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Abstract

Residue contact predictions were calculated based on the mutual information observed between pairs of positions in large
multiple protein sequence alignments. Where previously only the statistical properties of these data have been considered
important, we introduce new measures to impose constraints that make the contact map more consistent with a three
dimensional structure. These included global (bulk) properties and local secondary structure properties. The latter allowed
the contact constraints to be employed at the level of filtering pairs of secondary structure contacts which led to a more
efficient (lower-level) implementation in the PLATO structure prediction server. Where previously the measure of success
with this method had been whether the correct fold was predicted in the top 10 ranked models, with the current
implementation, our summary statistic is the number of correct folds included in the top 10 models — which is on average
over 50 percent.
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Introduction

The compact nature of the folded protein chain imposes

constraints on the mutational freedom of packed pairs of residues.

However, unlike the more rigorous 1:1 base-pairing of nucleotide

interaction found in RNA, the constraints on amino acid

interactions are less specific and the effect on any one position is

an average over contributions from all its neighbouring residues.

This results in a weak signal that barely exceeds background ‘noise’

effects [1] and over the years many approaches have been used to

try and tease-out useful structural constraints from the noise [2,3,4].

In recent years, fast sequencing methods have led to an

explosion of sequence data from a diverse range of organisms and

the analysis and alignment of these sequences have identified

many protein families with several thousand members [5]. Using

these large sequence families, it now appears that the information

in pairwise residue correlations is approaching a threshold at

which useful structural constraints can be obtained [6]. In that

work, we showed that predicted contacts derived from processing

the mutual information (MI) between positions in a multiple

sequence alignment could be used to select the correct fold from a

large collection of well constructed decoys. This was achieved by

re-scoring the models using the direct contact (DC) predictions

extracted from the MI values. However, this approach relied on

the decoy generation method (PLATO) to create a model of the

correct fold and sufficient variations of it to allow the DC values to

be matched to the correct residue pairs.

In this work, we follow a similar approach but instead, shift the

application of the DC constraints to a deeper level in the PLATO

method to filter the generation of the folds — keeping only those

folds that are compatible with the predicted contacts for

construction at the a-carbon (residue) level. This lower level

application at a more symbolic level of secondary structures element

(SSE) representation required the development of a new scoring

scheme that predicts the polarity (parallel/antiparallel) of the SSE

pairs. In addition we also apply some new filters at the residue level

to re-balance the predicted contacts towards distributions that are

more compatible with typical globular domains.

Results

Residue packing analysis
Analysis of SCOP40. The number of contacts under 8 Å

expected between pseudo-centroids for proteins of different size

was estimated from their distribution over the SCOP40 database.

[7] (Figure 1).

It can be seen from Figure 1 that the increase in the number of

contact residues is directly proportional to the size of the protein

and can be effectively modelled with a linear fit, which over the

(domain size) range of the data plotted in Figure 1, was: P = 3.21N-

95.7, where N is the number of residues in the protein and P the

estimated number of packed pairs. It can also be seen from

Figure 1 that the spread of values does not increase markedly with

length, with a standard deviation of P+/250 being a reasonable

approximation over the range of proteins considered here (100–

200 residues).

For SCOP40 domains in the range 100–200, the packing

interactions were also broken down into the number of

interactions per residue. When plotted against the fractional rank

of the number of contacts (0 = most, 1 = least), the data lie almost

on a straight line which is relatively independent of the protein

size. (Figure 2).
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While the data in Figure 2 could be reasonably approximated

by a straight line, the sharp up-turn for the most densely packed

residues can be better captured by including a reciprocal

component: R = 8(12N)+1.0(1/(N+0.2)21), where N is again the

number of residues. (Plotted as the green line in Figure 2).

Residue packing was also analysed in terms of the sequential

separation of the pair for the SCOP40 data (Figure 3). When

plotted against the fractional ranked sequence separation (0 = ad-

jacent, 1 = termini), an almost linear relationship is again found

which also has a sharp up-turn as the pair spacing becomes small.

The same functional form can be used to model these data, giving

the relationship: S = 7(12N)+0.8(1/(N+0.2)21). (Plotted as the

green line in Figure 3).

Application to predicted contacts. The quantities defined

in the previous section (P,R,S) were used to refine the distribution

of values in a predicted contact map as described in the Methods

section. In this subsection we show the application of these

constraints to the contacts predicted for the flavodoxin test protein

(PDB code: 1f4pA).

In Figure 2(b) the observed contacts for 1f4pA, plotted in green,

can be seen to be a close fit to the theoretical line derived from the

SCOP40 data (blue). By contrast, the unrefined contacts contain

many over-packed residues (cyan) with a maximum of 18 contacts.

After correction (red) the distribution has been reduced to fit the

theoretical curve, giving a close match to the observed data. When

analysed by sequence separation, the observed contacts for 1f4pA,

plotted in green in Figure 3(b), are a reasonable match to the

theoretical distribution, as are the predicted contacts (cyan) which

required only minor correction (red).

The effect of these corrections on the contact map are

compared in Figure 4 where the corrected contacts are plotted

in the top left and the original contacts lower right of the map in

red, against a background of observed contacts (green).

Fold recognition
Each protein in the test-set (see Methods section) was run

through the automated PLATO server [8,9] to generate a large set

of decoy models. (Strictly, these models are not all decoys as they

include, typically 20 or more, folds that correspond to the native

fold. For ease of reference, however, we will refer to them all as

decoys or simply models.) The method was then modified by

including the predicted SSE contacts to score the protein fold

topologies generated at the low-level combinatorial stage, before

any a-carbon coordinates are generated. The weaker scoring

models are rejected at this stage allowing not only a greater search

depth but also resulting in many fewer models. (See Table 1:

‘‘number of decoy models’’ column).

Using the uncorrected contacts, no models were generated for

two of the proteins (1f4pA and 1cozA). As the unbiased PLATO

server had generated good models for both proteins with the

correct topology and RMS deviations around 5 Å, albeit low

ranking, the limitation was not in the model generation but rather

their scoring using the predicted contact data. For both these

proteins, the contact map was refined as described in the previous

section to correct for structural inconsistencies and the contact-

biased PLATO server rerun. This now produced high ranking

correct models for 1f4pA but still none for 1cozA. Examination of

the raw data for 1cozA suggested that this should not be

unexpected as they contain many false pairs.

As previously [6], the results for each protein were assessed by

the position of models with the correct native fold (true fold) in the

Figure 1. Number of contacts with protein length. The number of contacts between pseudo-centroids for the domains included in the SCOP40
database is plotted against the number of residues in the domain (Protein length). The green line is the best-fit to the data over the plotted range.
doi:10.1371/journal.pone.0028265.g001
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Figure 2. Number of contacts per residue. (a) The number of pseudo-centroid contacts is plotted against the fractional rank of the residues in
the protein where 0 is most dense and 1 least dense. The red lines each represent data from the SCOP40 database in ten length bins spanning 100 to
200 residues. The green line is a fitted curve (described in the text). (b) Predicted contacts for 1f4p before correction (cyan) and after correction (red)
are plotted along with the observed contacts (green) and the theoretical curve from part a (blue).
doi:10.1371/journal.pone.0028265.g002

Structural Constraints Residue Covariance
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Figure 3. Number of contacts with sequence separation. (a) The number of pseudo-centroid contacts is plotted against the fractional
sequence separation of the pair with 0 = adjacent to 1 = terminal residues. The red lines each represent data from the SCOP40 database in ten length
bins spanning 100 to 200 residues. The green line is a fitted curve (described in the text). Note: it is coincidental that this curve is similar to that
plotted in Figure 2. (b) Individual data for 1f4pA plotted using the same colours as Figure 2.
doi:10.1371/journal.pone.0028265.g003
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ranked list. As the root-mean-square deviation (or other measures)

between models is unreliable [10] this was quantified unambig-

uously using topology diagrams encoded as a simple coordinate

framework, called ‘‘topology strings’’ (see [6,9] and papers cited

therein for a definition). The ranks of the true folds were visualised

by a simple ROC-like plot in which the cumulated number of true

folds is plotted against the log of their rank. (Figure 5). The results

of our previous study, which re-ranked the a-carbon models after

construction, were summarised by whether any true fold had

made it into the top-10 positions. By contrast, the current results

are summarised by how many true folds are included in the top-

10. (Table 1).

Discussion

We have shown in this work that the application of predicted

contacts derived from mutual information, can be applied with

improved effect to the combinatorial fold generation level of the

PLATO model construction method compared with previous

results where it was applied only as a post-filter [6]. This entailed

using the predicted contacts at the level of secondary structure

elements (SSEs) rather than at the residue level. On the one hand,

this had the advantage that the evaluation of the contacts did not

depend on the exact phasing of the SSEs (that is, on the

orientation of an a-helix around its axis or the up/down register of

strands in a b-sheet) but, on the other hand, evaluation at the

secondary structure level introduced the complication that, in the

absence of a structure, the sequence of SSEs is not known. To

overcome this, we relied on the many secondary structure

variations generated by PLATO to include something close

enough to the true assignment. However, it can be noted that the

evaluation of pairwise contacts at this level does not use the nature

of the SSE (a or b) but only the end-points and to make the

method less sensitive to these, we also used part of the flanking

loops at half-weight.

In our previous work it was also apparent that the predicted

contact maps included features that were inconsistent with a folded

protein structure. Often, the number of side-chains predicted to

pack with a residue would exceed what was physically possible or

the number of near neighbours in sequence would exceed what

was compatible with the expected extension of the protein chain.

In the past these problems have been encountered in the

construction of protein models using distance geometry (DG)

based on predicted distances [11,12]. In that approach, inconsis-

Figure 4. Contact map for 1f4pA showing predicted contacts before re-balancing (lower-right) and after correction (upper-left).
Pseudo-centroid contacts under 8 Å are plotted in green.
doi:10.1371/journal.pone.0028265.g004
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tent combinations of distances were gradually relaxed by repeated

application of triangle-inequality balancing. However, with the

current contact-based data, it would be necessary to propagate the

contacts consistently throughout the matrix to provide a full set of

distances that could then be embedded in 3D. We adopted a

simpler approach in which the values were directly modified to

conform to bulk properties derived from the SCOP40 database

without concern for their detailed interdependence.

The combination and application of these new structural

constraints greatly improved the selection of the true fold from

the collection of decoy models constructed by PLATO. In our

previous study on the same test set carried out before the

introduction of these features [6], the application of predicted

contact information was able only to lift the top rank of the true

fold into the top 10 in four of the five proteins. In the current

results, four of the five proteins have a majority of true folds in the

top 5 and, on average, more than half of the top 10 positions

consist of true folds. This is sufficient to unambiguously identify

the correct fold for each set, based on sequence data alone. The

odd-protein-out was 1cozA which, with its terminal helix

unpacked, has never been predicted well. Nevertheless, the true

fold did exist in the PLATO models but was not brought to the

fore by the predicted contact data. A positive aspect of this

negative result is that the poorly predicted contact constraints

resulted in the rejection of all models so at least an incorrect model

was not presented as a possible choice. It has often been pointed

out in the CASP exercise how important it is to be able to make no

prediction rather than a wrong one.

The use of predicted contacts from mutual information has

provided powerful constraints on the selection of the correct fold

against a background of well constructed decoys. Most impor-

tantly, no direct structural information has been used at any point

in any of the stages of this method. Unlike methods that use

fragments drawn from the protein structure database, all the decoy

models constructed by PLATO derive from abstract theoretical

constructs [13] and their elaboration into a-carbon models is

based only on general principles of protein structure. Similarly on

the sequence side, the alignments and mutual information were

calculated without structural reference and only the predictions

made by PsiPred within PLATO may contain a hint of structural

memory in their neural-nets. However, given the quality and

variability of the predictions, this does not seem likely.

The algorithmic change introduced in this work to the

combinatorial method resulted in a more efficient search of the

fold tree but made little difference in computational time

requirements since this stage of the process is very fast (seconds)

compared to the construction of the full a-carbon models which

takes around one hour on a small linux cluster. However, it should

allow progression to larger proteins where the combinatorial fold-

space search can become significant. At the sizes where this can

occur, however, the proteins will generally be multi-domain so it

will firstly be necessary to use a domain identification algorithm as

the ideal Forms used by PLATO assume a single domain. In this

work we have focused on the ba class of protein. Although we

have ideal forms of the all-b class and a limited set for the all-a, the

smaller beta strands introduce greater uncertainty into the

predictions and will be considered at a later stage.

All the aspects used in the current method could be further

refined, however, there are issues of a more fundamental nature in

the calculation of the underlying mutual information values that

require more urgent attention. In particular, it is not clear that a

simple method of sequence weighting is either optimal or needed

and the treatment of gaps in the mutual information calculation,

and phylogenetic structure in general, remains problematic. In this

work we have shown only that a great improvement can be

obtained over our previous implementation by incorporating a few

simple structure-based features. We believe that with some

improvement in the underlying raw data, including sequence

alignment and direct contact calculation, the current method will

provide a base from which to extend towards larger proteins or

smaller families or, ideally, both together.

Methods

An overview of the methods described in the following sections

can be found in Figure 6

Protein Data
Test-set description. For test data, five ba-class proteins

were selected, which for comparative purposes, have been well

studied previously both as targets for protein structure prediction

[8] and as test examples for the analysis of correlated alignment

positions [6].

Identified by their protein structure databank (PDB) codes (with

the chain designated by the terminal upper-case character and the

number of residues in parentheses), the proteins were:

1. 2trxA (108) — a thioredoxin with a typical glutaredoxin fold.

The protein contains the unusual topological feature of a helix

located in a loop between two antiparallel b-strands. This helix

usually is poorly predicted by the secondary structure

prediction methods and often is modelled as a loop giving a

larger RMS value when compared to the PDB structure for a

protein of this size.

2. 1cozA (126) — a chorismate mutase with a mini-Rossman

type fold plus a carboxy-terminal helix that packs across to the

opposing monomer in this dimeric structure. In the definition

of the correct fold, this terminal helix was considered correct if

it packed back onto the domain either in an antiparallel or

Table 1. Fold recognition over the test decoy sets.

number of
basic
method DC method DC best

PDB decoy models true folds true folds top model

code basic DC method top 5 top 10 top 5 top 10 RMS (Å/ca)

2trx 16768 12526 (5046) 0 0 5 (1) 8 (4) 6.55/105

3chy 7015 700 (388) 1 2 5 (5) 10 (8) 5.70/121

1f4p 4243 3896 (991) 0 0 3 (5) 6 (8) 6.73/134

5p21 20169 5196 (1655) 2 4 4 (4) 4 (4) 8.70/158

Of the five proteins considered, one (1cozA) did not produce models and is
not tabulated. For each of the other proteins (PDB) the number of decoys
constructed by the basic PLATO method is tabulated in the leftmost column
along with those using the PLATO method with direct contact (DC) information
and, in parenthes, the number after applying structural constraints to the
contact matrix. The computer execution time is roughly proportional to these
numbers. The number of true folds (defined by topology string) found in the
top 5 and top 10 ranked positions is tabulated for the basic PLATO method and
the DC augmented method ranked by the PLATO score and the DC score
combined as their geometric mean as used previously (with the arithmetic
mean in parenthes). The number of hits over larger subsets is more easily seen
in the plots in Figure 5. In the rightmost column, the root mean square (RMS)
deviation was calculated over the number of residues (CA atoms) shown in
parentheses for the top model. These values are slightly higher than some
reported previously as the current models were not selected using residue-level
contact data.
doi:10.1371/journal.pone.0028265.t001
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parallel connection, with the latter being a better approxima-

tion to the native structure. This protein has quite variable

secondary structure predictions making it a difficult target.

3. 3chyA (128) — the chemotaxis Y protein (CheY). A compact

protein with a flavodoxin-like fold that generally predicts well

using just secondary structure prediction methods, or 3D

prediction both with and without correlated mutation data.

4. 1f4pA (148) a classic (short-chain) flavodoxin. Although this

protein has the same basic fold as 3chyA, the secondary

structure elements are quite distinct both in size and packing

and the two proteins are not even remotely homologous.

5. 5p21A (166) the Ras p21 G-protein which, although Ross-

mann-like, has a unusual embellishment of the edge of the

domain comprising a parallel a-b connection leading into a

long b-hairpin.

Decoy construction. Decoy models were constructed as

described previously using the PLATO server that uses ideal

Forms [13] to combinatorially generate thousands of folds that are

then made into realistic a-carbon models [8,9].

So that models and native structures can be treated equally,

residue contacts were assessed as the distance between pairs of

pseudo-centroid positions generated from the a-carbon coordi-

nates by placing a point 2 Å along the bisector of the virtual b-

carbon bond angle (on the obtuse side). This position lies close to

the beta and gamma carbons of the side-chain when in the

common trans conformation. For glycine, the a-carbon position

was not used, as the models represent the variety of amino acids

found in the multiple sequence alignment at each position.

Multiple sequence alignments. Multiple sequence align-

ments were taken directly from the PFAM database [5]. Since

each family has a target structure corresponding to a single

sequence entry, only positions in the alignment that correspond to

un-gapped positions in the target sequence were considered.

As many of the PFAM families are very large and contain highly

similar sequences, a simple and fast reduction was made by skipping

any entry that was more than 95% identical with the preceeding

entry or contained more than 20% of gapped positions, with both

percentages calculated over the un-gapped positions of the target

protein. This typically led to a 50% reduction in the number of

sequences giving the following numbers for each family (with their

PFAM identifier in parentheses):

1. 2trxA (PF00085) 12593 3692

Figure 5. [parts: (a) 2trxA (b) 1f4pA (c) 3chyA (d) 5p21A]: True folds against (log) rank. The cumulative total number of true folds is
plotted against the log(rank) of the model in the ranked list of decoys, up to a maximum of 10,000 models (4). As less than this number were
sometimes constructed, the plots can end in ‘mid-air’. The result for the basic PLATO method is plotted in bold cyan. The models constructed by the
contact augmented method were ranked by three scores: red, using just the basic PLATO score; green, using just the predicted contacts, and blue,
using their combined score. The plots in dashed lines are the results after re-balancing the contact matrix with the structural constraints described in
the text, using the same colour assignments.
doi:10.1371/journal.pone.0028265.g005
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2. 1cozA (PF01467) 6390 2996

3. 3chyA (PF00072) 75322 44072

4. 1f4pA (PF00258) 4607 2080

5. 5p21A (PF00071) 10390 4730

Mutual Information (MI) Calculation
Raw MI score. We followed a standard calculation for the

mutual information (M) between two positions in a multiple

sequence alignment (i and j) as the difference in the Shannon

entropy (S) between the sum of the individual positions SizSj

� �
and their joint entropy Sij

� �
:

M~SizSj{2Sij ð1Þ

The entropy for a single position was calculated as the sum:

Si~{
XN

a~1

fa
:log fa= log N ð2Þ

Where fa is the frequency of amino acid a in the aligned column

of residues at position i. The sum is over the amino acid alphabet

size (N) which was 21 (and the log in base 21) as an alignment gap

was treated as an additional amino acid type. To prevent the log

term becoming undefined when any amino acid is absent (log of 0),

a pseudo-count was included in f as the equivalent of one amino

acid evenly distributed over every entry in the column:

fa~(pzca)=(nz1) ð3Þ

Where ca is the count of amino acid a over the n sequences at

each aligned position and p is the pseudo-count which is 1/N for

an alphabet of size N (i.e.: p = 1/21). When n is large, the entropy

approaches 0 for a fully conserved position and 1 for the evenly

distributed occurrence of every character irrespective of the

alphabet size.

The entropy for a pair of positions is calculated as for a single

position except that the alphabet is now the 441 amino acid pairs

(21621). Maintaining the identity of the two positions (i and j) this

corresponds to:

Sij~{
XN

a~1

XN

b~1

fab
: log fab= log N2 ð4Þ

Where fab is the frequency of the amino acid pair a and b,

including a pseudo-count as above but now with p~1=N2. As

above, the range of Sij is between 0 and 1 which means that the

mutual information (M in Equn.1) also falls in this range.

Normalised MI score. Various methods have been used

previously to normalise the MI with the simplest being to

normalise by the joint entropy as:

M
0
ij~Mij=Sij ð5Þ

Following the nomenclature of [14], M9 will be referred to as

MIr.

The same group developed a more complex normalisation using

an estimated background based on the mean row Mrð Þ
and column MCð Þ MI values relative to the overall mean MI

(M): These quantities were combined either geometrically

Mr
:MC=Mð Þ or arithmetically MrzMC{Mð Þ, giving two

scores: APC and ASC, respectively. Either background score can

then be subtracted from the raw MI score to generate two

normalised MI values: MIp and MIa being the product and

additive alternatives, respectively.

Direct Information (DI) Calculation
Inverse covariance matrix. The mutual information

between a pair of positions contains indirect contributions from

all their neighbours. Attempts to extract the direct contribution

from the indirect have previously used a physics based [15,16] or a

Baysian based [17] approach. However, a simpler method has

been employed to the equivalent problem of identifying direct

from indirect interactions in protein networks [18] based on a

property of the inverse covariance matrix called the partial

correlation.

The generalised inverse. The covariance matrices derived

from the standard MI can be poorly conditioned (i.e., may be

singular) but are not particularly large, having only the rank of the

number of positions in the alignment. (Typically, a few 100 square

for small to medium sized proteins). A robust solution of their

inverse can be obtained from the Moore-Penrose generalised

inverse and a solution of this can be obtained from the singular

value decomposition (SVD) of the matrix. (See Supplementary

Information File S1).

From the components of the inverse matrix, the partial

correlation coefficients, or direct information, (D) can be obtained

as:

Dij~{Wij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Wii

:Wjj)
p

ð6Þ

Figure 6. Overview of decoy model construction. The Target
sequence to be predicted is matched against the sequence database
to generate a multiple Sequence alignment which is used both to
predict secondary structure (Predicted Sec. Str.s) and residue
contacts (Predicted contacts). These two derived data sets are
combined to estimate pairwise packing interactions at the secondary
structure element (SSE) level (Sec. Str. packings) which are used in
the PLATO method firstly to select the structural class of the protein via
2D SSE layouts of the secondary structures. The corresponding stick
models (3D ‘stick’ Forms) provide the framework over which different
protein folds are combinatorially generated with pairings of secondary
structures being evaluated by their predicted packing score. The ‘stick’
folds are then constructed at the residue (a-carbon) level giving the
final set of Ca ranked Folds.
doi:10.1371/journal.pone.0028265.g006

Structural Constraints Residue Covariance

PLoS ONE | www.plosone.org 8 December 2011 | Volume 6 | Issue 12 | e28265



where W is the inverse of the normalised MI matrix (M). An

explanation of this derivation is given in the Supplementary

Information File S2.

Structural Constraints
The normalisation methods described above are largely

concerned with the statistical properties of the interaction matrix

with no account being taken that values in the matrix should

represent a three-dimensional point-set. In general, given a matrix

of pairwise distances for a point set, or a matrix of quantities that

can be related to a distance, properties can be extracted from the

matrix that have either a local or global correspondence to the

physical object that they represent. This problem has previously

been addressed in the context of protein structure prediction from

sequence using distance geometry [11,12] and a similar approach,

based on cumulative distributions, will be used and adapted to deal

with a limited set of predicted contacts rather than a full set of

pairwise distances.

Number and distribution of contacts. For a given cutoff,

either on distance or some corresponding score, the most

immediate consequence is the total number of contacts that

arise. This can be broken down into contacts per residue, resulting

in a distribution of the number of contacts made for each residue.

This distribution can then be compared to that obtained from

known structures. A set of contacts can also be viewed in relation

to their distribution in the sequence. A simple measure for this is

the contact order measure [19] and although this was considered,

reduction to a single number is too simple and instead the

distribution of contacts with sequence separation was analysed.

In the light of these statistics, corrections were applied to re-

balance the contact matrix. If any position (i) had more than the

maximum estimated number of contacts, then starting with the

worst violation, the matrix value Mij

� �
for each neighbour (j) was

reduced by a small fraction (typically, 0.5%) and the process

repeated for up to five cycles or until no violations remained. The

overall balance of the matrix between sequentially local and

distant contacts was corrected more directly by scaling each matrix

value with a Gaussian function:

M
0
ij~Mij

:2a(1{ exp ({d2
ij=s2))z1{a ð7Þ

where dij is the sequence separation between positions i and j, a is

the size of the correction and s is the range from the diagonal (like

the standard deviation in the normal distribution). This was kept

fixed at 100 residues whereas a was varied. Note that a positive

value for a increases distant contacts and a negative value

diminishes them.

Secondary structure scores. The linear nature of secondary

structure elements (SSEs) introduce local correlation amongst the

predicted contacts, creating clusters that align with the diagonal

for parallel interactions and orthogonal to the diagonal for

antiparallel packing. Some of the noise can be averaged from the

predicted values using these patterns but only if it is firstly known

where the SSEs are located. For this we use the predicted locations

of the SSEs as described previously for the PLATO method.

However, as there will be some uncertainty in the location of the

SSEs, we included up to three residues either side of the SSE, up to

half way towards the next SSE. These flanking residues were

weighted by half in the following summations.

For a pair of SSEs, i and j, the total interaction strength Sij

� �
was the weighted sum of all the DC values in the sub-matrix

corresponding to two SSEs and their flanking regions. A weighted

centroid was calculated and used to divide this sub-matrix into

quadrants over which (weighted) sub-sums QAB
ij

� �
were taken,

where AB can be: NN, NC, CN and CC for the sums on the amino-

terminal side (N) and the C-terminal side (C)of the centroid.

Parallel interactions will have higher NN and CC sums and

antiparallel interactions higher NC and CN sums. A score Pij (for

polarity) to reflect this was:

Pij~QNN
ij
:QCC

ij {QNC
ij
:QCN

ij ð8Þ

giving a positive value for parallel and a negative value for

antiparallel interactions.
Secondary structure packing. To compare the interaction

scores devised in the previous subsection with a real or model

protein structure we require an equivalent score at the SSE level.

This was taken as a measure of interaction between the line

segments along the axes of the secondary structures [20] with SSE

definitions calculated in the same way for models and native

structures [21]. The interaction measure was based on the overlap

area of the line segments but summed as the reciprocal of the

distance between the lines, which had previously been found to be

a good approximation the interaction of SSEs as measured by

changes in solvent accessible surface area [22]. This measure,

referred to as the Reciprocal Overlap Area (ROA) was modified to

account for screening by setting it to zero for SSEs on opposite

sides of a b-sheet or (severely) damped as sqrt ROAð Þ=N2, where

N is the adjacency of the SSEs in a layer, designated as Oij for a

pair of SSEs.

An overall interaction score was calculated as a combination of

an un-oriented interaction (to account for orthogonal or poor

orientation discrimination) and an orientated component:

R~
XN{1

i~1

XN

j~iz1

Oij(SijzcijPij) ð9Þ

where cij is the cosine of the dihedral angle between the line

segments of SSEs i and j. Note that both c and P are signed so the

overall score (R) will include negative contributions.
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