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Abstract

Polyploidy is frequent in nature and is a hallmark of cancer cells, but little is known about the strategy of DNA repair in
polyploid organisms. We have studied DNA repair in the polyploid archaeon Haloferax volcanii, which contains up to 20
genome copies. We have focused on the role of Mre11 and Rad50 proteins, which are found in all domains of life and which
form a complex that binds to and coordinates the repair of DNA double-strand breaks (DSBs). Surprisingly, mre11 rad50
mutants are more resistant to DNA damage than the wild-type. However, wild-type cells recover faster from DNA damage,
and pulsed-field gel electrophoresis shows that DNA double-strand breaks are repaired more slowly in mre11 rad50
mutants. Using a plasmid repair assay, we show that wild-type and mre11 rad50 cells use different strategies of DSB repair.
In the wild-type, Mre11-Rad50 appears to prevent the repair of DSBs by homologous recombination (HR), allowing
microhomology-mediated end-joining to act as the primary repair pathway. However, genetic analysis of recombination-
defective radA mutants suggests that DNA repair in wild-type cells ultimately requires HR, therefore Mre11-Rad50 merely
delays this mode of repair. In polyploid organisms, DSB repair by HR is potentially hazardous, since each DNA end will have
multiple partners. We show that in the polyploid archaeon H. volcanii the repair of DSBs by HR is restrained by Mre11-Rad50.
The unrestrained use of HR in mre11 rad50 mutants enhances cell survival but leads to slow recovery from DNA damage,
presumably due to difficulties in the resolution of DNA repair intermediates. Our results suggest that recombination might
be similarly repressed in other polyploid organisms and at repetitive sequences in haploid and diploid species.
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Introduction

Bacterial and eukaryotic cells are normally assumed to be

haploid and diploid, respectively, but polyploidy is surprisingly

widespread. Polyploid cells can arise naturally during development

of otherwise haploid or diploid organisms (e.g. hepatocytes), or as a

consequence of cellular stress and disease (e.g. cancer, reviewed in

[1]). Organisms that are constitutively polyploid are common

amongst eukaryotes, and include plants, fish and amphibians.

Polyploid bacteria include the radiotolerant species Deinococcus

radiodurans, which harbors ,8 copies of its genome [2], and

Epulopiscium spp., which contain tens of thousands of genome

copies [3]. Amongst archaea, Methanocaldococcus jannaschii, Halobac-

terium salinarum and Haloferax volcanii have been shown to be

naturally polyploid [4,5].

The presence of multiple genome copies affects many aspects of

cell metabolism, in particular pathways of DNA repair. Since

homologous recombination (HR) requires an identical genome

copy, its usage for DNA repair is influenced by cell ploidy. When

only one genome copy is present in the G1 phase of the eukaryotic

cell cycle, DNA double-strand breaks (DSBs) are repaired by non-

homologous end-joining (NHEJ), while HR is the predominant

form of DSB repair in the G2 phase (reviewed in [6]). A further

doubling of the ploidy of eukaryotic cells can result in increased

reliance on HR, since genes involved in HR become essential for

viability in tetraploid yeast [7]. In the presence of 8 genome copies

in D. radiodurans, RecA-dependent HR is also required for DSB

repair. However, HR is the second part of a two-stage DSB repair

process, and is preceded by RecA-independent extended synthesis-

dependent strand annealing [8].

It is a common assumption that additional genome copies might

help protect polyploid cells from DNA damage. This is not the

case, since tetraploid Saccharomyces cerevisiae cells are no more

resistant to DNA damage than diploids [9,10]. Furthermore, D.

radiodurans cells have the same survival rate after ionizing radiation,

whether they contain 4 or 10 genome copies [11].

We have undertaken a study of DNA repair in the halophilic

archaeon H. volcanii, which is naturally polyploid and contains 10–20

copies of the genome, depending on growth phase [4]. Archaea are of

great interest in their own right, and share many core components of

their DNA processing machinery with eukaryotes (reviewed in [12]).

We have focused on the role of the Mre11-Rad50 complex, which is

present in all domains of life and is involved in several pathways of

DSB repair including HR and NHEJ (reviewed in [13]). Mre11 is a
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nuclease, while Rad50 consists of two globular DNA-binding

domains (reviewed in [14]). Together, Mre11 and Rad50 form a

complex that binds to and tethers DNA ends, in order to erect a

scaffold for the subsequent processing and repair of DSBs [15–17].

For instance, Mre11-Rad50 has recently been shown to initiate 59-

strand resection at DSBs [18,19].

Mre11-Rad50 is critical for DSB repair, and S. cerevisiae mutants

in mre11 or rad50 are acutely sensitive to agents that induce DSBs

[20,21]. Mre11 is one of the first proteins to localize to the sites of

DSBs [22], where it activates the ATM/Tel1 kinase that is central

to the DNA damage-induced checkpoint [23]. It is noteworthy that

Mre11 foci at the sites of DSBs dissociate before the appearance of

‘‘classical’’ HR proteins such as Rad51 and Rad52 [22]. The

temporal separation between binding by Mre11-Rad50 and the

subsequent repair of DSBs presumably allows for the appropriate

pathway (HR or NHEJ) to be chosen. Mre11-Rad50 is also essential

for the repair of meiotic DSBs in both S. cerevisiae and

Schizosaccharomyces pombe, but only in S. cerevisiae does the formation

of meiotic DSBs depend on Mre11-Rad50 [24,25]. Similar

differences are found with respect to NHEJ, where Mre11-Rad50

is required for NHEJ in S. cerevisiae but not in S. pombe [26–28].

The bacterial homolog of Mre11-Rad50 is SbcCD. Sensitivity to

DNA damage is also seen in sbcCD mutants of some bacterial species

such as D. radiodurans and Bacillus subtilis [29,30], and D. radiodurans

sbcCD cells exhibit delayed repair of DSBs after ionizing radiation

[29]. Similarly retarded kinetics of DSB repair is seen in mre11

mutants of the archaeon Halobacterium sp. NRC-1, although in this

species deletion of mre11 or rad50 does not result in sensitivity to

DNA damage [31]. We have deleted mre11 and rad50 genes in the

polyploid archaeon H. volcanii and have found that mutants are

more resistant to DNA damage than the wild-type. Our results

indicate that the use of HR is restrained by Mre11-Rad50, and that

the unrestrained use of HR in mre11 rad50 mutants enhances cell

survival but leads to slower recovery from DNA damage.

Results

The mre11 and rad50 genes were identified in an operon in the

H. volcanii genome (Figure 1A). All motifs diagnostic for Mre11 and

Rad50 [32] are conserved in the H. volcanii proteins (Figure S1).

Genes for NurA and HerA, which cluster with mre11 and rad50 in

thermophilic archaea [33,34], are not apparent in the H. volcanii

sequence. Xrs2 and Nbs1, which form part of the Mre11-Rad50

complex in yeast and higher eukaryotes respectively [13,14], are

not found in archaea. Sequence analysis of the mre11-rad50 region

failed to identify additional genes in the operon.

Deletion mutants of rad50, mre11, and mre11 rad50 were

constructed using a gene knockout system for H. volcanii

(Figure 1B) [35]. The generation time of the mutants during

exponential growth in rich medium (Hv-YPC broth) was similar to

the wild-type (WT) (,2 hours). However, in a pairwise growth

competition assay, the mre11 rad50 mutant was out-competed by

the WT (Figure 1C). The growth advantage of the WT is ,1% per

generation.

mre11 rad50 Mutants Show Enhanced Resistance to DNA
Damaging Agents, but Recover More Slowly Than the
Wild-Type

We examined the sensitivity of H. volcanii rad50, mre11 and mre11

rad50 mutants to DNA damage, specifically ultraviolet (UV) and c
radiation, the radiomimetic chemical phleomycin, and the

alkylating agent methyl methanesulphonate (MMS). In all cases,

the mutants are significantly more resistant to DNA damage than

the WT strain (Figure 2). The UV sensitivity of mre11 rad50

mutants was restored to WT levels by expression of the mre11-

rad50 operon from a replicative plasmid (pTA795), confirming that

hyper-resistance to DNA damage is due to mre11 rad50 deletion

(data not shown).

After UV irradiation, mre11 rad50 colonies were smaller than

WT colonies (Figure 3A). The small mre11 rad50 colonies yielded

normal-sized colonies on restreaking (data not shown), therefore

the small-colony phenotype is probably due to a temporary delay

in growth of mre11 rad50 cells after UV irradiation. To investigate

this further, we carried out pairwise growth competition assays

after UV irradiation (Figure 3B). After 180 J/m2 UV, only a small

fraction of WT cells survive, but these survivors exhibit a rapid

recovery that results in restoration of the WT cell fraction to pre-

UV levels after 24 hours. Irradiation with 60 J/m2 UV results in

,50% cell death and there is no difference in survival between

WT and mutant cells (Figure 2), but pairwise growth competition

shows that the WT has a significantly faster recovery from DNA

damage than the mre11 rad50 mutant (Figure 3B).

Repair of DNA damage was monitored directly by pulsed-field

gel electrophoresis. Within 1 hour after irradiation with 180 J/m2

UV, the genome is fragmented by DSBs (Figure 3C). Formation of

these DSBs requires processing of UV-induced DNA damage,

since the total disappearance of bands corresponding to an intact

chromosome is not seen until 10–30 minutes after irradiation (data

not shown). Bands corresponding to an intact chromosome are

visible again by 16 hours in both WT and mre11 rad50 cells, but in

contrast to the WT, the majority of DNA in the mre11 rad50

mutant is found in a characteristic smear of broken fragments. By

24 hours, the WT has reconstituted the genome, whereas

fragmented DNA still persists in the mre11 rad50 mutant.

Therefore, repair of DNA damage is more rapid in the WT than

the mutant.

Homologous Recombination Is the Primary Pathway of
DSB Repair in mre11 rad50 Mutants, but Not in the Wild-
Type

We examined DSB repair using the recombination assay shown

in Figure 4A. Cells are transformed with a replicative plasmid

Author Summary

Most organisms contain only one or two copies of their
genome, but in some species multiple copies are found.
The presence of multiple genome copies (polyploidy) has
profound implications for DNA repair and is frequently
seen in cancer cells. We have studied DNA repair in the
archaeon Haloferax volcanii, which contains up to 20
genome copies. Archaea are a third form of life distinct
from bacteria and eukaryotes. We have focused on the
DNA repair proteins Mre11 and Rad50, which are found in
virtually all organisms and which in humans act to prevent
cancer. Surprisingly, we have found that H. volcanii cells
deficient in Mre11-Rad50 are more resistant to DNA
damage than wild-type cells. The DNA damage resistance
of mre11 rad50 mutant cells appears to be due to the
exclusive use of homologous recombination, a DNA repair
mechanism that is accurate but has the potential to
generate genome rearrangements that require time to
resolve. Correspondingly, we have found repair of DNA
damage in mre11 rad50 mutants takes longer than in wild-
type cells. Our results suggest that polyploid organisms
employ a program of DNA repair that minimizes their
reliance on homologous recombination.

Mre11-Rad50 Mutants of Haloferax volcanii
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carrying the beta-galactosidase gene bgaHa (Text S1, Figure S3).

This allele can recombine with a mutant bgaHa-Kp allele on the

chromosome. If the plasmid is cut with KpnI prior to

transformation, the DSB can be repaired either by end-joining

or by HR. Repair by accurate end-joining (religation) results in

colonies that stain blue with Xgal, whereas inaccurate end-joining

or HR results in colonies that remain red (bgaHa2). Inaccurate

end-joining and HR can be distinguished by a restriction digest of

plasmid DNA, since the StuI site in the bgaHa-Kp allele is

diagnostic of HR (Figure 4A and 4C).

If the plasmid is left uncut, gene conversion of the plasmid-

borne bgaHa allele does not differ significantly between the WT

and the mre11 rad50 mutants (Figure 4B, left graph). Therefore,

inactivation of Mre11-Rad50 does not affect HR of circular DNA.

If the plasmid is cut with KpnI, the efficiency of DSB repair is

similar in the WT and mutants, however the mode of DSB repair

differs markedly between these strains (Figure 4B, right graph). In

the WT, the vast majority of DSBs are repaired by accurate end-

joining, with very little contribution of HR or inaccurate end-

joining (Figure 4B and 4C). By contrast, in mre11 rad50 mutants

most repair is by HR, while accurate end-joining is reduced by

,50%. It is notable that in the WT, the frequency of HR between

the plasmid and chromosome is reduced almost 300-fold when the

plasmid is cut with KpnI, whereas in the mre11 rad50 mutants HR

is not affected by the presence of a DSB (Figure 4B, compare left

and right graphs). Therefore, Mre11-Rad50 restrains the use of

HR at DSBs.

Since Mre11 is a nuclease and Mre11-Rad50 has been shown to

initiate 59-strand resection at DSBs [18,19,36], it is possible that H.

volcanii Mre11-Rad50 might prevent HR by nucleolytic degrada-

tion of DSBs. To test this, we modified the DSB assay by inserting

a trpA marker at the end of the plasmid-borne bgaHa gene (Figure

S2). Degradation of KpnI-cut DNA is measured by loss of the trpA

marker, but HR with the chromosomal bgaHa-Kp allele is still

Figure 1. Construction of mre11 rad50 mutants. (A) Map of mre11-rad50 operon of H. volcanii indicating MluI sites used to isolate the genome
clone, location of the mre11 and rad50 deletions, and AgeI sites and probe used to verify the deletions. (B) Southern blot of genomic DNA cut with
AgeI, probed with DNA flanking mre11-rad50 operon, to indicate deletion of mre11 and/or rad50 genes. (C) mre11 rad50 mutants show a growth
defect of ,1% per generation. WT and mre11 rad50 strains (H115 and H204, respectively) were mixed in a ,1:10 ratio, respectively, and grown
together in pairwise competition. The average and standard error (SE) of four experiments are shown.
doi:10.1371/journal.pgen.1000552.g001

Mre11-Rad50 Mutants of Haloferax volcanii
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possible using downstream sequences. There was no significant

difference between WT and mutant strains in the frequency of

marker loss, suggesting that Mre11 is not responsible for DSB

degradation in H. volcanii.

We also measured the fraction of single-stranded DNA in WT

and mre11 rad50 cells, by slot-blotting of native (undenatured) and

denatured genomic DNA, and hybridization with a genomic DNA

probe (Figure S2C). After irradiation with 180 J/m2 UV, the

fraction of single-stranded DNA increases ,2.5-fold (Figure S2D),

but there was no significant difference between WT and mre11

rad50 strains. Thus, Mre11-Rad50 is not responsible for the

formation of single-stranded DNA after UV damage.

Mre11 has been shown to facilitate end-joining at microhomol-

ogies in vitro [37]. In WT H. volcanii, repair of the cut plasmid is

primarily by accurate re-ligation of cohesive KpnI ends. The

efficiency of this end-joining is reduced by ,50% in mre11 rad50

mutants, suggesting that it is partially dependent on Mre11-Rad50.

End-joining also depends on micro-homology, since its efficiency is

Figure 2. mre11 rad50 mutants show increased resistance to DNA damage. WT, rad50, mre11 and mre11 rad50 cultures (H115, H202, H203,
and H204, respectively) were plated and exposed to ultraviolet (UV) or c radiation. Alternatively, phleomycin or methyl methanesulphonate (MMS)
was added and cultures were incubated at 45uC for 1 hour before plating. In each case, the average and SE of six experiments are shown.
doi:10.1371/journal.pgen.1000552.g002

Mre11-Rad50 Mutants of Haloferax volcanii
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Figure 3. WT cells recover faster from UV irradiation than mre11 rad50 mutants. (A) mre11 rad50 UV survivors show retarded colony growth.
WT and mre11 rad50 cultures (H115 and H204, respectively) were plated at the same density, exposed to 300 J/m2 UV, and grown for 5 days. Similar
results were seen with mre11 and rad50 single mutants (data not shown). Photographs on the right show colony sizes formed after UV irradiation,
where cells were plated at differing densities to ensure equal survival (,10 colonies/plate), thus avoiding effects of poorer growth due to crowding.
(B) WT survivors recover from UV irradiation faster than mre11 rad50 mutants. WT and mre11 rad50 strains (H115/H642 and H204/H645, respectively)
were mixed in a 1:1 ratio, irradiated with 180 J/m2 or 60 J/m2 UV, and grown in pairwise competition. Aliquots were plated at regular intervals and
the fraction of WT cells determined. The average and SE of $six experiments are shown. (C) mre11 rad50 mutants exhibit delayed repair of DNA
damage. Samples were taken immediately before (unirradiated, Unir.) and at 1, 16 and 24 hours after irradiation with 180 J/m2 UV. Genomic DNA in
agarose plugs was digested with PmeI (which cuts the main chromosome twice) and subject to pulsed-field gel electrophoresis. Representative
image taken from one of four independent replicates. Similar results were seen with mre11 and rad50 single mutants (data not shown).
doi:10.1371/journal.pgen.1000552.g003

Mre11-Rad50 Mutants of Haloferax volcanii

PLoS Genetics | www.plosgenetics.org 5 July 2009 | Volume 5 | Issue 7 | e1000552



Figure 4. Compared to wild-type, mre11 rad50 mutants show elevated levels of homologous recombination at DSBs. (A) Plasmid repair
assay. pTA274 carries a 3 kb genomic fragment (light blue) with the bgaHa beta-galactosidase gene (dark blue). The chromosomal bgaHa-Kp allele
contains a 26 bp oligonucleotide (with a novel StuI site) at the KpnI site. Uncut plasmid may be gene converted by the chromosomal bgaHa-Kp allele,
while plasmid cut at the KpnI site may be repaired in three ways: (1) accurate joining of KpnI-cut ends to restore bgaHa, resulting in blue colonies
when stained with Xgal; (2) inaccurate joining of the DSB; (3) HR with the chromosomal bgaHa-Kp allele. The latter two outcomes result in red
colonies that do not stain with Xgal, and are distinguished by a StuI digest of plasmid DNA. (B) WT and mre11 rad50 cell repair DSBs differently. WT,
rad50, mre11 and mre11 rad50 strains (H115, H202, H203, and H204, respectively) were transformed with either uncut (left graph) or KpnI-cut pTA274
(right graph). The left graph shows gene conversion of uncut plasmid. The right graph shows repair of KpnI-cut plasmid, relative to transformation
efficiency with uncut plasmid (total transformants); blue bars represent accurate end-joining, and red bars represent HR or inaccurate end-joining.
The average and SE of 5 independent transformations are shown. (C) Repair in WT cells is primarily by end-joining, while mre11 rad50 mutants use
mainly HR. All red mre11 rad50 transformants examined (n = 49) contained a plasmid with a StuI site (HR), whereas half the red WT transformants
examined (n = 33) contained a plasmid that failed to cut with StuI (inaccurate end-joining).
doi:10.1371/journal.pgen.1000552.g004

Mre11-Rad50 Mutants of Haloferax volcanii
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decreased by .90% if the DSB is blunt-ended (data not shown).

Furthermore, plasmid repair events by inaccurate end-joining are

characterized by deletions of the bgaHa gene, which are flanked by

microhomologies of 3–5 bp (Figure S2E). This repair pathway is Ku-

independent, since H. volcanii (and almost all other archaea) does not

encode a Ku homolog [38], and resembles the microhomology-

mediated end-joining seen in other organisms [39].

DNA Repair in Both Wild-Type and mre11 rad50 Cells
Requires RadA Recombinase

RadA is the H. volcanii ortholog of RecA/Rad51 recombinase

and is more similar to eukaryotic Rad51 than bacterial RecA [40].

Mutants of radA are slow-growing, sensitive to DNA damage, and

completely deficient in recombination [41]. However, microho-

mology-mediated end-joining of a cut plasmid (as described in

Figure 4) is observed in a radA mutant (H607, data not shown).

Deletion of radA in an mre11 rad50 background leads to a growth

defect that is worse than that seen with radA alone (Figure 5A).

This might suggest that Mre11-Rad50 and RadA act in different

pathways of DNA repair. However, we found that radA mre11

rad50 mutants are no more sensitive to UV radiation than radA

strains (Figure 5B). This indicates that in both WT and mre11 rad50

cells, the repair of UV-induced DNA damage requires RadA, and

therefore most likely HR.

Discussion

We have deleted the mre11 and rad50 genes of the polyploid

archaeon H. volcanii and have found that: (1) mre11 rad50 mutants

are hyper-resistant to DNA damage, but recover from DNA

damage and repair DSBs more slowly than the WT; (2) mre11

rad50 mutants exhibit more homologous recombination at DSBs

than the WT; (3) RadA recombinase is ultimately required for

DNA repair.

Absence of Mre11-Rad50 Increases Resistance to DNA
Damage

In S. cerevisiae, null mutations of mre11 or rad50 confer sensitivity

to ionizing radiation and MMS, although not to UV [20,21]. In

bacteria, Deinococcus radiodurans and Bacillus subtilis sbcCD mutants

are sensitive to DNA damage [29,30]. However, it is not always

the case that lack of Mre11-Rad50 or SbcCD results in decreased

resistance to DNA damage. E. coli sbcC mutants and mre11 rad50

mutants of the archaeon Halobacterium sp. NRC-1 do not show

increased sensitivity to DNA damage [31,42]. Intriguingly, we

have found that H. volcanii mre11 and rad50 mutants are more

resistant to DNA damage than the WT (Figure 2).

Mutations in DNA repair genes that increase resistance to DNA

damage have been reported elsewhere. Defects in DNA ligase IV

or the end-binding Ku70-Ku80 complex increase the resistance of

chicken DT40 and yeast cells to high doses of c radiation or

phleomycin [43,44]. The increased DNA damage resistance of

NHEJ-defective cells is thought to be due to a failure to suppress

HR [45]. Our work shows that this is also the case for mre11 rad50

mutants of H. volcanii, since the hyper-resistance to DNA damage

correlates with increased repair by HR.

Figure 5. Repair of UV–induced DNA damage ultimately
depends on RadA. (A) Deletion of mre11 rad50 and radA leads to a
growth defect that is worse than radA alone. WT, mre11 rad50, radA and
mre11 rad50 radA strains (H195, H280, H387, and H392, respectively)
were grown for 10 days on Hv-YPC+Thy plates. The generation times of
these strains in Hv-YPC+Thy broth are indicated in parentheses. The
phenotypes of mre11 radA (H448) and rad50 radA (H389) mutants are

similar to that of the mre11 rad50 radA strain (data not shown). (B)
mre11 rad50 deletion does not enhance the UV-sensitivity of a radA
mutant. WT, radA, rad50 radA, mre11 radA, and mre11 rad50 radA
cultures (H195, H387, H389, H448, and H392, respectively) were plated
and exposed to UV. The average and SE of six experiments are shown.
doi:10.1371/journal.pgen.1000552.g005

Mre11-Rad50 Mutants of Haloferax volcanii
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Mre11-Rad50 Promotes Rapid Recovery from DNA
Damage

Although mre11 rad50 mutants of H. volcanii are more resistant to

DNA damage than the WT, they take longer to recover. This is

evident in the size of colonies formed by surviving cells (Figure 3A),

and in pairwise competition assays after UV irradiation (Figure 3B,

left graph). WT survivors are less numerous but recover more

rapidly than mre11 rad50 mutants after irradiation with high doses

of UV. This suggests that WT and mre11 rad50 cells use two

different DNA repair strategies. The speed of the Mre11-Rad50-

dependent repair strategy gives WT cells a long-term advantage,

in spite of being incapable of repairing high levels of DNA

damage. At lower doses of DNA damage (60 J/m2 UV), the

advantage of the WT repair strategy is also apparent (Figure 3B,

right graph). One reason might be slower repair of DSBs in mre11

rad50 mutants, as indicated by pulsed-field gels of genomic DNA

after UV irradiation (Figure 3C). A similar delay in the repair of

DSBs has been observed in sbcCD mutants of D. radiodurans and

mre11 mutants of the archaeon Halobacterium sp. NRC-1 [29,31].

Mre11-Rad50 Reduces Dependence on Homologous
Recombination to Repair DSBs

Our results indicate that the DNA repair strategy used in mre11

rad50 cells involves unrestrained HR. In WT cells, cut plasmid

molecules are repaired by microhomology-mediated end-joining,

whereas in the absence of Mre11-Rad50, HR is increased ,100-

fold and is the predominant mode of repair (Figure 4). This is in

contrast to S. cerevisiae, where deletion of mre11 reduces HR

between plasmid and chromosome ,20-fold [46]. Furthermore, in

S. cerevisiae the presence of a DSB stimulates HR between plasmid

and chromosome [47], whereas in WT H. volcanii the presence of a

DSB reduces HR between plasmid and chromosome (Figure 4B,

compare left and right graphs). This suggests that in H. volcanii, the

preferred substrate for HR is not a DSB.

There are two (non-exclusive) hypotheses to account for our

results: (1) Mre11-Rad50 binds to DSBs and directly prevents HR

(e.g. by blocking assembly of RadA filaments); (2) Mre11-Rad50

stimulates an alternative pathway of DSB repair (e.g. by

microhomology-mediated end-joining), thereby removing the

substrate for HR. If the sole function of Mre11-Rad50 is to

promote an alternative to HR, then mutations that eliminate HR

should be synergistic with deletion of mre11 rad50. Mutation of radA

renders cells sensitive to DNA damage and deficient in HR [41],

and we show here that radA mre11 rad50 mutants are no more

sensitive to UV radiation than radA cells (Figure 5B). RadA might

have other roles in addition to HR, such as activation of an SOS

response to DNA damage, as seen in bacteria [48]. However, to

date there is no evidence for an SOS response in archaea [49,50].

For these reasons we favor the first hypothesis, where Mre11-

Rad50 directly restrains HR and allows another pathway to act as

the primary mode of DSB repair. The phenotype of radA mre11

rad50 mutants suggests that HR is ultimately required for repair of

DSBs, therefore the restraint on HR imposed by Mre11-Rad50

can only be temporary.

Conclusions
Why does H. volcanii Mre11-Rad50 appear to act differently

when compared to other organisms? We suggest that HR is

restrained in H. volcanii because this species is highly polyploid [4].

Coordinating HR is likely to be problematic when each DSB has

20 partners to choose from. This problem is exacerbated in

organisms with a circular genome, since DSB repair by HR runs

the risk of generating chromosome concatemers, which require

resolution before cell division. However, our results with radA

mutants suggest that DNA repair ultimately requires HR. We

propose that Mre11-Rad50 temporarily restrains HR, and

promotes (directly or indirectly) a repair mechanism that reduces

the number of DNA ends, which ultimately have to be repaired by

HR. A two-step process of DNA repair has been proposed for the

polyploid bacterium D. radiodurans, where DNA fragments are first

reassembled by extended synthesis-dependent strand annealing

(ESDSA) before chromosome reconstitution by HR [8]. However,

the initial step used in H. volcanii is unlikely to be ESDSA, since we

find no evidence for increased DNA synthesis after UV irradiation

(data not shown). As we suggest above, H. volcanii might use

microhomology-mediated end-joining, but other mechanisms for

the initial DNA repair are also possible. In any case, this initial

mechanism appears to be incapable of repairing large numbers of

DSBs, as evident by the hyper-resistance to DNA damage seen in

mre11 rad50 mutants.

Mre11-Rad50 might also restrain HR in order to promote a

physiological change, such as induction of a DNA damage

response that allows time for processing of DSBs, and/or arrest

at a cell cycle checkpoint. In eukaryotes, hyper-recombination is a

common phenotype of checkpoint defective cells [51], and the

small size of H. volcanii mre11 rad50 colonies after UV irradiation

(Figure 3A) is strikingly reminiscent of yeast cells that have adapted

to the DNA damage checkpoint and re-entered the cell cycle [52].

Why would evolution restrain HR, if the unrestrained use of

HR (in H. volcanii mre11 rad50 mutants) results in higher cell

survival? Yeast and chicken DT40 cells defective in NHEJ show

increased DNA damage resistance, which is suggested to be due to

a failure to suppress HR [43,44]. Perhaps the cost of HR results

from the time taken to repair DNA damage, and this cost is

particularly acute for polyploid organisms. In the polyploid species

D. radiodurans and Halobacterium sp. NRC-1, mutations in sbcCD and

mre11, respectively, result in slower repair of DSBs [29,31], similar

to what we have observed for H. volcanii. We suggest that HR is

restrained in these and other polyploid organisms, and at repetitive

sequences in haploid/diploid species, for example the rDNA locus

[53]. When many copies of a gene or genome are present,

restraining HR might be necessary to prevent each DNA end from

engaging with multiple partners.

Materials and Methods

Unless stated otherwise, chemicals were from Sigma and

restriction enzymes from New England Biolabs. Standard

molecular techniques were used [54].

Strains and Plasmids
H. volcanii strains are shown in Table 1, plasmids in Table S1,

and oligonucleotides in Table S2. H. volcanii strains were grown at

45uC on complete (Hv-YPC) or casamino acids (Hv-Ca) agar, or

in Hv-YPC or Hv-Ca broth, as described previously [55,56]. To

estimate generation times, a culture of Hv-YPC broth (+thymi-

dine) was inoculated with ,103 cells/ml, viable cells/ml was

determined by plating aliquots at regular intervals. Isolation of

genomic and plasmid DNA, and transformation of H. volcanii were

carried out as described previously [55,57].

Cloning and Deletion of mre11-rad50
The rad50 gene was identified in the genome sequence. A

469 bp fragment of rad50 was amplified by PCR and used to probe

a Southern blot of genomic DNA digested with MluI; a 5.3 kb

fragment hybridized with the probe. A genomic library of MluI

5.3 kb fragments was constructed and screened by colony
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hybridization with the rad50 probe. One clone (pTA42) was found

to contain the mre11-rad50 operon (Figure 1A). The sequence of

the mre11-rad50 operon has been deposited in the EMBL database

(accession number AJ635369).

Construction of rad50, mre11, and mre11 rad50 Strains
To generate the Drad50 construct, a BspEI–BsaBI rad50

fragment of pTA42 was deleted (Figure 1A). The Dmre11 construct

was generated by PCR, to ensure precise gene deletion that would

not exert a polar effect on rad50 (see Table S2). To generate the

Dmre11Drad50 construct, the BspEI–BsaBI rad50 fragment was

deleted from the Dmre11 construct. A pyrE2 marker from pGB70

[35] was inserted into plasmids carrying Drad50, Dmre11 and

Dmre11 Drad50 constructs, generating pTA137, pTA138 and

pTA171 respectively, which were used to construct deletion strains

by a gene knockout system [35]. Deletion of radA in mre11 rad50

strains required complementation by a plasmid-borne radA gene

(see Text S1 and Figure S4).

Pairwise Growth Competition Assays
To compare strains during normal growth, a 10 ml culture of

Hv-YPC broth was inoculated with ,103 WT and ,104 mre11

rad50 cells (1:10 ratio). The mixed culture was grown for 2 days

(,108 cell/ml), diluted 1000-fold and ,104 cells was used to

inoculate 10 ml Hv-YPC; this was repeated a further 3 times.

After each inoculation, the ratio of WT and mutant cells was

determined by plating, transferring 100 colonies to nylon

membranes and probing with the 469 bp rad50 PCR product.

To compare the ratio of WT and mutant cells after UV

irradiation, bgaHa+ derivatives of H115 and H204 that stain blue

with Xgal (5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside)

were generated (H642 and H645, respectively, Text S1 and

Figure S3). Cultures were grown to ,108 cell/ml, centrifuged and

resuspended in an equal volume of 18% SW (salt water) [55]. A

1:1 mixture of WT and mre11 rad50 cells (differentially marked

with bgaHa+ or bgaHa-Kp) was exposed to 180 J/m2 UV (254 nm,

1 J/m2/s) or left unirradiated. The mixed culture was centrifuged,

resuspended in an equal volume of Hv-YPC broth and grown in

the dark at 45uC. Aliquots of 10 ml were taken at the intervals

shown and plated on Hv-YPC. After 5 days incubation, plates

were sprayed with Xgal solution (BlueTech, Mirador) and cells

scored the next day. Pairwise growth competition after 60 J/m2

UV was performed in a similar manner, except that after

irradiation the culture was diluted 106-fold in 1 ml Hv-YPC broth

and grown in the dark for 3 days.

DNA Damage Assays
For radiation assays, cultures were grown to ,108 cell/ml,

diluted in 18% SW and 20 ml aliquots spotted on Hv-YPC plates.

Once spots had dried, cells were exposed to UV or c radiation

(137Cs, 395 Gy/s). After UV exposure, cells were shielded from

visible light. For chemical mutagen assays, cultures were divided

into 1 ml aliquots, and phleomycin (Apollo Scientific) or methyl

methanesulphonate was added. Cultures were returned to 45uC
for 1 hour, diluted in 18% SW and plated on Hv-YPC. Survivors

were counted after 5–14 days incubation.

Table 1. H. volcanii strains.

Strain Genotype Derivationa

H26 DpyrE2 [55]

H54 DpyrE2 bgaHa H26 pTA102

H115 DpyrE2 bgaHa-Kp H54 pTA154

H202 DpyrE2 bgaHa-Kp Drad50 H115 pTA137

H203 DpyrE2 bgaHa-Kp Dmre11 H115 pTA138

H204 DpyrE2 bgaHa-Kp Dmre11 Drad50 H115 pTA171

H642 DpyrE2 bgaHa H115 pTA151

H645 DpyrE2 bgaHa Dmre11 Drad50 H204 pTA151

H292 DpyrE2 bgaHa-Kp DtrpA H115 pTA95

H293 DpyrE2 bgaHa-Kp DtrpA Drad50 H202 pTA95

H294 DpyrE2 bgaHa-Kp DtrpA Dmre11 H203 pTA95

H295 DpyrE2 bgaHa-Kp DtrpA Dmre11 Drad50 H204 pTA95

H607 DpyrE2 bgaHa-Kp DtrpA DradA::trpA+ H292 pTA324

H195 DpyrE2 bgaHa-Bb leuB-Ag1 DtrpA DhdrB [56]

H273 DpyrE2 bgaHa-Bb leuB-Ag1 DtrpA DhdrB Drad50 H195 pTA137

H276 DpyrE2 bgaHa-Bb leuB-Ag1 DtrpA DhdrB Dmre11 H195 pTA138

H280 DpyrE2 bgaHa-Bb leuB-Ag1 DtrpA DhdrB Dmre11 Drad50 H195 pTA171

H387 DpyrE2 bgaHa-Bb leuB-Ag1 DtrpA DhdrB DradA::trpA+ H195 pTA324b

H389 DpyrE2 bgaHa-Bb leuB-Ag1 DtrpA DhdrB Drad50 DradA::trpA+ H273 pTA324b

H448 DpyrE2 bgaHa-Bb leuB-Ag1 DtrpA DhdrB Dmre11 DradA::trpA+ H276 pTA324b

H392 DpyrE2 bgaHa-Bb leuB-Ag1 DtrpA DhdrB Dmre11 Drad50 DradA::trpA+ H280 pTA324b

H112 DpyrE2 DradA [57]

aParental strains and plasmids used in gene knockouts [35,55]. Unless indicated otherwise, source of strains was this study.
bpTA411 also used (see Text S1).
doi:10.1371/journal.pgen.1000552.t001
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Pulsed Field Gel Electrophoresis
Cultures were grown to ,108 cell/ml, centrifuged, and

resuspended in an equal volume of 18% SW. Cells were exposed

to 180 J/m2 UV with shaking, centrifuged, resuspended in an

equal volume of Hv-YPC broth and grown in the dark at 45uC.

Samples were taken at the time indicated. Cells were centrifuged,

resuspended in 20 ml 18% SW and embedded in 100 ml plugs at a

final concentration of 0.8% SeaPlaque GTG agarose (Cambrex)

prepared in 18% SW. Agarose plugs were incubated for

$16 hours at 45uC in lysis solution (20 mM Tris-HCl pH 8.8,

500 mM EDTA pH 8, 1% N-lauroylsarcosine, 1 mg/ml protein-

ase K), then transferred to fresh lysis solution containing 10 mg/ml

RNaseA for 4 hours at 45uC. Plugs were incubated in wash

solution (25 mM Tris-HCl pH 7.5, 100 mM EDTA pH 8) for

30 minutes at 37uC, then transferred to fresh wash solution

containing 1 mM phenylmethane sulfonyl fluoride for 1 hour at

37uC. Plugs were washed two more times for 30 minutes each, the

final time in 1/106wash solution. The plugs were transferred into

300 mL of restriction enzyme buffer and incubated for 30 min at

37uC, the buffer was replaced, and 40 U of PmeI was added.

Chromosomal DNA was digested overnight and the fragments

separated on a 1.2% agarose gel in 0.56 TBE using a CHEF

Mapper PFGE system (Bio-Rad) running with a gradient voltage

of 6 V/cm, an included angle of 120u, and initial and final switch

times of 0.64 sec and 1 min 13.22 sec, respectively, with a run

time of 20 h 46 min at 14uC.

Recombination Assay
Plasmids pTA274 and pTA329 were cut to completion with KpnI

or AarI, and purified by excision from agarose gels and extraction

using QIAquick columns (Qiagen). Equal aliquots were treated either

with shrimp alkaline phosphatase (Promega) or mock-dephosphory-

lated (no phosphatase). DNA concentration was determined by A260,

and 0.1–1 mg was used to transform WT, rad50, mre11 and mre11

rad50 strains. Uncut plasmid was used to measure transformation

efficiency. Cells were plated on Hv-Ca (+tryptophan for H292–295

transformed with pTA329). After 5 days incubation, plates were

sprayed with Xgal solution and transformants scored the next day. To

measure loss of the trpA marker in pTA329, red transformants of

H292–295 were patched onto Hv-Ca agar without tryptophan, and

scored after 3 days incubation.

Supporting Information

Figure S1 Multiple alignments of Mre11/SbcD and Rad50/

SbcC sequences. (A) N-termini of Mre11 and SbcD from H.

volcanii (Hvo), Pyrococcus furiosus (Pfu), Sulfolobus solfataricus (Sso),

Bacillus subtilis (Bsu), Deinococcus radiodurans (Dra), E. coli (Eco),

Arabidopsis thaliana (Ath), Homo sapiens (Hsa) and Saccharomyces

cerevisiae (Sce) were aligned using ClustalW. Conserved phospho-

diesterase motifs are indicated by I–VI [32]. (B) The conserved

regions of Rad50 and SbcC polypeptides were aligned as

described above. The conserved motifs in the N-termini are the

Walker A (P-loop) and Q-loop, and in the C-termini are the

signature motif, Walker B, D-loop and H-loop [32]. The CxxC

motif is separated from the N- and C-termini by poorly-conserved

coiled-coil regions.

Found at: doi:10.1371/journal.pgen.1000552.s001 (0.08 MB

DOC)

Figure S2 DNA degradation is not affected in mre11 mutants. (A)

Assay for DSB degradation. Plasmid pTA329 is derived from

pTA274 and contains a 965 bp trpA marker (Trp+) inserted after

bgaHa. If DNA degradation is limited, repair by HR results in a

Trp+ colony. If degradation extends past trpA, HR with bgaHa-Kp is

possible using downstream sequences (light blue) but the resulting

colony will be trp2. pTA329 was also cut with AarI, to generate a

DSB closer to the trpA marker than the KpnI site (472 bp versus

867 bp, respectively). (B) Degradation of cut plasmid is similar in

WT and mutant strains. DtrpA derivatives of WT, rad50, mre11 and

mre11 rad50 strains (H292, H293, H294 and H295, respectively)

were transformed with pTA329 and plated on Hv-Ca+Trp. Red

transformants were replicated onto Hv-Ca to assay the fraction of

trp2 cells. The efficiency of DSB repair was similar to that

observed with pTA274 (data not shown). (C) Assay for single-

stranded DNA. The fraction of single-stranded DNA in cells

irradiated with UV was measured by slot blotting and hybridiza-

tion, using denatured DNA as a standard. (D) DNA degradation

after UV irradiation is not affected in mre11/rad50 mutants, as

determined by the fraction of single-stranded DNA in WT and

mre11 rad50 cells (H115 and H204, respectively). (E) Deletion end-

points of inaccurate end-joining. Plasmid DNA from red WT

transformants that failed to cut with StuI was sequenced. Deletions

ranged from 6–977 bp and featured end-points with microhomol-

ogy of 3–5 bp, as indicated. Plasmids that cut with KpnI or StuI

were also sequenced, they were identical to the bgaHa and bgaHa-

Kp alleles, respectively (data not shown).

Found at: doi:10.1371/journal.pgen.1000552.s002 (3.05 MB TIF)

Figure S3 Sequence of bgaHa gene used in recombination

assays. Nucleotide sequences of the beta-galactosidase genes bgaH

from Haloferax alicantei [58], bgaHv from H. volcanii, and the hybrid

bgaHa allele used in this study were aligned. bgaHa was constructed

by replacement of the native (non-functional) bgaHv gene with

bgaH sequences, between the crossover points shown. Differences

between bgaHa and the other sequences are indicated by shading.

Restriction endonuclease sites used in this study are underlined.

Found at: doi:10.1371/journal.pgen.1000552.s003 (0.06 MB

DOC)

Figure S4 Deletion of radA by using plasmid-based complemen-

tation. (A) pTA324 is a pyrE2-marked (Ura+) plasmid carrying a

DradA::trpA construct and integrates at the radA locus. pTA411 is a

shuttle vector marked with pyrE2 and hdrB (Thy+). pTA411 carries

the wild-type radA gene and facilitates loss of integrated pTA324 by

HR. Selection for tryptophan (Trp+) ensures that DradA::trpA cells

predominate. Cells are plated on 5-fluoroorotic acid (5-FOA) agar

to select for ura2 cells, thereby ensuring loss of both integrated and

episomal pyrE2-marked plasmids. (B) WT, rad50, mre11 and mre11

rad50 strains (H195, H273, H276, and H280, respectively) were

transformed with pTA324 and pTA411. Loss of both plasmids

yields 5-FOA-resistant cells (5-FOAR, top row), and results in either

DradA::trpA+ or reversion to WT. Almost all colonies obtained in the

WT were small, as expected from DradA. Fewer colonies were

obtained in mre11 rad50 strains and most were large. Small 5-FOAR

colonies were patched on complete agar (middle row); two large 5-

FOAR colonies, as well as radA+ (H195) and DradA (H112) strains,

were included. Cells were transferred to membranes and probed

with radA sequences (lower row). 88.5% of 5-FOAR Trp+ colonies in

the WT background were DradA. In mre11 rad50 strains, fewer 5-

FOAR Trp+ colonies proved to be DradA (3.5%–25%). All radA

deletions were confirmed by Southern blot (data not shown).

Found at: doi:10.1371/journal.pgen.1000552.s004 (9.98 MB TIF)

Table S1 Plasmids.

Found at: doi:10.1371/journal.pgen.1000552.s005 (0.06 MB

DOC)

Table S2 Oligonucleotides.

Found at: doi:10.1371/journal.pgen.1000552.s006 (0.07 MB

DOC)
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Text S1 Supplemental materials and methods.

Found at: doi:10.1371/journal.pgen.1000552.s007 (0.05 MB

DOC)
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