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ABSTRACT
Roux-en-Y gastric bypass (RYGB) is efficient at inducing drastic albeit variable weight loss and type- 
2 diabetes (T2D) improvements in patients with severe obesity and T2D. We hypothesized a causal 
implication of the gut microbiota (GM) in these metabolic benefits, as RYGB is known to deeply 
impact its composition. In a cohort of 100 patients with baseline T2D who underwent RYGB and 
were followed for 5-years, we used a hierarchical clustering approach to stratify subjects based on 
the severity of their T2D (Severe vs Mild) throughout the follow-up. We identified via nanopore- 
based GM sequencing that the more severe cases of unresolved T2D were associated with a major 
increase of the class Bacteroidia, including 12 species comprising Phocaeicola dorei, Bacteroides 
fragilis, and Bacteroides caecimuris. A key observation is that patients who underwent major 
metabolic improvements do not harbor this enrichment in Bacteroidia, as those who presented 
mild cases of T2D at all times. In a separate group of 36 patients with similar baseline clinical 
characteristics and preoperative GM sequencing, we showed that this increase in Bacteroidia was 
already present at baseline in the most severe cases of T2D. To explore the causal relationship 
linking this enrichment in Bacteroidia and metabolic alterations, we selected 13 patients across T2D 
severity clusters at 5-years and performed fecal matter transplants in mice. Our results show that 
14 weeks after the transplantations, mice colonized with the GM of Severe donors have impaired 
glucose tolerance and insulin sensitivity as compared to Mild-recipients, all in the absence of any 
difference in body weight and composition. GM sequencing of the recipient animals revealed that 
the hallmark T2D-severity associated bacterial features were transferred and were associated with 
the animals’ metabolic alterations. Therefore, our results further establish the GM as a key con-
tributor to long-term glucose metabolism improvements (or lack thereof) after RYGB.
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Introduction

Despite decades of public efforts, the prevalence of 
obesity and related comorbidities (including type 2 
diabetes (T2D)) are still rising worldwide.1 Obesity 
is a complex and multifactorial disease, intertwin-
ing host biology, genetics, and environmental 
factors.2 Recently, the gut microbiota (GM) has 
been described as a key contributor to both obesity 
and T2D, as alterations of its composition, richness, 
and functionality are associated with obesity3 and 

metabolic alterations, such as insulin resistance, 
low-grade systemic inflammation, and adiposity.4– 

6 For the most severe cases of obesity (BMI ≥40 kg/ 
m2 or ≥35 kg/m2 when associated with comorbid-
ities), bariatric surgery remains the only interven-
tion able to induce major and long-lasting weight 
loss7 alongside significant improvements of all obe-
sity-associated comorbidities.8 T2D remission 
(DR), defined as the quasi-normalization of 
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HbA1C and fasting blood glucose values in the 
absence of glucose-lowering agents,9 concerns 
50% to 60% of patients after bariatric surgery, 
although the prevalence of DR lessens with 
time.10,11 Several clinical parameters are associated 
with these differences in clinical outcomes, such as 
T2D duration, post-operative weight regain, and 
T2D severity, as proxied by the required number 
of glucose-lowering drugs.10 These factors are 
included in predictive scores able to estimate 
patients’ potential of entering in DR after their 
bariatric intervention.11,12 Nevertheless, the accu-
racy of these scores is low for a non-negligible 
fraction of patients,12 which suggests the involve-
ment of other parameters in the observed metabolic 
improvements.

Amongst the numerous mechanisms proposed as 
participating in post-bariatric surgery metabolic 
improvements,13 studies reported deep and long- 
lasting modulations of the composition and function-
ality of the GM, which are associated with weight 
reduction and metabolic improvements.6,14–16 

Furthermore, low-powered case-control studies pro-
vided associations between GM profiles and T2D 
remission.17–19 However, they did not substantiate 
the causal participation of the GM in the observed 
metabolic benefits.

To this end, the transfer of complex microbial 
communities from healthy or diseased donors to reci-
pient animals via fecal matters transplants (FMT) 
remains the gold standard.20 After bariatric surgery, 
two human-to-mice FMT studies with obese non- 
T2D donors showed a partial transfer of the host 
adiposity16 and weight loss amplitude,21 and two 
rodents-to-mice studies presented either a transfer of 
the host adiposity22 or moderate and discordant meta-
bolic phenotypes.23 Indeed, Arora et al., found that 
post-RYGB ileal content altered the metabolic pheno-
type of animals upon FMT, whereas cecal contents 
improved their metabolic conditions.23 Therefore, the 
involvement of the GM in post-operative T2D 
improvements remains to be explored, as well as its 
implication in the severity of the persisting T2D in 
patients who underwent different trajectories of meta-
bolic improvements after their bariatric intervention.

By combining human and preclinical investiga-
tions, we aimed to decipher the participation of the 
GM in the long-term improvement of T2D after bar-
iatric surgery, as well as its implication in the severity 

of the persisting cases of T2D. In this direction, we 
compared GM profiles of patients according to the 
magnitude of T2D improvement and performed 
human-to-mice FMT to substantiate the causal invol-
vement of the GM in the post-operative metabolic 
changes.

Results

Categorizing T2D severity and metabolic 
improvements after RYGB

We included n = 100 patients from our bariatric 
surgery cohort with baseline T2D who underwent 
Roux-en-Y gastric bypass (RYGB), and for whom we 
had access to clinical data before, 1, and 5-years after 
their intervention (Fig. S1). At 5-years (mean follow- 
up: 5.19 ± 0.8 years), 49% (n = 49) of the patients were 
in DR (HbA1C < 6.5% and fasting blood glucose < 
7 mmol/L without any glucose-lowering medication9). 
Although this definition of DR enables patients’ clas-
sification based on their metabolic benefits after bar-
iatric surgery, it does not account for the baseline 
severity of T2D and thus for the amplitude of meta-
bolic improvements, nor for the severity of unresolved 
T2D. Indeed, the metabolic phenotypes of patients 
with persisting T2D (i.e., patients in non-DR) were 
highly variable, ranging from HbA1C/fasting blood 
glucose close to DR’s targets in the absence of glucose- 
lowering drug, to values well above the targets while 
requiring several glucose-lowering medications.

This observed variability of metabolic phenotype 
prompted us to more accurately reclassify all 100 
patients based on their metabolic phenotype at all 
time points (baseline, 1-year, and 5-years) before and 
after RYGB, and to define trajectories of metabolic 
improvements. To this end, we built clusters of T2D 
severity based on 7 clinical variables used as predictors 
for post-surgery metabolic improvements:12,24 

HbA1C, fasting blood glucose, T2D duration, age, 
sex, number of glucose-lowering medications, and 
insulin requirements. These variables were integrated 
using principal component analysis (PCA), and clus-
ters of T2D severity were defined by hierarchical clus-
tering (Figure 1a). These clusters will be designated 
hereafter as “Mild” or “Severe”, and prefixes indicating 
the time-point of interest will be used (either “Preop”, 
“1y”, and “5y” for preoperative, 1 and 5-years, 
respectively).
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The first component of the PCA translates the 
degree of T2D severity, as all variables except patients’ 
sex pointed toward the same direction (Figure 1a and 
S2). Standardized odd-ratios and 95% confidence 
intervals showed that HbA1C (OR 35.4, 95% CI 
[9.0–191.6] before and OR = 22.0, 95% CI [7.46– 
93.7] 5-years after RYGB), T2D duration (OR 12.8, 
95% CI [4.8–46.1] before and OR 25.6, 95% CI [8.5– 
118.6] 5-years after RYGB) and the number of glu-
cose-lowering drugs duration (OR 17.5, 95% CI [6.9– 
59.2] before and OR 20.1, 95% CI [7.3–78.7] 5-years 
after RYGB) were the most important variables defin-
ing T2D severity throughout the follow-up (Table S1). 
Of note, as all patients requiring insulin were in the 
Severe cluster both at baseline and 5-years after the 
intervention, their respective OR could not be com-
puted due to the perfect separation. All 7 variables 
were compared across T2D severity clusters, and all 
(except sex) comparisons underlined the accurate 
classification of patients according to their metabolic 
phenotype (Fig. S3).

During the follow-up, the prevalence of patients in 
the Severe cluster decreased from 55% at baseline to 
30% at 5-years, confirming an overall decrease in T2D 
severity after RYGB (Figure 1b). Most metabolic 
improvements occurred within the first year, and 
remained relatively stable afterward, as only 8% of 
patients changed clusters between years 1 and 5 (Fig. 

S4). Three trajectories of long-term T2D improve-
ments were defined: good responders (“5y-Rep+”, 
Severe at baseline and Mild at 5-years), poor respon-
ders (“5y-Rep-”, Severe at all times), and finally meta-
bolically “stable” patients (“Stable-Mild”, Mild at all 
times – Figure 1b).

Comparisons of baseline and 5-years clinical char-
acteristics according to their trajectories revealed that 
all patients improved after the RYGB intervention, 
although with varying magnitude. At baseline, 5y- 
Rep+ and 5y-Rep- patients (who were all in the 
Severe cluster) only differed on age, T2D duration, 
and insulin requirements (Table 1). However, 5y-Rep 
+ patients lost more weight and displayed striking 
metabolic improvements after RYGB, which led 
them to become clinically indistinguishable from 
Stable-Mild patients at 5-years, while 5y-Rep- 
patients maintained an altered metabolic phenotype 
(Table 1). When only considering 5-years T2D sever-
ity clusters, patients in the 5y-Severe cluster also pre-
sented more frequent and severe obesity-associated 
comorbidities (hypertension and dyslipidemia – 
Table S2). Importantly, no significant differences in 
body weight nor composition were found across tra-
jectories or T2D severity clusters (Table 1).

Overall, our clustering approach differed from 
the definition of DR9 for n = 21/51 (41%) non- 
DR patients who were classified within the 5y- 
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Mild cluster (Table S3). While at baseline, these 
patients were clinically similar to patients in DR, 
they improved less after RYGB (Table S3). All 21 
patients were close to DR’s targets, and 38% 
(n = 8/21) required minimal medications 
(mostly metformin), while 90% (n = 27/30) of 
patients within the 5y-Severe/non-DR were well 
above DR’s targets despite taking glucose- 
lowering drugs (including insulin for 52% of 
them – Table S3). Therefore, our clustering 
approach allowed us to accurately identify 
patients’ trajectories translating the extent of 
their glucose-metabolism improvements.

T2D severity is associated with specific gut 
microbiome alterations pre- and post-RYGB

Nanopore-based GM sequencings were per-
formed using the MinION (ONT) on fecal sam-
ples collected 5-years post-RYGB for our 100 
patients with long-term follow-up, as well as on 
36 samples of an independent group of patients 
with identical baseline characteristics (referred 
to as the “baseline cohort”, see Table S4 and Fig 
S1) for whom we had access to pre-RYGB fecal 
samples. This high-throughput nanopore-based 
technology offers the possibility to sequence 
long DNA fragments without the need for pre- 
sequencing PCR amplification, as we recently 
published.25

We first assessed on our 5-years cohort the 
contribution of clinical variables and medica-
tions to overall GM composition. Univariate 
distance-based redundancy analysis (dbRDA) 
with a Bray-Curtis dissimilarity matrix revealed 
that two variables significantly explained GM 
variation: metformin intake and T2D duration 
(Figure 2a), although only metformin intake 
explained a non-redundant fraction of GM var-
iation (R2

adj = 2.78, p = .002). Of note, para-
meters associated with fecal DNA extraction 
and sequencing did not significantly affect GM 
composition (Fig. S5).

When comparing relative class distributions 
across 5-years T2D severity clusters using Cliff’s 
delta estimates (CDe), we found that 
Actinobacteria were slightly less abundant in 5y- 
Severe patients, whereas both 

Epsilonproteobacteria and Bacteroidia were signif-
icantly increased, the latter being the most preva-
lent class in 5y-Severe patients (Figure 2b). At the 
genus level, a Principal Coordinate Analysis 
(PCoA) on a β-diversity matrix revealed 
a significant interaction between 5-years T2D 
severity and GM composition (Figure 2c). 
Bacteroides, Parabacteroides, Streptococcus, 
Shigella, Escherichia, and Salmonella were the 6 
genera contributing the most to patients’ separation 
(R2 > 0.5, p < .001), and the directions of both 
Bacteroides/Parabacteroides’s contributions con-
firmed their association with T2D severity 
(Figure 2c).

Amongst species representing at least 0.1% of 
the total ecosystem (n = 95), 13 bacteria were 
significantly more prevalent in 5y-Severe 
patients, while 3 were more abundant in 5y- 
Mild patients (Figure 2d). Most species (12/ 
13) enriched in 5y-Severe patients are members 
of the Bacteroidia class, with Phocaeicola dorei 
having the highest association (CDe = 0.52, 
q = 0.002), followed by Bacteroides fragilis 
(CDe = 0.46, q = 0.004) and Bacteroides caeci-
muris (CDe = 0.416, q = 0.01). Interestingly, 
these 16 species are associated with clinical 
parameters of T2D severity and corpulence, 
further suggesting their link with post-RYGB 
clinical metabolic traits (Figure 2e). Of note, 
only 1 species from the class Actinobacteria 
(out of 13 species of Actinobacteria represent-
ing >0.1% of the total ecosystem) was signifi-
cantly different according to patients’ T2D 
severity clusters, while 0/2 was from the 
Epsilonproteobacteria class, suggesting marginal 
differences in these two classes.

To gain further understanding of how these 
shifts in GM composition associated with T2D 
severity may impact the functions of the micro-
biome, we applied an inference-based method to 
generate a matrix of genes (using the KEGG data-
base) based on patients’ GM composition data. By 
correlating the abundance of the 13 species asso-
ciated with T2D severity to the abundance of 
inferred genes, we noticed that the increase in 
Bacteroides have an important impact on metabolic 
capacities (Fig. S6A). To confirm that these meta-
bolic differences were not compensated by other 
species, we computed CDe for each of these 
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metabolic pathways across 5-years T2D severity clusters (Fig. S6B). Several metabolic pathways, 

such as carbon and carbon fixation, glycosamino-
glycan, branched-chain amino-acids and methane 
metabolisms were increased in 5y-Severe patients 
(p < .05, q < 0.1), whereas metabolism of other 
amino-acids (cysteine and methionine, glycine, ser-
ine and threonine, glutathione) was increased in 
5y-Mild patients (Fig. S6B).

As 5y-Rep+ patients were, at 5-years, clinically 
similar to Stable-Mild patients (Table 1), we won-
dered whether their GM might harbor a signature 
associated with metabolic improvements. 
Compositional analysis revealed extremely similar 
profiles (Fig. S7A-C), as neither a PCoA on a β- 
diversity matrix nor differences of relative class 
abundances (estimated by CDe) accounted for any 
significant difference between the two trajectories. 
At the species level, CDe allowed for the discovery 
of only two differentially abundant species: 
Enterococcus faecalis (enriched in Stable-Mild 
patients), and Tannerella forsythia (enriched in 5y- 
Rep+ patients). However, 5y-Rep+ patients tended 
to present insignificant yet slightly increased abun-
dances of several of the species associated with 
5-years T2D severity. Overall, these observations 
led us to hypothesize that the transition of T2D 
severity clusters (Severe to Mild, which translates 
their major metabolic improvements) is associated 
with a partial restoration of a “Mild” profile of 
the GM.

Subsequently, we projected the n = 36 patients 
from the independent baseline cohort on the PCA 
built on our 5-years cohort (see Methods and Fig. 
S8A) to identify their preoperative T2D severity 
cluster. By studying their GM, we found that the 
important increase in Bacteroidia was already pre-
sent pre-RYGB in Severe patients (Fig. S8B). 
Tannerella forsythia was also enriched in Preop- 
Severe patients (Fig. S8C). Of note, we did not 
evidence any difference in the number of observed 
species nor diversity indexes according to 5-years 
T2D severity clusters (Fig. S9A-G), although most 
significantly increased after RYGB (Fig. S9H-N), as 
previously reported.6

We demonstrate an increase in the 
Bacteroidia class in patients with severe cases 
of T2D severity both before and 5-years after 
RYGB. Importantly, patients who were in the 

Severe cluster at baseline and transitioned 
toward the 5y-Mild cluster at 5-years present 
a similar GM profile to patients who were in 
the Mild cluster all along. Importantly, most 
bacterial associations with 5-years T2D severity 
remain significant when controlling compari-
sons for metformin intake and cluster transi-
tions (# on Figure 2d).

Fecal transfers in mice induced a transfer of the 
donors’ metabolic alterations

To explore causality linking post-RYGB GM 
composition and T2D severity, human to mice 
fecal matter transfers (FMT) were performed. 
Nine 5y-Severe and 4 5y-Mild patients were 
selected based on their clinical profiles 
(Table 2). To avoid any potentially confounding 
issue due to sex and medications, we selected 
5y-Severe women classified in 3 homogeneous 
groups of glucose-lowering agents (metformin 
and insulin, insulin but not metformin, or only 
metformin – see Table 2). All 5y-Mild donors 
were free of anti-T2D medication. Patients were 
recalled at the hospital for fresh stool samples 
collection, with which we confirmed that their 
GM profiles were representative of their cluster. 
Out of the 16 species presented Figure 2d, simi-
lar differences across 5-years T2D severity clus-
ters were observable within the selected donors, 
except for Alistipes finegoldii and Bacteroides 
vulgatus (Fig. S10).

FMT were performed during three consecu-
tive days in juvenile conventional mice (n = 4 
mice per donor, n = 52 in total) whose GM 
were depleted using broad-spectrum antibiotics 
and laxatives.26 Throughout the follow-up 
(Figure 3a), no difference in body weight nor 
composition were observed in the recipient ani-
mals (Figure 3b). Daily (Figure 3c) and cumu-
lative food intakes (Fig. S11A-B) were higher in 
the 5y-Mild recipients (“r-Mild”). As there was 
no difference in body weight, we hypothesized 
that the difference in food intake could be 
compensated by either decreased energy 
absorption or increased expenditure. We used 
bomb calorimetry to estimate the caloric 
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content of the animals’ feces and found that the 
daily caloric excretion was higher in the r-Mild 
animals (Figure 3d) with a trend toward higher 
daily fecal output (Fig. S11C), which resulted in 
an overall decreased energy efficiency (Fig. 
S11D). Therefore, the amount of daily absorbed 
calories was similar between the two groups 
(Figure 3e).

To evaluate whether FMT induced alterations of 
the mouse’s metabolic phenotype, we performed an 
oral glucose tolerance test (OGTT) 10 weeks after the 
FMT. As compared to r-Mild animals, 5y-Severe reci-
pients (“r-Severe”) had a significantly impaired glu-
cose tolerance, with significantly higher glycemia at 
the 15 minutes peak and slower clearance of blood 
glucose (Figure 3f-g). Insulin levels during the OGTT 
were significantly increased at fasting and at the 
30 minutes time point in the r-Severe group, suggest-
ing increased insulin resistance, in agreement with 
higher HOMA-IR and decreased QUICKI index 
values (Figure 3i-j).

When considering donors’ glucose-lowering agent 
subgroups (either metformin only, insulin without 
metformin, or metformin & insulin, see Table 2), 
both insulin-only and insulin+metformin recipient 
animals showed similar phenotypes (Fig. S12). 
Although these interpretations are limited by small 
sample sizes (n = 3 donors per treatment group), we 
found that recipients from metformin-only donors 
presented differences of intestinal absorption and glu-
cose tolerance, closer to those of recipients from the 
non-treated (NT) patients. Conversely, they had the 
highest insulin secretion during the OGTT, and there-
fore showed the same alterations in insulin resistance/ 
sensitivity indexes as other 5y-Severe recipients (Fig. 
S12). Overall, these results suggest that the 5y-Severe 
GM (regardless of the donors’ anti-T2D treatments) 
induced perturbations of glucose homeostasis in reci-
pient animals. Finally, tissue harvesting revealed that 
r-Severe animals presented an increase in liver and 
visceral adipose tissue masses relative to their body 
weight (Figure 3k-m).

Importantly, this FMT study remains valid in 
the context of the DR/non-DR dichotomy, as all 
5y-Mild donors were in DR, and all 5y-Severe 
donors were in non-DR (Table 2).

Bacteroidia species linked with T2D-severity were 
transferred in recipient animals and associate with 
their altered metabolic phenotype

GM composition of recipient animals was deter-
mined 10 weeks after the initial inoculation, follow-
ing the same protocols for DNA extraction and 
library sequencing used in patients.

We first evaluated the long-term engraftment 
and persistence of the donors’ GM into the recipi-
ent animals. We found that a mean of 60% of the 
donor’s species was detected in their respective 
recipients, without any difference according to the 
donors’ clusters (p = .94 – Figure 4a). A major 
observation was that the donor and their respective 
T2D severity clusters are the variables explaining 
the highest proportion of variation within the reci-
pients’ GM composition (Figure 4b), demonstrat-
ing that the FMT induced specific changes within 
the recipients’ GM (Figure 4b).

Evaluation of relative class abundances 
revealed a significant increase in Bacteroidia in 
r-Severe mice (Figure 4c). Amongst species 
representing at least 0.1% of the total GM 
(n = 75), 8 were more prevalent in r-Mild ani-
mals (CDe<0), and 6 in r-Severe animals 
(CDe>0 – Figure 4d). Five out of the 6 species 
increased in the r-Severe animals belonged to 
the class Bacteroidia and were also more preva-
lent in humans from the 5y-Severe cluster 
(Figure 2d). The top three bacterial species, 
namely Bacteroides fragilis, Phocaeicola dorei, 
and Bacteroides caecimuris, were the top three 
species found to be associated with the 5y- 
Severe cluster in humans (Figures 4d and 2d). 
When considering pseudoreplication, 5 species 
remained significantly different across the 
donors’ clusters: Bacteroides fragilis, Phocaeicola 
dorei, Bacteroides caecimuris, as well as two 
Bacilli: Lacticaseibacillus paracasei and 
Streptococcus gallolyticus.

Finally, we examined the relationships between the 
15 bacterial species presented in Figure 4d and the 
phenotype of recipient animals. Amongst these spe-
cies, several of which were increased in r-Severe ani-
mals and correlated with glucose tolerance variables 
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(AUC, glycemia, and insulinemia all measured during 
the OGTT), with insulin-sensitivity indexes (HOMA- 
IR, QUICKI) and fat-mass (Figure 4e). Interestingly, 
most bacteria increased in r-Mild animals did not 
correlate with any glucose tolerance parameters, 
except for negative associations with 
Erysipelotrichaceae bacterium I46, Lactiplantibacillus 
plantarum and Latilactobacillus curvatus (Figure 4e).

Of note, 75% of the recipient animals’ GM is 
composed of species from the Bacilli class, 
mostly Lactococcus lactis, which represents by 
itself 60% of the total murine GM (Figure 4c). 
Lactococcus lactis has been described as a dietary 
contaminant of high-fat diets containing dairy 
byproducts,27 which was the case for our diet 
(see Methods).

Discussion

By combining clinical and preclinical studies, we 
demonstrated that the severity of T2D is asso-
ciated with an enrichment of the class 
Bacteroidia both before and after RYGB, which, 
we hypothesize, disappears upon major meta-
bolic improvements. We moreover showed that 
human-to-mice FMT alters the metabolic phe-
notype of recipient animals through the transfer 
of species associated with T2D severity in 
humans. Therefore, it appears that the GM can 
be partly involved in post-RYGB metabolic 
improvements or lack thereof.

To overcome some limitations of the definition 
of DR9, including (i) lack of baseline T2D severity 
estimation and (ii) strict thresholds which cannot 
grasp the heterogeneity of persisting T2D, we used 
a hierarchical clustering approach to estimate the 
patient’s degree of glucose homeostasis deteriora-
tion before and after RYGB. A similar methodology 
demonstrated the ability to accurately classify T2D 
patients based on their risk of T2D-related 
complications.28 We confirmed the accuracy of 
the classification by showing that all the observed 
discrepancies with DR concerned patients in non- 
DR with very mild metabolic alterations with mini-
mal glucose-lowering requirements. Most of all, 
this approach allowed us to identify trajectories of 
metabolic improvements, which are crucial in the 
search for mechanisms involved in bariatric sur-
gery-induced metabolic improvements.

By analyzing patients’ GM composition 5-years 
after RYGB, we revealed a specific and metformin- 
independent enrichment of the Bacteroidia class 
associated with T2D severity and alterations of 
glucose homeostasis markers. A keystone observa-
tion is that the GM of good metabolic responders 
(5y-Rep+) is almost indistinguishable from that of 
Stable-Mild patients, both clinically and regarding 
GM composition. This thereby suggests that post- 
RYGB metabolic improvements (leading to cluster 
transition from Severe to Mild) are concomitant to 
a partial restoration of a “Mild” GM profile. We 
acknowledge that this finding requires external 
validations in cohorts with paired pre- and post- 
RYGB analysis of the GM. Nevertheless, GM 
changes in 5y-Rep+ patients, which also include 
an increase in the class Actinobacteria, are concor-
dant to findings observed after T2D remission.19 

Besides, the authors also observed no change in the 
abundance of Bacteroidia in non-DR patients, thus 
corroborating our observation in both baseline- 
and 5y-Severe patients.

At the species level, the negative impact on the 
host of some of the bacteria associated with T2D 
severity was already proposed. Sun et al., showed 
that a metformin treatment in T2D individuals 
decreased the abundance of Bacteroides fragilis.29 

In mice, they demonstrated that the supplementa-
tion of Bacteroides fragilis induced a complete blunt 
of metformin’s metabolic benefits.29 Intriguingly, 
they also observed that metformin reduced the 
abundance of several bacteria we found increased 
in 5y-Severe patients. This raises questions regard-
ing the long-term effect of metformin on the GM 
composition, as almost 70% of our patients in the 
5y-Severe cluster were taking metformin. 
Importantly, Sun et al., included newly diagnosed, 
untreated and barely overweight patients with 
mean HbA1C and fasting blood glucose values of 
7.9% and 9.7 mmol/L, respectively.29 In contrast, 
our patients were severely obese, had a long history 
of T2D, and were sometimes receiving several other 
glucose-lowering drugs in addition to metformin. 
Therefore, we cannot exclude that the initial bene-
ficial action of metformin on members of the 
Bacteroidia class might lessen with time in subjects 
with long-lasting histories of obesity- and T2D- 
associated GM dysbiosis. Moreover, the impact of 
metformin (and potentially other drugs30) on the 
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GM may also differ between patients who under-
went bariatric surgery and non-operated subjects, 
although this remains to be evaluated.

Reports on both Bacteroides vulgatus and 
Phocaeicola dorei are conflicting. Bacteroides vulga-
tus is associated with an altered metabolic profile, 
especially during severe obesity6,31 and is reduced 
upon a prebiotic treatment which moderately 
improves the host’s glucose homeostasis.32 

Conversely, another study presented a positive 
impact of both Bacteroides vulgatus and 
Phocaeicola dorei on systemic inflammation and 
cardiovascular risk,33 which goes against another 
report presenting these two bacteria as pro- 
inflammatory.34 Intriguingly, in-vivo studies have 
demonstrated an inflammation-dampening effect 
(stimulation of IL-10 and reduction of IL-6) of 
Bacteroides fragilis which may participate to 
improvement of the animals’ glucose metabolism 
(as reviewed herein35), which seem to go against 
our observations detailed in the last paragraph. 
Furthermore, amongst the 3 species associated 
with a mild T2D severity, only Streptococcus aga-
lactiae had been described in the context of meta-
bolic diseases, as it was found in the subgingival 
microbiota of patients with impaired glucose 
homeostasis.36 Tannerella forsythia, which is signif-
icantly increased in 5y-Rep+ patients as compared 
to Stable-Mild patients, is also found in the sub-
gingival microbiota of obese subjects37 and is 
decreased in patients with uncontrolled T2D.38 

Overall, these conflicting results may arise from 
differences in population characteristics, disease 
states, medications, or bacterial strains, as two 
strains of the same species can induce distinct 
phenotypes.34,39,40 Besides, it suggests that both 
the gut and oral microbiota ought to be more 
extensively and causatively explored after bariatric 
surgery, especially in regard to metabolic 
improvements.

We also explored the metabolic consequences of 
such bacterial changes. Interestingly, our observa-
tions corroborate previous report made in the litera-
ture. For instance, studies have demonstrated that 
cysteine, methionine and glutathione levels (i) are 
associated with insulin resistance, (ii) can predict the 
risk of developing T2D,41–43 and (iii) are increased in 
mice submitted to a western NAFLD-inducing 
diet.44 As such, the decrease of these pathways in 

patients in the 5y-Severe cluster suggest amino-acids 
metabolism impairments in persisting cases of T2D 
after bariatric surgery, and/or a semi-normalization 
of amino-acids metabolism after bariatric surgery in 
patients with metabolic improvements. On the other 
hand, the degradation of branched-chained amino- 
acids (BCAA) is increased in patients in the 5y- 
Severe cluster. Positive associations between BCAA 
and T2D/metabolic impairments have been 
observed multiple times throughout the years (as 
neatly reviewed here45). Besides, a very recent 
paper also demonstrated that the degradation of 
these BCAA could lead to the presence of branched- 
chained fatty acids, which negatively impact the 
host’s insulin sensitivity by impairing the mTORC1 
signaling pathway.46 After bariatric surgery, BCAA 
possible participation to metabolic improvements 
has also been observed, as we reviewed herein.13 As 
such, one could argue that patients in the 5y-Severe 
cluster present more circulating BCAA/BCFA, 
which could in part explain their poorer metabolic 
health. This of course would need to be explored 
more deeply, for example by evaluating subjects’ 
feces metabolome. Changes in methane metabolism, 
glycosaminoglycan degradation and carbon fixation 
pathways in procaryotes were all found to be 
increased in T2D patients and in patients who later 
developed T2D in the study by Wang et al.,47 which 
concordant with our current findings.

In the second part of our study, we showed for 
the first time that hallmark GM alterations asso-
ciated with T2D severity were partially transmitta-
ble in mice via FMT and were associated with an 
important alteration of the recipient animals’ meta-
bolic phenotype. As previously mentioned, FMT 
studies in murine models of bariatric surgery pre-
sented limited effects on both adiposity and glucose 
homeostasis.16,21,22,48 Here, GM transfers were 
effective at inducing both GM and perturbations 
of glucose tolerance and insulin sensitivity. 
Furthermore, we found strong similarities between 
the donors and their recipient animals’ phenotypes, 
as well as between donors’ and recipient-specific 
bacterial abundances. These results confirm the 
partial involvement of the GM in T2D severity 
and persistence after RYGB.

Our model of conventional juvenile microbiota- 
depleted mice was proposed as an alternative to 
germ-free rodents.26 This model has shown 
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satisfactory engraftment capabilities after human- 
to-mice FMT.49–51 Here, 60% of the detected spe-
cies within the recipient animals were found in 
their respective donors, a level concordant with 
the literature and to the level of axenic animals.52 

We chose to use multiple donors, which allowed 
for a relative diversity in terms of patients’ phe-
notype and medications, which are known to 
impact the GM.30,53 Moreover, we followed the 
recommendations proposed by Walter and 
colleagues20 to limit statistical biases due to pseu-
doreplication (artificial inflation of the number of 
experimental units). Overall, we believe that these 
methodological precautions strengthen our 
observations.

Nevertheless, we are aware of some limits. 
Although this study is, to date, the largest dedicated 
at studying GM composition in the context of long- 
term metabolic improvements post-RYGB, it suf-
fers from relatively low power due to (i) difficulty to 
collect fecal samples in hospital settings, and to (ii) 
a relatively high attrition rate that we already 
discussed.11 Besides, most of our patients were 
women of Caucasian descent who all underwent 
RYGB. Therefore, our observations ought to be 
replicated on more diverse populations and differ-
ent bariatric intervention types. Even though our 
clustering methodology proved efficient at classify-
ing patients’ metabolic phenotypes both before and 
after bariatric surgery, we acknowledge that it may 
also result in false positive and/or false negatives 
within the assignments in other settings/popula-
tions. Further validations in large cohorts are 
required. Regarding GM analyses, the 2 time- 
points of ONT sequencing were not matched, limit-
ing results interpretation at the individual level. 
Furthermore, ONT is discussed as an error-prone 
technique, although we recently demonstrated con-
sistent results between ONT, Illumina, and SOLiD 
sequencing.25 We also acknowledge that the gene- 
inference methodology we use to study metabolic 
changes within patient’s GM has some limitations. 
May it reflect the functional “landscape” of the 
microbiome, it does not prove that these functional 
changes actually occur in-situ. Having data about 
circulating and fecal metabolites would be a way to 
address deeper the potential mechanisms linking 
the aforementioned featured associated with T2D 
severity and persistence of T2D after bariatric 

surgery. However, it was unfortunately not possible 
for us to perform this experiment in the current 
study. Furthermore, we did not explore dietary 
habits, socioeconomical status and lifestyle vari-
ables in the present cohort, as these data were not 
available for all of our patients and we observed 
a bias of response rates (a higher proportion of 5y- 
Mild patients answered the questionnaires). We 
acknowledge this as a limitation of our study, as 
these components may have an important impact 
on patient’s trajectories of metabolic improve-
ments, their GM composition, and the abundance 
of the bacterial candidates we identified within this 
study. For the FMT experiment, the GM of women 
were transferred in male recipient animals. While 
not perfect, we chose this experimental design to 
ensure (i) a sufficient number of donors, as a large 
majority of patients in our cohort (and more gen-
erally in bariatric populations) are women, and (ii) 
to ensure the development of metabolic alterations 
via a high-fat-diet, toward which female mice are 
usually less suseptible.54,55 Even though sex is a very 
minimal contributor to subjects’ GM 
composition,56,57 we believe that our observations 
would benefit from confirmation with male donors 
or sex-matched recipient animals.

In conclusion, we herein report an accurate 
clustering method to grasp the magnitude of 
T2D improvements after RYGB, which allowed 
for the identification of a net enrichment in 
Bacteroidia in severe cases of T2D both before 
and 5-years after RYGB. Parts of the Bacteroidia 
fraction of the GM were transferred upon FMT 
and negatively impacted the glucose homeostasis 
of recipient mice, confirming a contribution of 
the GM in long-term T2D persistence and sever-
ity after RYGB. In addition, we observed that 
post-RYGB cluster transitions due to important 
metabolic improvements are associated with 
a strong decrease in Bacteroidia. This suggests 
that restoring a “healthier” GM profile (by even-
tually promoting other bacterial classes/species 
via dietary and/or lifestyle interventions,58 pre- 
or probiotics,32,59 drugs,30,53 or even FMT from 
healthy subjects60) may help improve the meta-
bolic phenotype of patients both before and after 
bariatric surgery. There is now a need to examine 
the benefits of such interventions in pre- and 
post-bariatric settings.
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Materials and methods

Study design and participants

We studied two subgroups of 136 patients in total, 
from our prospective bariatric surgery cohort 
“BARICAN” (Bariatric Surgery Cohort of Institute 
of Cardiometabolism and Nutrition) who had T2D 
at baseline, underwent RYGB, and for whom we 
had access to either stool samples collected during 
the 4-7-years clinical follow-up appointment for 
the first subgroup (n = 100) or to preoperative 
fecal samples for the second subgroup (n = 36 – 
Fig. S1).

Study approval

As part of usual patient’s care, the BARICAN 
cohort is recruited and followed-up at the Pitié- 
Salpêtrière Hospital Nutrition Department (Paris, 
France), and is approved by CNIL (Commission 
Nationale de l’Informatique et des Libertés; 
No. 1222666) as well as the French Ministry of 
Research. Patients provided informed consent and 
are part of several studies registered on https:// 
clinicaltrials.gov (P050318 Les Comités de 
Protéction des Personnes (CPP) approval: 
24 November 2006, NCT01655017, 
NCT01454232). All patients met standard bariatric 
surgery indications61 and are monitored according 
to national and international guidelines. Patients 
were not involved in the design, conduct, reporting, 
or dissemination plans of this work.

Clinical, bioclinical, and anthropometric variables

The following data were collected for all patients at 
every time point of follow-up, as previously 
described:11 anthropometric parameters, obesity- 
related comorbidities (including hypertension, 
T2D, dyslipidemia), the total list of treatments, 
T2D duration, bio-clinical data including blood 
tests (lipid panels, liver enzymes, and glucose- 
related parameters) as well as body composition 
measured by body DEXA scans (Hologic 
Discovery, West Bedford, MA). Fold changes of 
clinical variables between time points Tx and Tx+1 
(e.g. weight loss between Tbaseline and T12m) were 
calculated using the following formula: [(Tx+1 
value – Tx value)/Tx value].

Hierarchical clustering to stratify pre- and 
post-RYGB T2D severity

Groups of T2D severity were built by integrating 7 
clinical variables selected based on routine associa-
tion with T2D severity in clinical settings, which 
have also been associated with T2D non- 
resolution12,62: HbA1C, fasting blood glucose, 
T2D duration, patients’ age, and sex, as well as 
T2D treatments information (total number of glu-
cose-lowering agents and insulin requirements). 
This integration was performed using Principal 
Component Analysis (PCA from FactoMineR) at 
each time point concomitantly, to ensure that clus-
ters’ definitions were constant throughout the fol-
low-up. Three PCA components were kept (Kaiser- 
Guttman rule, eigenvalues ≥1). Clusters of T2D 
severity were then defined by using Hierarchical 
Clustering on Principal Components (HCPC from 
FactoMineR) and were subsequently named as 
“Severe” or “Mild” according to clusters’ clinical 
characteristics, presented in Fig. S3.

For time-sensitive parameters (age, T2D dura-
tion), baseline values were used for each time point 
for the PCA projection to avoid an increase in T2D 
severity simply due to time passing. The HCPC 
algorithm initially proposed to divide our cohort 
into three clusters. However, one of the clusters was 
gathering all male patients from the cohort, 
whereas the two others were all female. As such, 
we decided to reduce the number of clusters to two, 
among which male patients were homogeneously 
distributed. Removing sex from the PCA projection 
and HCPC classification did not induce any 
changes in our patients’ cluster assignments.

Human and murine gut microbiome analysis

Details about fecal DNA extraction, library pre-
paration, ONT MinION sequencing, and bioinfor-
matic processing are extensively described in the 
study by Alili et al.25

Fecal DNA extraction

Frozen stool samples were weighted (200 mg of 
human samples or 20–40 mg of murine samples) 
and underwent both chemical and physical lyses 
twice to extract most of the nucleic acids. Samples 
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were deproteinated using Proteinase K (ref 
3115844001 – Roche Diagnostics), treated with 
DNAse-free RNase (ref 12091021 – Invitrogen), 
and further purified on the PureLink™ 
Microbiome DNA Purification (ref A29790 – 
Invitrogen) kit’s columns after steps of precipita-
tion/resolubilization. Fecal DNA purity was 
assessed using a NanoDrop™ ND-1000 spectro-
photometer (ThermoFisher Scientific), its concen-
tration was determined using a Qubit™ fluorometer 
(Invitrogen™) and fragments integrity using the 
BioAnalyzer™ (Agilent) with the DNA 12000 kit.

Bioinformatic data processing – taxonomic binning

Sequence files were used for taxonomic binning 
using two different reference resources. The first 
one relies on Centrifuge for the taxonomic binning 
of individual reads, based on a comprehensive 
reference database of more than 8,000 reference 
genomes from prokaryotes and viruses (including 
both human and mouse reference genomes). To 
remove spurious taxonomic assignments, we 
further mapped the reads against their correspond-
ing reference genome using Minimap2 with map- 
ONT option optimized for Oxford Nanopore 
reads63 to filter spurious assignments in the first 
step. Only sequences classified by Centrifuge and 
aligned against the corresponding reference gen-
ome with Minimap2 were retained. Species abun-
dance tables were finally generated by summing the 
counts of each NCBI taxonomic IDs from the mini-
map2-filtered Centrifuge results. Reference taxo-
nomic tables were reconstructed from Centrifuge 
NCBI taxonomic IDs using the taxize package into 
a S4 phyloseq object.

More than 31 million reads were generated for our 
188 samples (100 patients from the 5-years cohort, 36 
patients from the baseline cohort, and 52 mice from 
the murine experiment), with an average read size of 
2.5 kb. For all human analyses, the number of reads 
was rarefied with seed to 48,000 reads per sample 
before analyses, a threshold allowing for the inclusion 
of all patients while ensuring similar sequencing 
depth. For the recipient animals, two sets of rarefac-
tions were performed (while ensuring that the seed 
was the same for each rarefaction): one at 65,000 reads 
for comparing the donors and their recipient animals, 

and one at 113,000 reads for within-animal compar-
isons, to use the maximum sequencing depth possible. 
Throughout all analyses, the same seed (number 711) 
was employed to ensure results’ reproducibility of 
results with random components.

Bioinformatic data processing – functional analysis

The abundances of KEGG orthology groups (KO) 
were inferred based on abundances of bacterial 
species. Briefly, we retrieved the KO content of 
each KEGG genomes using the KEGG API,64 for 
which species-level pangenomes were recon-
structed for all species-level bins based on NCBI 
taxonomy, and subsequently matched with geno-
mic sequences in the Centrifuge database. Using 
this matching, the abundance of each KO groups 
was determined as the sum of the abundances of all 
species containing the KO of interest. The KO 
matrix was then collapsed in pathways following 
KEGG’s different levels of annotations.

GM data analysis

One patient from the 5-years cohort, specifically 
from the 5y-Mild cluster, had to be excluded from 
all analyses, as they were a major outlier (true out-
lier detected using a rosnerTest (package EnvStats) 
with k = 5 (5% of the total number of patients) and 
ɑ = 0.001) on 5/16 of the species differing across 
T2D severity clusters (Figure 2).

dbRDA were performed using capscale from the 
vegan package with an inter-genus Bray-Curtis β- 
diversity matrix as entry, itself computed using 
vegdist from the same package. Cliff’s delta effect- 
size estimates were determined using cliff.delta 
from the effsize package. All analyses on abundance 
data were performed after rarefaction and exclu-
sion of rare taxa (detected in less than 20% of the 
samples). Relative abundances values were calcu-
lated for each sample by dividing the rarefied abun-
dances by the sum of the filtered abundances.

To assess the implantation of the human GM in 
recipient animals, we separately rarefied (at 65,000 
reads with fixed seed) donors and recipients unrar-
efied and unfiltered phyloseq objects. Species only 
present in the donor object were counted, as were 
species from the recipients’ object. Then, both 
objects were merged. A presence/absence study 
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was then performed by counting zeros within the 
merged abundance table. Engraftment of the 
human microbiota was then determined by divid-
ing the number of common species of the donors 
and their recipient animals by the total number of 
species of the human samples.

Donors’ recall and inoculum preparation for human 
to mice FMT

Initially, 14 donors were recalled by the medical 
team of the Nutrition department of the Pitié- 
Salpêtrière Hospital approximately 5-years after 
their RYGB. During their clinical visit, fresh stool 
samples were collected. No patient declared any 
intake of antibiotics within three months before 
the feces collection.

Upon propulsion, stool samples were main-
tained in tightly closed plastic pots under anae-
robic conditions (GenBag-anaer™, BioMérieux). 
Feces were then sampled, weighted, and diluted 
(10% weight/weight dilution) in an anoxic cryo- 
preserving solution consisting of 10% glycerol 
(ref G5516 – Sigma-Aldrich), 10% skim milk 
(ref 70166 – Sigma-Aldrich), and a cocktail of 
reducing agents (L-cysteine (1 g/L – C7477), 
sodium ascorbate (1 g/L – A7631), 
L-glutathione (0.1 g/L – G4251), and uric acid 
(0.2 g/L – U2625) – all from Sigma-Aldrich) all 
diluted in sterile water. This solution was used 
to promote bacterial survival upon freezing and 
thawing. Samples were then homogenized using 
a hand-held Ultra-Turrax homogenizer (T10 
Basic Ultra-Turrax™, IKA). Slurries were then 
filtered on three layers of sterile gauzes and 
were aliquoted in 5 ml tubes before being stored 
at −80°C until usage.

Mouse study: experimental design

Male specific-pathogen-free weaning (3 weeks) 
C57Bl6/j mice were obtained from Charles River 
Laboratories (France) and were homogeneously dis-
tributed in cages according to their body weight, 
with 4 animals per cage (one cage per human 
donor). Animals were maintained on a 12-hour 
light-dark cycle with ad-libitum access to water and 
a “western” diet enriched in lipids and sucrose 
(19.5% w/w protein (mostly casein), 35% w/w 

sucrose, 5% w/w fibers, 21% w/w fat (mostly butter) – 
D12079Bi from Research Diet). Mice were housed in 
individually ventilated cages, which were changed 
every week. Food, bedding, and enrichments were 
irradiated at 10 kGy. Drinking water was filtered and 
treated with 2 ppm chlorine. Mice were followed for 
14 weeks before sacrifice and tissue harvesting. Cages 
were systematically handled in the same order and 
under a dedicated hood with a laminar flow; gloves 
were changed between the handling of each cage, 
and all instruments and working area were disin-
fected with hydrogen peroxide 3% vol/vol to prevent 
cross-contaminations.

Importantly, one cage of animals (corresponding 
to the 14th donor) had to be excluded from the 
study due to a leak in its water supply. These 4 
animals had to be euthanized due to drastic and 
rapid weight loss and were thus excluded from all 
analyses presented in this paper. A total of 52 ani-
mals were therefore studied, 16 being recipients 
from 5y-Mild donors and 36 being recipients 
from 5y-Severe donors (Table 2).

Study approval

All procedures were validated by the Comité 
d’Éthique pour l’Expérimentation Animale n°5 
under agreement number #25963.

Body weight and composition measurements and 
fecal pellets harvesting

Body weight and food intake were monitored once 
a week using the same balance (Scout SPX, 
OHAUS). Body composition was assessed every 
two weeks using a LF90 Minispec+ scanner 
(Brucker). Stool pellets were collected every two 
weeks and were immediately placed in liquid nitro-
gen before being stored at −80°C.

Antibiotics-induced gut microbiota depletion and 
fecal matter transfers

To deplete the endogenous GM of our animals 
before the inoculation, all animals were gavaged 
with a cocktail of broad-spectrum antibiotics over 
7 days26 upon their arrival at the animal facility. As 
we want the inoculation to happen as close as 
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possible to the weaning period, mice did not have 
any acclimatization before the beginning of this 
procedure.

The antibiotic solution containing 200 mg/kg of 
ampicillin (ref A9393 – Sigma-Aldrich), neomycin 
(ref N1876 – Sigma-Aldrich), and metronidazole 
(ref M1547 – Sigma-Aldrich), as well as 100 mg/ 
kg of vancomycin (ref V2002 – Sigma-Aldrich) 
diluted in sterile tap water was prepared and stored 
at −20°C until usage. Antibiotics were administered 
once a day in the morning for a week. During that 
time, cages, bedding, and food pellets were renewed 
regularly (every day for the first three days, then 
every two days) to prevent re-contaminations, as 
mice are coprophagic. In the afternoon of the 
7th day, animals received 700 µL of a solution of 
polyethylene glycol (PEG), a laxative treatment 
used to flush out the residual microbiota and anti-
biotics from the intestinal lumen. The PEG solution 
was prepared using Colopeg™ (Bayer), which con-
tains PEG 3350 (77.5 g/L), sodium chloride (1.9 g/ 
L), sodium sulfate (7.4 g/L), potassium chloride 
(0.98 g/L), and sodium bicarbonate (2.2 g/L). The 
laxative powder was diluted in sterile tap water 
(according to the manufacturer’s instructions), fil-
tered on a 0.22 µm membrane, and stored at −20°C 
until usage. The administration was divided in two 
equal volumes that were gavaged within 1 hour 
after a 2-hours fast. The PEG treatment was per-
formed a second time in the morning of the 8th day 
following the same procedure. Throughout the 
microbiota depletion protocol, animals were closely 
monitored and showed no sign of suffering.

For the inoculations, frozen tubes (1 per donor 
per day) were thawed in ~30°C water for 30 seconds 
and were agitated once by inverting before opening. 
300 µL of fecal slurries were then inoculated to each 
animal by gavage for three consecutive days. To 
ensure long-lasting microbiota engraftment, one 
gavage with FMT solutions was performed every 
4–5 weeks during the follow-up (see Figure 3a).

Mice metabolic phenotype exploration

An oral glucose tolerance (OGTT) was performed 
11 weeks after the initial inoculation. Mice were 
fasted for 6 hours in clean cages with ad-libitum 
access to water but not food. Once fasted, all animals 
were gavaged with 2 g/kg of a 30% glucose solution 

(Lavoisier). Blood glucose levels were measured using 
Accu-Chek® PERFORMA glucometer (Roche 
Diabetes Care) through tail clipping 30 minutes 
before and at the moment of the gavage, as well as 
15, 30, 60, and 90 minutes after. Furthermore, 30 µL 
of whole blood were drawn using EDTA-coated 
capillaries (16.444 – Sarstedt) at baseline, 15, 30, 
and 60 minutes after the gavage for further cytokine 
quantification. Plasma samples were collected by cen-
trifuging blood samples at 13,000 g for 3 minutes at 
4°C and were kept at −20°C until usage. At the end of 
the experiment, animals were placed back into their 
respective cages with ad-libitum access to both food 
and water. The area under the curve (AUC) of the 
OGTT was determined using the trapezoidal 
method. A constant area value was subtracted to all 
AUCs, representing the area below the smallest blood 
glucose value. HOMA-IR and QUICKI insulin resis-
tance/sensitivity indexes were computed using the 
following formulas: [HOMA-IR = (fasting blood glu-
cose (mg/dl) * 0.0555 * fasting insulin (mU/L))/22.5]; 
[QUICKI = 1/(log(fasting blood glucose (mg/dl)) + 
log(fasting insulin (mU/L))].

Intestinal energy absorption

Thirteen weeks after the inoculation, mice were 
placed on metal grids within their cages emptied 
of any beddings. Feces and food residues that 
passed through the grids were collected and 
weighed every 24 hours for 3 consecutive days. 
During the experiment, both food intake and 
spillage were monitored daily. Feces were dried 
at 37°C for 48 hours and re-weighed. Total 
caloric content (kcal/g) of both the diet and 
feces was determined by bomb calorimetry 
(C200™, IKA) at the UMR1388 GenPhyse 
(INRAE Occitanie Toulouse, France). The net 
intestinal energy absorption capacity is expressed 
as a percentage of total energy ingested and 
represents the proportion of ingested energy 
that was not recovered in feces.

Insulin quantification

Circulating insulin levels were quantified in plasma 
samples collected during the OGTT using 
a MILLIPLEX™ Mouse Metabolic Hormone 
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Panel – Metabolism Multiplex Assay (Merck) using 
a Luminex™ (LX200) following manufacturer’s 
instructions.

Statistics

All analyses were conducted using Rstudio 3.10 rely-
ing on R 3.6.2. P-values were corrected to control for 
multiple testing errors using the Benjamini-Hochberg 
method. P or q-values were considered significant 
when ≤ 0.05 (or ≤ 0.1 when clearly stated).

Human clinical study

Continuous variables are expressed as mean ± stan-
dard deviation and categorical variables as numbers 
(percentages) unless stated otherwise. Comparisons 
of continuous variables were performed by ANOVA 
with the effect of sex and age accounted for. For 
categorical data comparisons, binomial models con-
trolling for sex and age were used. Missing data were 
imputed by the variable’s median.

Human to mice fecal microbiota transfer experiment

To avoid statistical imprecision due to pseudor-
eplication (artificial inflation of the number of 
samples, as multiple animals are recipients of 
the same donor), all statistical analyses on data 
concerning the recipient animals were per-
formed using the geometric mean of each 
donor’s 4 animals (unless specified otherwise). 
As such, 13 mean samples (corresponding to 
the 13 donors) were used for comparisons. 
Continuous variables are presented as the 
mean ± error of the mean unless specified 
otherwise. Parametric tests (Welch Two- 
Samples T-tests) were used solely on normally 
distributed data with homogeneous variance. 
When assumptions were not met, non- 
parametric tests were employed (Wilcoxon/ 
Kruskall-Wallis rank-sum tests).
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