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Abstract: This paper proposes an action recognition framework for depth map sequences using the
3D Space-Time Auto-Correlation of Gradients (STACOG) algorithm. First, each depth map sequence
is split into two sets of sub-sequences of two different frame lengths individually. Second, a number of
Depth Motion Maps (DMMs) sequences from every set are generated and are fed into STACOG to find
an auto-correlation feature vector. For two distinct sets of sub-sequences, two auto-correlation feature
vectors are obtained and applied gradually to L2-regularized Collaborative Representation Classifier
(L2-CRC) for computing a pair of sets of residual values. Next, the Logarithmic Opinion Pool (LOGP)
rule is used to combine the two different outcomes of L2-CRC and to allocate an action label of the
depth map sequence. Finally, our proposed framework is evaluated on three benchmark datasets
named MSR-action 3D dataset, DHA dataset, and UTD-MHAD dataset. We compare the experimental
results of our proposed framework with state-of-the-art approaches to prove the effectiveness of
the proposed framework. The computational efficiency of the framework is also analyzed for all the
datasets to check whether it is suitable for real-time operation or not.

Keywords: 3D action recognition; depth motion maps; 3D auto-correlation features; decision fusion;
Regularized Collaborative Representation Classifier (CRC)

1. Introduction

Human action recognition is one of the most challenging tasks in the area of artificial in-
telligence and has obtained attention due to widespread real-life applications, which extend
from robotics to human-computer interface, automated surveillance system, healthcare mon-
itoring, etc. [1–3]. Human actions are composed of contemporary behaviors of human body
parts. The objective of human action recognition is to recognize actions automatically from
an unlabeled video [4,5]. To capture human actions, there are two broad categories of devices
based on wearable sensors and video sensors. In the prior, using these apparatuses many
research works have been completed in the area of action recognition. To recognize wearable
sensor-based actions, multiple sensors are connected to the human body. To obtain action
information, most of the researchers have used different sensors such as accelerometers,
gyroscopes, and magnetometers [6–8]. These wearable sensors are used in the healthcare
system, worker monitoring, interactive gaming, sports, etc. However, they are not accept-
able in all the domains of action recognition, for example in the automatic surveillance
system. It is far from convenient for humans (especially patients) to wear the sensors for a
long time and relatively it is difficult in cases of energy costs. Wearable sensors can have
health risks. For those carrying smartphones, laptops, and tablets, wearable sensor increases
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exposure to radio wave. Although the use of multiple sensors increases recognition accuracy,
it has limitations for real-life applications because of increased associated complexity and
the cost of the total procedure. Because of the difficulties of wearable sensors, video sensors
such as RGB cameras are used to recognize the action. RGB images give restricted 2D data
as grayscale or RGB intensity rate, motion illegibility (e.g., color and texture variations),
inflexibility in the foreground or background segmentation, illumination variation, and
low resolution which resist recognizing action accurately [9,10]. With the emergence of
advanced technology, the redemption of accessible depth sensors is broadly used to achieve
3D action information. 3D information can be obtained through three approaches. The
first approach is costly marker-based motion capture systems (MoCap) which uses visual
sensing of markers settled in different parts of the human body and triangulation from
several cameras to gain three-dimensional spatial information and the human skeleton. In
the second approach, a stereo camera is used to acquire 3D depth information [11]. The
stereo camera consists of two or more lenses with an individual image sensor or film frame
for each lens. A stereo camera gives depth information by stereo matching and distance
computation from lenses to object. The images captured by a stereo camera are sensitive
to light changes and background clutter and action recognition from such images is a very
challenging task [12]. The third approach involves the use of a depth sensor (for example
Microsoft Kinect) that gives real-time 3D information for human body parts [11]. Unlike
RGB camera, depth sensor camera gives overlapping multiple body portion information,
it is insensitive to light changes that improve performance at dark, and in such data, it is
easy to normalize the body orientation or its size variations [9]. This camera gives depth
information from which skeleton data is obtained. The studies based on skeletal data often
show high recognition performance, but where skeletal data is not available, the studies are
not robust in terms of accuracy. These discussions encourage us to use depth information to
establish an action recognition framework. However, DMMs based on the total depth frames
of the entire video are not capable of obtaining the total motion information. To reduce this
disability, in this paper, the depth map sequence of the entire video are partitioned into a
set of overlapping portions. Each portion contains the same number of depth frames and
DMMs sequences are constructed from DMMs of all portions. Then, the entire depth video
is described through 3D auto-correlation features obtained from DMMs sequences. With the
calculated features, the L2-regularized Collaborative Representation Classifier (L2-CRC) [13]
and the Logarithmic Opinion Pool (LOGP) rule [14] work jointly to assign an action label of
the video. The proposed framework is visualized in Figure 1.

Motivation and Contributions:

The method proposed by Chen et al. [15], used 3D auto-correlation features from depth
map sequences for action recognition; however, their framework has limited performance
with the same data. They did not achieve significant results through their framework.
Therefore, the objective of our work is to develop a framework to increase the recognition
results as well as the overall performance by using the 3D auto-correlation gradient features.

The main contributions of our work are listed below:

• The depth map sequences of each action video are partitioned into a set of sub-
sequences of equal size. Afterward, DMMs are created from each sub-sequence
corresponding to three projection views (front, side, and top) of 3D Euclidean space.
Then, three DMMs sequences are derived by organizing all the DMMs along the
projection views. The video is fragmented by two times generating two sets of sub-
sequences using two different frame lengths and thus there are two sets of three
DMMs sequences are obtained.

• Our recognition framework mines the 3D auto-correlation gradient feature vectors
from three DMMs sequences by using the STACOG feature extractor instead of mining
from depth map sequences as shown in [15].

• A decision fusion scheme is applied to combine residual outcomes obtained for two
3D action representation vectors.
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• The proposed framework achieved the highest results as compared to all the other
work done by applying the STACOG descriptor on depth video.

The remainder of this paper is organized as follows. A couple of action recognition
frameworks are reviewed in Section 2. The proposed framework is described in Section 3.
In Section 4, experimental results and discussion of the proposed framework are reported.
Finally, the conclusion and future research directions are presented in Section 5.

Figure 1. Proposed action recognition framework.

2. Related Work

This section describes current depth maps-based action recognition frameworks. Ad-
ditionally, it also reviews skeleton, RGB, inertial, and fusion-based frameworks. Depending
on depth data, Chen et al. [16] used local binary patterns (LBPs) to extract features. They
represented two types of fusion levels and used the Kernel-based Extreme Learning Ma-
chine (KELM) for both levels. Ref. [17] introduced DMM-CT-HOG feature extractor that
depends on Depth Motion Maps (DMMs), Contourlet Transform (CT), and Histogram
of Oriented Gradients (HOGs). To improve accuracy, [18] used texture and dense shape
information and combined them into DLE features that are fed to L2-regularized Col-
laborative Representation Classifier (L2-CRC). Ref. [19] proposed a method that fused
classification results obtained by using multiple classifiers Kernel-based Extreme Learning
Machine (KELM) through three types of features. A Bag-of-Map-Words (BoMW) method is
introduced in [20] and feature vectors are extracted from Salient Depth Map (SDM) and
Binary Shape Map (BSM) respectively and combined by the BoMW. Ref. [21] submitted a
method using gradient local auto-correlations (GLAC) feature description algorithm based
on spatial and orientational auto-correlations of local image. They introduced a fusion
method depend on the Extreme Learning Machine classifier (ELM). Ji et al. [1], proposed a
Spatio-Temporal Cuboid Pyramid (STCP) which subdivides the Depth Motion Sequence
into spatial cuboids and temporal segments and used Histograms of Oriented Gradients
(HOG) features. Chen et al. [22], used the texture feature descriptor Local Binary Pattern
(LBP) and used the Kernel-based Extreme Learning Machine (KELM) classifier [19] to
detect action. Again, in [23], DMMs are used as the feature descriptor. In their method,
classification is accomplished by L2-CRC consisting of a distance-weighted Tikhonov ma-
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trix. A new feature named Global Ternary Image (GTI) was introduced in [24]. By a bag of
GTI model, the authors in [24] obtained data from motion regions and motion directions.
After that, Liang et al. [25], used multiscale HOG descriptors and extracted local STACOG
features. Then actions were recognized by L2-CRC classifier. To improve accuracy, [15]
fused 2D and 3D auto-correlation of gradients features which are extracted by Gradient
Local Auto-Correlations (GLAC) and STACOG descriptors, respectively. Then, the action is
classified by KELM with RBF kernel. Liu et al. [26] presented a method that used Adaptive
Hierarchical Depth Motion Maps (AH-DMMs) and Gabor filter. Their method can extract
motion and shape cues without decreasing temporal information and adopt the Gabor filter
to encode the texture data of AH-DMMs. Jin et al. [27] split depth maps into a set of sub-
sequences to create a vague boundary sequence (VB-sequence). They obtained dynamic
features by combining all DMMs of VB-sequences. After that, Zhang et al. [28], presented
low-cost 3D histograms of texture feature descriptors by which discriminant features are
obtained. They also introduced a multi-class boosting classifier (MBC) to use different
features for recognition. Furthermore, Chen et al. [29] introduced a multi-temporal DMMs
descriptor in which a non-linear weighting function is used to assemble depth frames.
They used a patch-based Local Binary Pattern (LBP) feature descriptor to obtain texture
information. They used Fisher kernel representation and used the KELM classifier [19] for
action classification. Li et al. [30], extracted texture features by discriminative completed
LBP (disCLBP) descriptor and used a hybrid classifier associated with Extreme Learning
Machine (ELM) and collaborative representation classifier (CRC). The authors in [31] used
Histogram of Oriented Gradients (HOG) and Pyramid Histogram of Oriented Gradients
(PHOG) as shape feature descriptors. They used L2-CRC classifier. Azad et al. [32], in-
troduced a multilevel temporal sampling (MTS) scheme that depended on the motion
energy of depth maps. They extracted histograms of gradient and local binary patterns
from a weighted depth motion map (WDMM). In [33], an action recognition scheme based
on two types of depth images (generated using 3D Motion Trail Model (3DMTM)) was
introduced. They obtained two features by using the GLAC algorithm from the images
respectively and the features were fused in a vector. In the same year, Weiyao et al. [34]
submitted Multilevel Frame Select Sampling (MFSS) model to obtain temporal samples
from depth maps. They also proposed motion and static maps (MSM) and extracted texture
features by the block-based LBP feature extraction scheme. They used the fisher kernel
representation method to fuse obtained features and the KLM classifier to detect action.
After that, Shekar et al. [35] introduced Stridden DMMs from which effective information
of actions can be obtained quickly. They Undecimated the Dual-Tree Complex Wavelet
Transform algorithm to extract wavelet (UDTCWT) features from the proposed DMMs.
They used a Sequential Extreme Learning Machine classifier. To improve results, [36] used
two types of images that are obtained by using the 3D Motion Trail Model (3DMTM).
In their method feature vectors are mined from MHIs and SHIs by the GLAC feature
descriptor. Al-Faris et al. [37] presented the construction of a multi-view region-adaptive
multi-resolution-in-time depth motion map (MV-RAMDMM). They trained several scenes
and time resolutions of the region-adaptive depth motion maps (RA-DMMs) by multi-
stream 3D convolutional neural networks (CNNs). They used a multi-class SVMs classifier
to recognize human actions.

Additionally, in [38], depth and inertial sensor-based features were extracted and
fused to a single feature. The final feature set was passed to the collaborative representation
classifier. Based on skeleton information, Youssef et al. [39], extracted normalized angles of
local joints and used modified spherical harmonics (MSHs) to model the angular skeleton.
They used MSH coefficients of the joints as the discriminative descriptor of the depth
maps. Hou et al. [40], proposed a framework to convert Spatio-temporal data from skeleton
sequence into color texture images. They used convolutional neural networks to obtain
discriminative features. The authors in [41] created a Deep Convolutional Neural Network
(3D2CNN) to acquire Spatio-temporal features from depth maps and calculated JointVectors
from depth maps. The spatio-temporal features and JointVectors were passed individually
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to the SVM classifier and the outputs were combined into a single result. To improve
accuracy [42] introduced a Spatially Structured Dynamic Depth Images S2 DDI to represent
an action video. To generate S2 DDI, they presented a non-scaling method and approved a
multiply score fusion scheme to increase accuracy. Using RGB image, Al-Obaidi et al. [43]
presented a method to anonymize action video. Histograms of oriented gradients (HOG)
features are extracted from anonymized video images. A Generative Multi-View Action
Recognition (GMVAR) method is presented in [44], by which three discrete scenarios
are managed at the same time. They introduced a View Correlation Discovery Network
(VCDN) to concatenate multi-view data. Liu et al. introduced dynamic pose images (DPI)
and attention-based dynamic texture images (att-DTIs) in [45] to obtain spatial and tempo-
ral cues. They combined DPI and att-DTIs through multi-stream deep neural networks and
a late fusion scheme. Inertial sensor-based low-level and high-level features are used in [46]
to categorize human actions acted by a performer in real time. Haider et al. [47] introduced
balanced, imbalanced, and super-bagging methods to recognize volleyball action. They
used four wearable sensors to evaluate their method. Using signals created by the inertial
measurement unit [48] introduced a method based on 1D-CNN construction and consider
the tractability of features in time and duration. Bai et al. [49], presented a Collaborative
Attention Mechanism (CAM) to develop Multi-view action recognition (MVAR) perfor-
mance. They also proposed Mutual-Aid RNN (MAR) cell to obtain multi-view sequential
information. Ullah et al. [50] introduced a conflux long short-term memory (LSTMs) net-
work. They used CNN model to extract features and used SoftMax for classification. A
fusion technique called View-Correlation Adaptation (VCA) in feature and label space was
presented in [51]. They generated a semi-supervised feature augmentation (SeMix) and
introduced a label-level fusion network. In [52], a light-weight CNN model was used to
detect humans and LiteFlowNet CNN was proposed to extract features. The deep skip
connection gated recurrent unit (DS-GRU) was used to recognize the action.

3. Proposed Recognition Framework

In this segment, we introduced the proposed framework with a detailed discussion on
the construction of DMMs sequences, 3D auto-correlation features extraction, and action
recognition. Algorithms 1 and 2 describe the mechanism of feature extraction and action
recognition, respectively.

Algorithm 1 Algorithm for feature vector construction
Input: A Depth action video D of frame length L

Steps:
1. Split D and construct a set {Sj}m

j=1, where len(Sj) = l1 for all j

2. For all sub-sequences Sj, calculate DMMj
f , DMMj

s and DMMj
t through Equation (1)

3. Use outcomes of Step2 and generate {DMMj
f }

m
j=1, {DMMj

s}m
j=1 and {DMMj

t}m
j=1

4. Use outcomes of Step3 and calculate three feature vectors through Equations (3) and (4)
5. Concatenate outcomes of Step4
6. Further split D and construct another set {Vk}n

k=1, where len(Vk) = l2 for all k
7. Follow Step2-Step5 for {Vk}n

k=1

Output: Two auto-correlation feature vectors H1 and H2
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Algorithm 2 Algorithm for action recognition
Input: The training feature set Y = {yj}n

j=1, test sample c, λ, K (number of action classes),
class label ki (for class partitioning), Q is the number of classifiers.

Steps:
1. Calculate γ̂i using Equation (8)
2. for Q ∈ {l, 2}

for c ∈ {H1, H2} ← two feature vectors are calculated for c using Algorithm 1
for all i do

Partition Yi,γ̂i
Calculate ei = ‖c−Yiγ̂i‖2
Calculate pq(ω|c) through Equation (11)

end for
end for

end for
3. Calculate P(ω|c) through Equation (12)
4. Decide class(c) through Equation (13)

Output: class(c)

3.1. Construction of DMMs Sequences

In our work, DMMs corresponding to three projection views (front, side, and top)
are constructed for each sub-sequence of depth map sequence. To obtain DMMs, all the
depth frames of each sub-sequence are projected onto 3D Euclidean space and projection
frames corresponding to three projected views are generated. For each projected view, the
addition of the utmost differences between sequential projection frames forms DMMs of
front, side, and top.

To interpret computation of DMMs sequence [23], at first, a depth video D of length
L is divided into a set {Sj}m

j=1 of sub-sequences of uniform size l1 > 0 as D = ∪m
j=1Sj,

where j represents the index of sub-sequence. Let us consider a depth frame sequence
{p1, p2, p3, . . . , pl1} for each sub-sequence, where l1 is the frame length of each sub-sequence,
i.e., len(Sj) = l1 for all j. The projection of ith frame pi on 3D Euclidean space provides

three projected frames pi
v (which are referred to as PFj

v in Figure 1), where v designates front,
side, and top projection views and v ∈ { f , s, t}. The DMMs corresponding to projection
views are defined by the following equation:

DMMv =
l1−1

∑
i=1
| pi+1

v − pi
v |, (1)

For all Sj, DMMs are represented by DMMj
f , DMMj

s, and DMMj
t. Therefore, {DMM1

f ,

DMM2
f , . . . , DMMm

f }, {DMM1
s , DMM2

s , . . . , DMMm
s } and {DMM1

t , DMM2
t , . . . , DMMm

t }
sequences are formed from {Sj}m

j=1 of D. In action datasets, the same actions are performed
by different individuals with different speeds. To cope with action speed variations, the
depth map sequence of D is further divided into another set {Vk}n

k=1 of sub-sequences
where frame length of each sub-sequence is l2 > 0, i.e., len(Vk) = l2 for all k (see Figure 1).
As a result, more three new sets of DMMs sequences {DMM1

f , DMM2
f , . . . , DMMn

f },
{DMM1

s , DMM2
s , . . . , DMMn

s } and {DMM1
t , DMM2

t , . . . , DMMn
t } are obtained from {Vk}n

k=1.
In our DMMs sequences constructing mechanism, numerical values of frame lengths l1 and
l2 are experimentally chosen to 5 and 10 respectively. The frame length of a sub-sequence
may vary and must be set to less than the length of total depth video, i.e., l1 and l2 < L.
The DMMS sequences constructing scheme for frames length l1 is displayed in Figure 2.
The frame interval I in Figure 2 is set to 1 which is the number of frames from the first
frame of a portion to the first frame of the neighboring portion which indicates how many
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frames between the two portions are overlapped. Please note that the frame interval must
be less than the frame length of a sub-sequence, i.e., I < l1 and l2.

Figure 2. Construction of DMMs sequences according to sub-sequences of 5 frames.

3.2. Action Vector Formation

STACOG was introduced in [53] for RGB video sequences to extract local relationships
within the space-time gradients of three-dimensional motion by using auto-correlation
functions to space-time orientations and the magnitudes of the gradients. In our work,
this method is applied to all the DMMs sequences (calculated in the previous section) of
a depth video D to extract 3D geometric features of human motion. At each space-time
volumeS(x, y, t) (in general, this volume stands for a DMMs sequence) around each space-
time point in a DMMs sequence the space-time gradient vector is computed through the
derivatives Sx, Sy, and St to extract features. The space-time gradients can be described by
angles α = arctan(Sx, Sy) and β = arcsin( St

mg
), where the magnitude of gradient is defined

by mg =
√
(S2

x + S2
y + S2

t ). By the two angles, space-time orientation of the gradient is
coded into B orientation bins on a unit sphere by selecting weights to the nearest bins (see
Figure 3). Finally, the orientation is represented by B-dimensional vector named space-time
orientation coding (STOC) vector which is denoted by b. By using the magnitude mg
and the STOC vector b of the gradients, the Nth order auto-correlation function for the
space-time gradients is defined as follows:

RN(d1, . . . , dN) =
∫

f [mg(p), . . . , mg(p + dN)]b(p)⊗ · · · ⊗ b(p + dN)dp (2)

where di = (d1, . . . , dN) displacement are vectors from the reference point p = (x, y, t), f
represents a weighting function and⊗ is the tensor product of vector. In the tensor products,
there are small numbers of non-zero components related to the gradient orientations of
the neighboring vectors. The parameters N ∈ {0, 1}; d1x,y ∈ {±∆s, 0}; d1t ∈ {∆t, 0}; f (·) ≡
min(·) are confined in the experiment. Where ∆s is the displacement interval along the
spatial axis and ∆t is that of along the temporal axis. To inhibit the effect of isolated noise
on surrounding auto-correlations, min is received regarding to weight function f .

For N ∈ {0, 1} the 0th order and the 1st order STACOG features can be written as,

S0 = ∑
p

mg(p)b(p), (3)

S1(d1) = ∑
p

min[mg(p), mg(p + d1)]b(p)b(p + d1)
T , (4)

where S0 and S1 are 0th and 1st order auto-correlations which gives the 0th order and the
1st order STACOG features, and T is the transpose.
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Figure 3. 28 orientation bins along latitude and longitude on a hemisphere. 4 orientation bin layers
including a layer at pole are in two-dimensional x− y plane. 9 orientation bins are located on each
layer except at the pole (contains one bin).

3.3. Action Recognition

By applying Algorithm 1, two auto-correlation feature vectors H1 and H2 are acquired
corresponding to two different sets of sub-sequences, {Sj}m

j=1 and {Vk}n
k=1, of the depth

video D (see Figure 1). The dimension of H1 and H2 are reduced through Principal Com-
ponent Analysis (PCA) [54]. Then the two vectors are passed separately to L2-regularized
Collaborative Representation Classifier (L2-CRC) [13] and the relevant two distinct out-
comes are fused by logarithmic opinion pool (LOGP) [14]. To explain L2-CRC, let us denote
the class number by K. The set Y = [Y1, Y2, Y3, . . . , Yi, . . . , YK] = [y1, y2, y3, . . . , yj, . . . , yn] ∈
R(d×n) is the set of all training samples, where d is the-dimensionality of training samples,
m is the number of training samples from K classes, Yi ∈ R(d×mi) is subset of training
samples from class i and yj ∈ Rd is any training sample of Yi. Let, c ∈ Rd be any unknown
test sample which is defined by the linear combination of all the training samples in Y:

c ≈ Yγ, (5)

where γ = [γ1, γ2, γ3, · · · , γi, . . . , γK] is a m × 1 coefficients vector associated with the
training samples of class i. In practice, Equation(5) cannot be solved directly because it is
under determination [55]. By the solution of the following norm minimization problem,
Equation(5) can be solved:

arg min
γ
{‖c−Yγ‖2

2 + λ‖Mγ‖2
2},

subject to c ≈ Yγ,
(6)

where λ denotes the regularization parameter and M is the Tikhonov regularization ma-
trix [56], which is configured by the following diagonal matrix.

M =

||c− y1||2 · · · 0
...

. . .
...

0 · · · ||c− yn||2

, (7)

The coefficient vector can be calculated as [57],

γ̂ = (YTY + λMT M)−1YTc = Zc, (8)

Since the training samples are Y is given and λ is determined by these samples then Z
can be simply calculated and thus Z is independent of c. It is clear when the test sample c is
given, the corresponding vector γ̂ can be easily computed from Equation (8). The coefficient
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vector γ̂ is represented as [γ̂1, γ̂2, γ̂3, . . . , γ̂i, . . . , γ̂K] by considering all the action classes.
Now, the class-specific residual error can be obtained by

ei = ‖c−Yiγ̂i‖2, (9)

where, Yi is the dictionary sample and γ̂i is the coefficient of ith class, respectively.
From Equation (9), an error vector is obtained about an input feature vector. In our

case, there are two error vectors e1 = [e1
1, e1

2, e1
3, . . . , e1

i , . . . , e1
K] and e2 = [e2

1, e2
2, e2

3, . . . , e2
i , . . . ,

e2
K] since we input two feature vectors H1 and H2 obtained by Algorithm 1 for the test

sample c. A decision fusion scheme logarithmic opinion pool (LOGP) [14] rule is used to
concatenate the probabilities of those errors and to output the class label. In this scheme,
the following global membership function is calculated through the posterior probability
pq(ω|c) of each classifier.

P(ω|c) =
Q

∏
q=1

pq(ω|c)
1
Q , (10)

where ω ∈ [1, 2, 3, . . . , i, . . . , K] denotes class label, and Q(= 2) denotes the number of
classifiers.

Then a Gaussian mass function corresponding to the residual error e = [e1, e2, e3, . . . ,
ei, . . . , eK] is represented by the following equation.

pq(ω|c) ≈ exp (−ei), (11)

Equation (11) defines the higher posterior probability pq(ω|c) for a smaller residual
error ei. Therefore, the combined probability from the two classifiers is defined as:

P(ω|c) = exp (−e1
i )

1
2 × exp (−e2

i )
1
2 , (12)

And, class(c) = max{P(ω|c)}, (13)

where e1 and e2 are normalized to [0, 1].

4. Experimental Results and Discussion

This section discusses three sets of experiments on three datasets to evaluate the
performance of the proposed framework. First, the datasets are introduced along with their
challenges. Secondly, the setup of STACOG parameters is then discussed to evaluate the
proposed framework. Finally, experimental results on three datasets are described.

4.1. Datasets

Our proposed framework is greatly appraised on depth-based actions datasets named
MSR-action 3D dataset [58], DHA dataset [59], and UTD-MHAD dataset [38].

4.1.1. MSR-Action 3D Dataset

MSR-Action 3D dataset is captured by a depth camera which represents action data of
depth map sequences. The resolution of each map is 320× 240. This dataset has 20 types of
action categories. All the actions are acted by 10 different persons and every subject act in
each action 2 or 3 times. In this dataset, the number of depth map sequences is 557 [58]. This
dataset is a challenging because of the correspondence between some actions (e.g., “Draw x”
and “Draw tick”).

4.1.2. DHA Dataset

DHA dataset was introduced in [59] which contains some actions extended from the
Weizmann dataset [60]. The Weizmann dataset is used in action recognition based on RGB
sequences. The DHA dataset involves 23 action types among which 1 to 10 actions are
adopted from Weizmann dataset [61]. All the actions are performed by 21 subjects (12 males
and nine females) and the total number of depth map sequences is 483. Because of the
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inter-similarity between action classes (e.g., “rod-swing” and “golf swing”), the DHA dataset
is challenging.

4.1.3. UTD-MHAD Dataset

In the UTD-MHAD dataset [38], RGB videos, depth videos, skeleton positions, and
inertial signals are captured by a video sensor and a wearable inertial sensor. All the
actions of this dataset contain 27 actions and all the actions are performed by eight subjects
(four females and four males). Each performer repeats each action four times. This dataset
includes 861 depth action sequences, after eliminating three inappropriate sequences.

4.2. Parameter Setting

The proposed framework is evaluated on the datasets discussed above and compared
with the other state-of-the-art approaches. Of all the samples of each dataset, some samples
are used as training samples and the remaining samples are used as test samples. Depend-
ing on the test samples, results on all datasets are obtained. Each depth action video of
all datasets is partitioned into sub-sequences using the same frame lengths. The frame
interval between two consecutive sub-sequences is set to 1 which indicates the number
of overlapping frames. Thus, for two different frame lengths 5 and 10, the overlapping
frames 4 and 9 are obtained, respectively. Additionally, for all action datasets, we used the
same values of parameters. At first, all parameter values are tuned for a dataset to query
which values give the highest recognition accuracy. Then, the values of parameters set for
the highest result are used in all other datasets to verify the superiority of the framework.
To extract STACOG features, orientation bins in the x− y plane and orientation bin layers
are set to 9 and 4, respectively. According to [15], the temporal interval is set to 1 and the
spatial interval is fixed to 8. The L2-CRC parameter λ is tuned to 0.0001.

4.3. Classification on MSR-Action 3D Dataset

In the experimental arrangement, we used all action categories of MSR-Action 3D
dataset instead of dividing them into different action subsets. The action samples acted
through persons of the odd number are employed as training samples (284) and the samples
of the remaining persons of even number are used as test samples(273). Our proposed
framework gives 93.4% recognition accuracy which is compared with other frameworks
on depth data as shown in Table 1. Among 20 actions, the classification accuracy is 100%
for 14 actions. The remaining 6 actions have some confusion with other actions because of
some inter-class similarities. For example, the confusion of an action “Side kick” with an
action “Hand catch” is 9.1% (see Figure 4). The accuracy including confusion information of
each class is further clarified in Table 2.

Figure 4. Confusion matrix on MSR-Action 3D dataset.
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Table 1. Comparison of action recognition accuracy (%) with state-of-the-art frameworks on the
MSR-Action 3D dataset.

Approach Accuracy (%)

Decision-level Fusion (MV) [19] 91.9
DMM-GLAC-FF [16] 89.38
DMM-GLAC-DF [16] 92.31

DMM-LBP-FF [21] 91.9
DMM-LBP-DF [21] 93.0

3D2CNN [41] 84.07
Skeleton-MSH [39] 90.98

3DHoT_S [28] 91.9
3DHoT_M [28] 88.3

Depth-STACOG [15] 75.82
DMM-GLAC [15] 89.38

WDMM [32] 90.0
DMM-UDTCWT [35] 92.67
Proposed Approach 93.4

Table 2. Class-specific accuracy on MSR-Action3D dataset.

Actions Classification (%) Confusion (%)

High wave 100 No confusion
Horizontal wave 91.7 Hammer (8.3)

Hammer 100 No confusion
Hand catch 33.3 High wave (16.7), Hammer (8.3), High throw (33.3), Draw x (8.3)

Forward punch 100 No confusion
High throw 90.9 Forward punch (9.1)

Draw x 61.5 Horizontal wave (15.4), Hammer (15.4), Draw tick (7.7)
Draw tick 100 No confusion

Draw circle 93.3 Draw X (6.7)
Hand clap 100 No confusion

Two hand wave 100 No confusion
Side boxing 100 No confusion

Bend 86.7 Pick up and throw (13.3)
Forward kick 100 No confusion

Side kick 90.9 Hand catch (9.1)
Jogging 100 No confusion

Tennis swing 100 No confusion
Tennis serve 100 No confusion
Golf swing 100 No confusion

Pick up and throw 100 No confusion

4.4. Classification on DHA Dataset

In the DHA dataset, samples of the odd subjects are used as training samples and
the samples of the even subjects are used as test samples. There are 253 samples are used
as training samples and 230 samples are used as test samples. Our proposed framework
achieves 95.2% accuracy which shows the effectiveness of the recognition framework.
From Table 3, we can observe that 15 out of 23 actions are recognized with 100% accuracy.
The remaining 8 actions are confused with other actions shown in Figure 5. The action
“golf swing” gives 10% confusion with “rod-swing”. The comparison of our recognition
framework with other state-of-the-art methods is shown in Table 3. It is clear from the table
that our proposed framework beats other existing frameworks considerably. The class-wise
classification accuracy (for right and wrong classification) is shown in Table 4.
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Table 3. Comparison of action recognition accuracy (%) with state-of-the-art frameworks on the
DHA dataset.

Approach Accuracy (%)

SDM-BSM [20] 89.50
GTI-BoVW [24] 91.92

Depth WDMM [32] 81.05
RGB-VCDN [44] 84.32

VCDN [44] 88.72
Binary Silhouette [43] 91.97
DMM-UDTCWT [35] 94.2

Stridden DMM-UDTCWT [35] 94.6
VCA [51] 89.31
CAM [49] 87.24

Proposed Approach 95.2

Figure 5. Confusion matrix on DHA dataset.

Table 4. Class-specific accuracy on DHA dataset.

Actions Classification (%) Confusion (%)

Bend 100 No confusion
Jack 100 No confusion

Jump 100 No confusion
Pjump 100 No confusion

Run 80.0 Skip (10.0), Walk (10.0)
Side 100 No confusion
Skip 90.0 Run (10.0)
Walk 100 No confusion

One-hand-wave 100 No confusion
Two-hand-wave 100 No confusion

Front-clap 90.0 Front-box (10.0)
Arm-swing 90.0 Arm-curl (10.0)

Leg-kick 100 No confusion
Rod-swing 80.0 Golf-swing (10.0), Pitch (10.0)
Side-box 100 No confusion
Side-clap 90.0 Side-box (10.0)
Arm-curl 90.0 Front-clap (10.0)
Leg-curl 100 No confusion

Golf-swing 90.0 Rod-swing (10.0)
Front-box 100 No confusion

Tai-chi 100 No confusion
Pitch 100 No confusion
Kick 90.0 Pitch (10.0)
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4.5. Classification on UTD-MHAD Dataset

In the UTD-MHAD dataset, samples of the odd subjects are used as training samples
(431) and the samples of the even subjects are used as test samples (430). The evaluation
result of our framework on this dataset gives 87.7% recognition accuracy (see Table 5)
because of using varieties actions. The result in our recognition framework gives 100%
accuracy for 11 actions and the remaining 16 actions show confusion with other actions
(see Figure 6). The individual class recognition performance is reported in Table 6.

Table 5. Comparison of action recognition accuracy (%) with state-of-the-art frameworks on the
UTD-MHAD dataset.

Approach Accuracy (%)

Kinect [38] 66.10
Inertial [38] 67.20

Kinect+Inertial [38] 79.10
DMM-EOH [19] 75.3
DMM-LBP [19] 84.20
CNN-Top [40] 74.65

CNN-Fusion [40] 86.97
3DHOT-MBC [28] 84.40

VDDMMs [27] 85.10
Structured body DDI [42] 66.05
Structured part DDI [42] 78.70

RGB DTIs [45] 85.39
Inertial [48] 85.35

Proposed Approach 87.7

Table 6. Class-specific accuracy on UTD-MHAD dataset.

Actions Classification (%) Confusion (%)

Swipe-lift 87.5 Arm-cross (12.5)
Swipe-right 100 No confusion

Wave 81.3 Swipe-right (12.5), Draw-circle-CW (6.3)
Clap 43.8 Arm-cross (31.3), Arm-curl (25.0)

Throw 87.5 Draw-circle (CCW) (6.3), Tennis-serve (6.3)
Arm-cross 81.3 Arm-curl (18.8)

Basketball-shoot 81.3 Arm-curl (6.3), Tennis-serve (12.5)
Draw-x 100 No confusion

Draw-circle CW 93.8 Catch (6.3)
Draw-circle (CCW) 81.3 Draw X (6.3), Arm-curl (15.5)

Draw-triangle 43.8 Draw-circle (CCW) (56.3)
Bowling 100 No confusion
Boxing 100 No confusion

Baseball-swing 100 No confusion
Tennis-swing 81.3 Bowling (12.5), Baseball-swing (6.3)

Arm-curl 75.0 Arm-cross (12.5), Basketball-shoot (6.3), Push (6.3)
Tennis-serve 100 No confusion

Push 87.5 Arm-curl (12.5)
Knock 81.3 Arm-cross (6.3), Arm-curl (6.3), Catch (6.3)
Catch 75.0 Draw-triangle (18.8), Knock (6.3)

Pickup-throw 93.8 Tennis-serve (6.3)
Jog 100 No confusion

Walk 100 No confusion
Sit2stand 100 No confusion
Stand2sit 100 No confusion

Lunge 93.8 Bowling (6.3)
Squat 100 No confusion
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Figure 6. Confusion matrix on the UTD-MHAD dataset.

4.6. Efficiency Evaluation

The execution time and the space complexity of key factors are deliberated to show
the efficiency of our system.

4.6.1. Execution Time

The system is executed by using MATLAB on CPU platform with an Intel i5-7500
Quad-core processor of 3.41 GHz frequency and a RAM of 16 GB. There are seven major
components in the proposed approach: DMMs sequences construction for frame length
5, DMMs sequences construction for frame length 10, H1 feature vector generation, H2
feature vector generation, PCA on H1, PCA on H2, Action label. The execution time of these
components is determined to assess the time efficiency of the system on three datasets as
MSR-Action 3D, DHA, and UTD-MHAD dataset. Table 7 showed the execution time (in
milliseconds) of the seven components on those datasets and compared the total execution
time on the datasets. In the case of the MSR-Action 3D dataset, execution times are calculated
for each action sample with 40 frames on average. As can be seen from Table 7, 40 frames
are processed in less than one second (i.e., 252.6 ± 74.8 milliseconds). Therefore, our
proposed recognition framework can be used for real-time action recognition on the MSR-
Action 3D dataset. The execution times on the DHA dataset are calculated for each action
sample with 29 frames on average. Table 7 showed that the 29 frames are processed in
less than one second (i.e., 379.1 ± 90.7 milliseconds) which proves our framework can
be used for real-time action recognition on the DHA dataset. Table 7 also presented the
execution times (in milliseconds) on the UTD-MHAD dataset for each action sample with
68 frames on average. To process 68 frames, the system requires less than one second (i.e.,
508.9 ± 100.9 milliseconds) which showed the capability of the real-time action recognition
of our proposed framework.

4.6.2. Space Complexity

The components PCA and L2-CRC are the key components for the calculation of space
complexity of the proposed system. PCA and L2-CRC are adopted for both frame lengths
5 and 10. Therefore, the complexity of PCA is 2 ∗O

(
l3 + l2m

)
[23] and the complexity of

L2-CRC is 2 ∗O(nc ×m) [62]. Thus, the total complexity of the system can be expressed as
2 ∗O

(
l3 + l2m

)
+ 2 ∗O(nc×m). Table 8 describes the computed complexity and compared

it with the complexities of other existing frameworks. The table shows that our framework
delivers lower complexity and recognizes actions better than other existing frameworks.
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Table 7. Comparison of execution time (mean ± std) of the key factors on three datasets.

Main Components MSR-Action3D Dataset DHA Dataset UTD-MHAD Dataset

DMMs sequences construction for frame length 5 11.3 ± 0.7 80.7 ± 6.2 36.6 ± 3.0

DMMs sequences construction for frame length 10 18.8 ± 1.3 155.6±12.0 67.9 ± 5.5

H1 feature vector generation 108.5 ± 35.0 69.9 ± 35.0 197.7 ± 45.6

H2 feature vector generation 95.6 ± 36.7 57.2 ± 36.7 180.9 ± 45.9

PCA on H1 8.5 ± 0.4 7.3 ± 0.3 10.7 ± 0.3

PCA on H2 8.4 ± 0.3 7.2 ± 0.3 10.7 ± 0.3

Action label 1.5 ± 0.4 1.2 ± 0.2 4.4 ± 0.3

Total execution time 252.6 ± 74.8/action sample (40 frames) 379.1 ± 90.7/action sample (29 frames) 508.9 ± 100.9/action sample (68 frames)

Table 8. Comparison of computational complexity of the proposed approach with other existing approaches.

Approach Components Space Complexity

DMM [23] PCA, L2-CRC O
(
l3 + l2m

)
+ O(nc ×m)

l = size of action vector, m = number of training samples, nc = number of action classes

DMM-LBP-DF [21] PCA, Kernel-based Extreme Learning Machine (KELM) O
(
l3 + l2m

)
+ 3 ∗O

(
m3)

l = size of action vector, m = number of training samples

MHF+SHF+KELM [13] PCA, KELM O
(
l3 + l2m

)
+ 2 ∗O

(
m3)

l = size of action vector, m = number of training samples

GMSHI+GSHI+CRC [36] PCA, L2-CRC O
(
l3 + l2m

)
+ O(nc ×m)

l = size of action vector, t = number of training samples, nc = number of action classes

Enhanced auto-correlation [63] PCA, KELM ensemble O
(
l3 + l2m

)
+ O

(
m3)

l = size of action vector, m = number of action classes

Proposed Approach PCA, L2-CRC 2 ∗O
(
l3 + l2m

)
+ 2 ∗O(nc ×m)

l = size of action vector, m = number of training samples, nc = number of action classes
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5. Conclusions

In this paper, we present an effective action recognition framework that is based on
3D Auto-Correlation features. In fact, the Depth Motion Maps (DMMs) sequence represen-
tation is firstly introduced to obtain additional temporal motion information from depth
map sequences which can distinguish similar actions. The space-time auto-correlation
of gradients features description algorithm is then used to extract motion cues from the
sequences of DMMs according to different projection views. At last, the Collaborative
representation classifier (CRC) and the decision fusion scheme are used for detecting action
class. Experimental results on three benchmark datasets shows that the proposed frame-
work is better than the state-of-the-art methods. Moreover, the framework outperforms
other existing techniques that are based on space-time auto-correlation of gradients feature.
Furthermore, the space-time complexity analysis of the proposed framework indicates that
it can be used for the real-time human action recognition.
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