity, Gusnard
and Raichle, 2001) to change in mental state (Ozawa et al.,
2014; Sato et al., 2014) and social cognition such as emotional
responses (Wolf et al., 2010) and story comprehension (Mar,
2011). An important implication of these results is the activation
of some similar regions in PFC in response to these tasks. They
are dorsolateral (MacPherson et al., 2002), ventrolateral, and
medial PFC (Owen et al., 2005; Mar, 2011; Fishbum et al., 2014;
Ozawa et al., 2014). Given the increased activity of PFC bymental
tasks (Cohen et al., 1997; Tsujimoto et al., 2004; Owen et al.,
2005; Ozawa et al., 2014; Sato et al., 2014), social cognition (Wolf
et al., 2010) and story comprehension (Mar, 2011) along with
these similar PFC activated regions in response to such tasks,
it is plausible to attribute the ability of DE in preservation of
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variational information of frontal brain activity in both, WM and
conversational tasks, due to these common underlying activated
regions (Owen et al., 2005; Mar, 2011; Fishbum et al., 2014;
Ozawa et al., 2014). Considering the fact that DE is the average
information content in a continuous time series data (Cover
and Thomas, 2006; Avery, 2012; Stone, 2015), it is apparent that
detected variation in such an information content summarizes
the change of activity in these areas in response to stimuli (i.e.,
difficulty of mental tasks and topics of conversation in our case).
Although configuration of recording channels of our NIRS device
(please refer to Figure 1) to capture activity pertinent to PFC
suggests further evidence in support of this observation, we
are unable to confirm this presumption due to limited spatial
resolution of our NIRS device. Therefore, future research to
determine the credibility of this observation is required. It is also
crucial to note that the ability of DE in preservation of variational
information of tasks associated with WM does not warranty its
utility as a universal NIRS feature, thereby necessitating further
investigation to acquire insights on its performance with respect
to NIRS time series of other mental states such as sleep and
awake, relaxation and resting, and vigilance, to name a few.

An important implication of analytical studies of pattern
of brain activity of human subjects during cognitive tasks is
their integration in real-life applications (Mitchell et al., 2008;
Baucom et al., 2012; Naseer and Hong, 2015; Shin et al., 2016;
Horikawa and Kamitani, 2017). It is apparent that feature
extraction strategies play a pivotal role in effectiveness of
such decoding applications. This effect becomes more crucial,
considering the requirement of the transformation of these time
series (e.g., baseline- and z-transformation, scaling the feature
vectors within [0, . . . , 1] interval, etc.) prior to their decoding,
thereby preventing the detrimental effect of bias and variance.
Therefore, it is desirable for an adapted feature extraction strategy
to be able to maximize the preservation of the variational
information of these time series data after the application of such
transformations. For instance, Xiong et al. (2017) emphasize the
substantial effect of normalization on detecting a fine-grained
alterations of the dynamical transitions of physiological systems
across time and multiple scales. In this respect, Proposition 2.2
implied that the adaptation of the slope of the NIRS time series
of brain activity results in loss of such variational information.
On the other hand, Keshmiri et al. (2017) suggest the ability
of DE of NIRS time series in outperforming the averaging-
based feature spaces for decoding of the brain activity during
N-Back working memory task. Whereas their results provide
evidence on utility of DE in supervised learning paradigms, it is
of significant importance to examine its ability in preservation
of the information content of the brain activity in tasks with
the underlying cognitive load of whose exhibit higher degree of
non-triviality due to higher subjectivity of responses of human
subjects (e.g., naturalistic scenarios such as conversation and
story comprehension). Figure 5 shows two clusters that are
generated using K-Mean clustering algorithm (Liao, 2005) on
the feature vectors of the consecutive 20-s-long segments of
NIRS time series of the brain activity of the participants during
CTE. We used mean, slope, combination of mean and slope,
moving average, and DE to generate these feature vectors to

determine the utility of different feature extraction strategies in
clustering data pertinent to naturalistic stimuli (i.e., difficulty of
conversational topics in this case). The y-axis of these subplots
represent the magnitude of the L2-norm of vectors of each
of these feature spaces. It is worthy of note that cardinality
of these clusters do not reflect a one-to-one correspondence
between the number of easy and difficult conversational topics
in CTE, as defined by the overall presupposition of these
topics in our experimental paradigm. However, we expect to
observe such an uneven grouping behavior of the L2-norms
of the time series of the brain activity of the participants,
given the substantial differences of the mental responses of
the individuals to subtleties and emotional cues in naturalistic
scenarios (Haynes and Rees, 2007; Spiers and Maguire, 2007;
Wolf et al., 2010; Ben-Yakov et al., 2012; Hasson andHoney, 2012;
Wehbe et al., 2014; Liu et al., 2017). Considering the changes
in the magnitude of these feature vectors, as summarized by
their respective L2-norms, as well as the result of our analysis
on the significance of the topics of conversation, it is plausible
to interpret the grouping phenomenon that is exhibited by these
clusters as evidence in effectiveness of DE in modeling the
variational information of the brain responses of the participants
during these naturalistic cognitive tasks. This interpretation is
strengthened via comparison of DE-based clusters in contrast
with clusters that are formed by mean, slope, combination of
mean & slope, and moving average. In this figure, negligible
informational contribution of the slope of these time series
(as it was observed in case of WME) is evident. It is worthy
of note that although our preliminary result on performance
of DE in clustering the brain activity of human subjects
during conversational tasks suggest its potential for fine-grained
summarization of the information content of such time series
data, future research is crucial to further investigate its property
in related WM tasks, thereby determining its utility through
more rigorous experimental paradigms with higher objective
validation strategies (e.g., comparison of its classification results
in contrast with self-assessed responses of the participants in
response to their undergone cognitive load, their degree of
interest in the topic and/or their perceived level of difficulty of
the task, etc.).

Apart from the capability of DE in capturing the variational
information that is implicit in the responses of the brain activity
of human subjects to mental tasks with varying cognitive loads,
DE presents a reliable tool for quantitative measurement of the
amount of information in these activities. Concretely, we found
that the difference in the amount of information (measured in
bit i.e., base 2 logarithm) in B1 (Mean = 5.10, SD = 1.08) was
significantly above one standard deviation from L1 (Mean= 3.77,
SD= 0.34), M1 (Mean= 2.59, SD= 1.19), and S1 (Mean= 2.68,
SD = 1.46), as observed in their z-score differences (0.20, 1.33,
−0.8, −0.73). Similarly, M2 (Mean = 2.69, SD = 1.18) had
an amount of information that was significantly one standard
deviation below L2 (Mean= 5.15, SD = 1.07), B2 (Mean= 5.11,
SD = 1.07), and S2 (Mean = 3.67, SD = 0.62), where
their z-scores were 0.83, 0.90, −1.23, and −0.41, respectively.
Furthermore, we found that such a difference was non-significant
in case of conversational tasks (Seniors: Mean= 1.75, SD= 0.84,
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FIGURE 5 | Clusters generated through application of K-mean clustering algorithm (Liao, 2005) using NIRS time series of brain activity of the participants during CTE.

The red- and blue-colored data points in these clusters reflect their formation, given the magnitude (L2-norm in this case) of their corresponding feature vectors of

20-s-long NIRS time series during these conversations. The well-defined boundary between these clusters based on DE, as opposed to results of other feature

extraction strategies, is apparent in this figure.

Min = 0.04, Max = 4.27 and Juniors: Mean = 2.48, SD: 1.80,
Min: 0.12, Max: 7.58), with their z-scores within one standard
deviation. These values of the information content of the time
series data of our participants that are in well-agreement with
the theoretical boundaries that are proposed for the capacity
of the information processing of human subjects (Miller, 2001)
provide further insight on dynamics of these WM tasks and
their consequential effect on brain activity of human subjects.
Additionally, it is plausible to interpret these differences in
amount of information as a measure of their respective cognitive
loads on the brain activity of the human subjects during these
mental tasks.

Proposal of the linear estimate of differential entropy as a
feature extraction strategy for NIRS time series implies two
assumptions. Firstly, it assumes a linearity of the underlying
dynamics of the time series data under investigation (Kaiser
and Schreiber, 2002; Lizier, 2014). This is consistent with the
widespread use of linear models on the basis of the linear
contributions from different sources (Mitchell et al., 2008;
Huppert et al., 2009; Friston et al., 2011). Secondly, it assumes the
normality of the underlying distribution of such data. Although
the validity of this assumption is unwarranted, a number of
results on modeling fMRI time series help interpret its utility,
given the observed correlation between NIRS hemodynamic
blood oxy/deoxy-genation hemoglobin and BOLD (Strangman
et al., 2002; Okamoto et al., 2004; Toronov et al., 2007; Cui

et al., 2011). In particular, Friston et al. (1994b) suggest that
Poisson distribution well models the shape of the hemodynamic
responses. Additionally, Boynton et al. (1996) show that gamma
function is an effective tool in modeling hemodynamic responses
in visual cortex. Furthermore, Aguirre et al. (1998) show that
gamma function exhibits higher sensitivity in capturing the
variability of these responses in an event-related sensorimotor
task. The close relationship between the gamma and Poisson
distribution is well understood. Concretely, for a random
variable X ∼ Ŵ(α,β), where α is an integer, we have P(X ≤

x) = P(Y ≥ α), Y ∼ Poisson( x
β
). Furthermore, if

Y ∼ Poisson(λ), then time until its k arrivals is the gamma
function Ŵ(k, 1

λ
) , where k is the length of time until arrival

of an event. Additionally, the correspondence between the
Poisson and normal distribution is well realized. Precisely, an
approximation of a Poisson distribution with parameter µ is
the normal distribution N (µ,µ) (Rosner, 2016). In addition,
the square root of a Poisson distributed random variable is
approximately normally distributed (Johnson, 1993; Aguirre
et al., 1998). Moreover, Poisson distribution forms a limiting case
for a binomial distribution with a large number of observations
and small probability of occurrence per observation while the
z-score normalized observations of the latter correspond to
the family of standard normal distribution. Furthermore, a
binomially distributed random variable with parameters n and
p is approximated byN (np, np(1−p)). These observations imply
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the potential of the presence of an underlying normality of the
hemodynamic responses in blood oxy/deoxy-genation of the
NIRS time series, thereby presenting the potential of the linear
estimate of differential entropy of these time series to address
the shortcoming of the averaging-based strategies in WM and
naturalsitic tasks (Spiers and Maguire, 2007; Ben-Yakov et al.,
2012; Hasson and Honey, 2012; Wehbe et al., 2014; Liu et al.,
2017).

5. CONCLUSION

In this article, we studied the shortcoming of averaging-based
feature extraction strategies in capturing the information content
of brain activity of human subjects, as represented by NIRS
time series, during WM and conversational tasks. Furthermore,
we demonstrated the efficiency of linear estimate of differential
entropy (DE) in quantification of information content of such
time series, thereby presenting its correspondence with the
underlying spiking neural activity.

We validated our mathematical analyses through application
of these features in analysis of a number of working memory
(WM) tasks. Our results suggested that DE shows higher
sensitivity to brain activity of human subjects in comparison
with mean, slope, combination of mean & slope, as well as
moving average feature spaces. In addition, we showed that DE
has higher sensitivity with regards to information gain through
comparative analysis of its results in contrast with averaging-
based feature spaces after the application of normalization
and scaling. It is worth noting that such steps as baseline
correction, normalization, and scaling are of crucial importance
since they help refine data, thereby reducing detrimental
effect of undesirable variation such as effect of outliers and
biasing.

We validated the sensitivity of DE in capturing the variational
information of time series of brain activity of human subjects
to more naturalistic scenarios through comparison of its results
with respect to averaging-based feature spaces on data pertinent
to conversational time series. Whereas mean, slope, combination
of mean & slope, as well as moving average feature extraction
strategies implied non-significant in brain activity of human
subjects in response to topics of conversation (i.e., easy topic
such as daily activities vs. difficult such as conversation on
a controversial topic), DE indicated significant difference in

time series of brain activity in response to these conversational
topics.

Although our results suggested the utility of DE in analysis
of brain activity of human subjects pertinent to WM tasks with
varying degree of cognitive loads, they do not imply its utility
as a universal NIRS feature. For instance, it is necessary to
examine its utility on NIRS time series of other mental states such
as relaxation, resting, and vigilance, to name a few. Therefore,
our results primarily represent the first step toward realization
of the potential of this feature extraction strategy. Accordingly,
future research that is devised with larger sample sizes along with
more rigorous experimental settings and quantitative validation
measures is necessary to derive an informed conclusion on its
performance.
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APPENDIX

Multiscale Entropy Analysis of the WME
In our analyses, we found similar indication of non-significant

difference between N-back subtasks through application of DE
as well as mean of the NIRS time series of the brain activity of

the participants. We further suggested that such a similarity is

due to the significant resembling dynamics of these subtasks, and
consequently the equivalence in their imposed cognitive loads on
human subjects, as opposed to insensitivity of DE. In addition, we
provided support for our claim from the comprehensive results
on study and analysis of this N-BackWM task (Owen et al., 2005;
Fishbum et al., 2014). In this Appendix, we present additional

evidence in support of our claim through complexity analysis
of the brain activity of our participants during N-Back WM
task.

Referring to Figure A1, we observed non-significant
difference in the complexity of the brain activity of the
participants in response to B1 and B2 tasks, as illustrated through
analysis of their respective multiscale entropy (MSE) (Costa et al.,
2002, 2005). Whereas we observed significant difference in the
level of complexity of the brain activity of the participants during
LST [p < 0.001, T(38) = 4.21, SD = 0.86], mental arithmetic
[p < 0.03, T(38) = 2.19, SD = 0.87] and Stroop [p < 0.03,
T(38) = −2.37, SD = 1.0], it was non-significant in case N-back
WM tasks [p= 0.17, T(38) = 1.41, SD= 0.18].

FIGURE A1 | Grand averages of the mutli-scale entropy (MSE) values of the NIRS time series data of our participants. We use the pattern length m = 2, similarity

criterion r = 0.15 and the range of 1 through 20 for the scale factor, as suggested by Goldberger et al. (2000).
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