organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[2-(Dimethylazaniumyl)ethyl]-1*H*-1,2,3,4-tetrazole-5-thiolate

Sadasivam Sharmila Tagore,^a Sivaraman Krishna,^a Sundaramoorthy Gomathi^b and Velusamy Sethuraman^a*

^aPeriyar Maniammai University, Thanjavur 613 403, Tamil Nadu, India, and ^bSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India Correspondence e-mail: lvsethu13@gmail.com

Received 15 November 2013; accepted 22 January 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.092; data-to-parameter ratio = 28.3.

In the crystal structure of the title zwitterion, $C_5H_{11}N_5S$, molecules are linked *via* N-H····N hydrogen bonds, forming zigzag chains propagating along [010]. The chains are linked by C-H···S hydrogen bonds, forming two dimensional networks lying parallel to (001).

Related literature

For the biological activity of tetrazoles, see: Juby *et al.* (1982); Tamilselvi & Mugesh (2009, 2011). For the general existence of zwitterions in other molecules and the involvement of a protonated N atom in hydrogen bonding, see: Ruanwas *et al.* (2012); Ha (2012). For the biological activity of cefotiam (systematic name: (6R,7R)-7-{[2-(2-amino-1,3-thiazol-4-yl)acetyl]amino}-3-{[1-(2-dimethylaminoethyl)tetrazol-5-yl), an antiobiotic with DMETT [1-(2-(dimethylamino)-ethyl)-1*H*tetrazole-5-thione] as a side chain, against enterobacteriacea, see: Garcia-Rodriguez *et al.* (1995); Polis & Tuazon (1985).

Experimental

Crystal data

 $C_{5}H_{11}N_{5}S$ $M_{r} = 173.26$ Monoclinic, $P2_{1}/c$ a = 7.1021 (1) Å b = 11.2476 (2) Å c = 10.7045 (2) Å $\beta = 102.479 (1)^{\circ}$

 $V = 834.89 (2) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.33 \text{ mm}^{-1}$ T = 100 K $0.41 \times 0.21 \times 0.14 \text{ mm}$

11518 measured reflections

 $R_{\rm int} = 0.027$

3004 independent reflections

2618 reflections with $I > 2\sigma(I)$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{min} = 0.876, T_{max} = 0.955$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$vR(F^2) = 0.092$	independent and constrained
S = 1.05	refinement
3004 reflections	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
06 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N5-H5\cdots N4^{i}$	0.934 (16)	1.889 (17)	2.8054 (14)	166.2 (16)
C4-H4C···S1 ⁱⁱ	0.98	2.83	3.7275 (13)	153

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009), *Mercury* (Macrae *et al.*, 2008) and *POV-RAY* (Cason, 2004); software used to prepare material for publication: *PLATON* and *publCIF* (Westrip, 2010).

The authors thank Dr Babu Varghese and the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Chennai, Tamil Nadu, India, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BV2228).

References

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cason, C. J. (2004). *POV-RAY for Windows*. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.
- Garcia-Rodriguez, J. A., Bellido, J. L. M. & Sanchez, J. E. G. (1995). Int. J. Antimicrob. Agents, 5, 231–243.
- Ha, K. (2012). Acta Cryst. E68, o1221.
- Juby, P. F., Hudyma, T. W., Brown, M., Essery, J. M. & Partyka, R. A. (1982). J. Med. Chem. 25, 1145–1150.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Polis, M. A. & Tuazon, C. U. (1985). Antimicrob Agents Chemother. 28, 576– 577.
- Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o2155– o2156.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tamilselvi, A. & Mugesh, G. (2009). ChemMedChem, 4, 512-516.
- Tamilselvi, A. & Mugesh, G. (2011). Inorg. Chem. 50, 749-756.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2014). E70, o224 [doi:10.1107/S1600536814001573]

1-[2-(Dimethylazaniumyl)ethyl]-1H-1,2,3,4-tetrazole-5-thiolate

Sadasivam Sharmila Tagore, Sivaraman Krishna, Sundaramoorthy Gomathi and Velusamy Sethuraman

1. Comment

A large number of tetrazole derivatives exhibit diverse pharmacological properties (Juby *et al.*, 1982) and some antibiotics with heterocyclic thiol side chains possess antithyroid activity (Tamilselvi & Mugesh, 2009). 1-(2-(Dimethylamino)-ethyl)-1*H*-tetrazole-5-thione (DMETT) exhibits thiol-thione tautomerism and thiolate anion formation which plays a vital role in the inhibition of the metallo- β -lactamases catalysed hydrolysis of cephalosporins (Tamilselvi & Mugesh, 2011). Cefotiam, a second-generation cephalosporin antibiotic, has a derivative of DMETT as a side chain which is more active against many of the Enterobacteriacea including Enterobacter, E·Coli, Klebsiella, Salmonella and Indole-positive Proteus species (Garcia-Rodriguez *et al.* 1995; Polis & Tuazon, 1985).

The current investigation focusses on the supramolecular hydrogen bonded patterns exhibited by the title compound (Scheme. 1).

The title compound (I), 1-[2-(dimethylazaniumyl)ethyl]-1*H*-1,2,3,4-tetrazole-5-thiolate tetrazole-5-thiolate (DMATT) crystallizes with one molecule in the asymmetric unit and it exists as a zwitterion with the positive charge on the ammonium nitrogen atom and the negative charge on the thiolate sulfur atom (Fig 1).

This compound exists as a zwitterion like many other amino compounds reported in the literature (Ruanwas, *et al.*, 2012; Ha, 2012). There is an intramolecular exchange of thiol proton to amino nitrogen and thus thiolate formation, which leads to the generation of a nucleophilic sulfur species (responsible for the inhibition activity). The geometry of the *tert-* ammonium group is found to be tetrahedral with bond angles ranging from 106.9 (11)–113.32 (9)°. The maximum deviation of the side chain at N1 position from the mean plane of tetrazole ring moiety is found to be 0.313 (10) Å. The molecular confirmation is inferred from the torsion angles N1—C2—C3—N5, C2—C3—N5—C4 and C2—C3—N5—C5 and the values are found to be -81.52 (12)°, -166.23 (9)°, and 70.26 (12)° respectively.

Two inversion related zwitterions present in the same plane are linked by a strong N—H···N hydrogen bond involving *tert*-ammonium group and ring N4ⁱ atom [symmetry code: -x + 2, y - 1/2, -z + 1/2] (Table 1). This interaction extends along *b* axis leading to the generation of a wave like supramolecular chain. The supramolecular chains in the adjacent planes are connected *via* a weak C—H···S hydrogen bond. This hydrogen bond links one of the methyl C—H groups and S1ⁱⁱ atom [symmetry code: x - 1, y, z] and generates another wave like supramolecular chain extending along *a* axis. The centrosymmetric N—H···N linkage between two zwitterions facilitates the effective occurrence of C—H···S hydrogen bond thus forming a ring motif with a graph set of $R_4^4(23)$. This motif exists in both *a* and *b* axis and generates a two dimensional network as shown in Fig. 2.

2. Experimental

The title compound was obtained by dissolving DMETT (Sigma-Aldrich; 43.3mg, 0.25 mmol) in 20 ml of hot methanol, warming the resultant solution over a water bath for half an hour and then keeping it at room temperature for crystallization. After a week's time, colorless prismatic crystals were obtained

3. Refinement

The hydrogen atoms for the ammonium group (NH₄⁺) was located in a difference Fourier map and refined freely. All other hydrogen atoms were positioned geometrically (C—H = 0.98–0.99 A) and were refined using a riding model, with $U_{iso}(H) = 1.2Ueq(C)$ for CH₂ or 1.5Ueq(C) for CH₃.

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009), *Mercury* (Macrae *et al.*, 2008) and *POV-RAY* (Cason, 2004); software used to prepare material for publication: *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Figure 1

The asymmetric unit of (I), shown in 50% probability displacement ellipsoids.

Figure 2

A view of two dimension network formed by N—H···N and C—H···S hydrogen bonds. [symmetry code: (i) 2 - x, -1/2 + y, 1/2 - z; (ii) -1 + x, y, z].

1-[2-(Dimethylazaniumyl)ethyl]-1H-1,2,3,4-tetrazole-5-thiolate

Crystal data	
$C_5H_{11}N_5S$	F(000) = 368
$M_r = 173.26$	$D_{\rm x} = 1.378 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3004 reflections
a = 7.1021 (1) Å	$\theta = 2.7 - 32.7^{\circ}$
b = 11.2476(2) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 10.7045 (2) Å	T = 100 K
$\beta = 102.479 \ (1)^{\circ}$	Prism, colourless
V = 834.89 (2) Å ³	$0.41 \times 0.21 \times 0.14 \text{ mm}$
Z = 4	
Data collection	
Bruker Kappa APEXII CCD	11518 measured reflections
diffractometer	3004 independent reflections
Radiation source: fine-focus sealed tube	2618 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
ω and φ scan	$\theta_{\rm max} = 32.7^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Bruker, 2004)	$k = -16 \rightarrow 16$
$T_{\min} = 0.876, \ T_{\max} = 0.955$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
3004 reflections	and constrained refinement
106 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0391P)^2 + 0.4372P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta ho_{ m max} = 0.48 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{ m min} = -0.30 \ m e \ m \AA^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$
<u>S1</u>	1.21899 (4)	1.07521 (3)	0.25401 (3)	0.0158 (1)
N1	0.85227 (13)	1.05977 (8)	0.10942 (9)	0.0111 (2)
N2	0.71652 (14)	1.12926 (9)	0.03430 (9)	0.0146 (3)
N3	0.79116 (14)	1.23401 (9)	0.03491 (10)	0.0155 (3)
N4	0.97380 (13)	1.23578 (9)	0.10896 (9)	0.0129 (2)
N5	0.72606 (14)	0.90248 (8)	0.33382 (9)	0.0109 (2)
C1	1.01325 (15)	1.12532 (10)	0.15599 (10)	0.0112 (3)
C2	0.81956 (17)	0.93255 (10)	0.12032 (11)	0.0133 (3)
C3	0.66221 (16)	0.90062 (10)	0.19086 (10)	0.0120 (3)
C4	0.57703 (17)	0.84181 (11)	0.39090 (11)	0.0151 (3)
C5	0.76474 (17)	1.02474 (10)	0.38754 (10)	0.0137 (3)
H2A	0.94160	0.89510	0.16520	0.0160*
H2B	0.78540	0.89820	0.03320	0.0160*
H3A	0.55390	0.95710	0.16510	0.0140*
H3B	0.61320	0.82020	0.16390	0.0140*
H4A	0.61680	0.84390	0.48440	0.0230*
H4B	0.56360	0.75900	0.36190	0.0230*
H4C	0.45320	0.88280	0.36380	0.0230*
H5	0.839 (2)	0.8576 (16)	0.3566 (16)	0.024 (4)*
H5A	0.65260	1.07550	0.35540	0.0210*
H5B	0.87790	1.05780	0.36130	0.0210*
H5C	0.78910	1.02120	0.48110	0.0210*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0125 (1)	0.0164 (2)	0.0171 (1)	0.0012(1)	0.0001 (1)	0.0039(1)
N1	0.0124 (4)	0.0083 (4)	0.0120 (4)	-0.0003 (3)	0.0014 (3)	0.0014 (3)
N2	0.0142 (4)	0.0123 (5)	0.0155 (4)	0.0007 (4)	-0.0004 (3)	0.0024 (3)
N3	0.0141 (4)	0.0127 (5)	0.0186 (5)	0.0001 (4)	0.0009 (3)	0.0021 (3)
N4	0.0121 (4)	0.0106 (4)	0.0154 (4)	-0.0002 (3)	0.0020 (3)	0.0014 (3)
N5	0.0122 (4)	0.0089 (4)	0.0115 (4)	0.0003 (3)	0.0025 (3)	0.0003 (3)
C1	0.0132 (4)	0.0099 (5)	0.0110 (4)	-0.0007 (4)	0.0039 (3)	0.0000 (3)
C2	0.0185 (5)	0.0080 (5)	0.0144 (5)	-0.0018 (4)	0.0056 (4)	-0.0008(4)
C3	0.0143 (5)	0.0108 (5)	0.0101 (4)	-0.0027 (4)	0.0012 (3)	-0.0006 (3)
C4	0.0162 (5)	0.0139 (5)	0.0166 (5)	-0.0007 (4)	0.0065 (4)	0.0028 (4)
C5	0.0170 (5)	0.0101 (5)	0.0137 (5)	-0.0014 (4)	0.0024 (4)	-0.0026 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

SI-CI	1.7003 (11)	C2—C3	1.5207 (17)
N1—N2	1.3609 (14)	C2—H2A	0.9900
N1—C1	1.3612 (14)	C2—H2B	0.9900
N1—C2	1.4584 (14)	С3—НЗА	0.9900
N2—N3	1.2914 (14)	С3—Н3В	0.9900
N3—N4	1.3664 (14)	C4—H4A	0.9800
N4—C1	1.3471 (15)	C4—H4B	0.9800
N5—C3	1.4994 (14)	C4—H4C	0.9800
N5—C4	1.4962 (16)	С5—Н5А	0.9800
N5—C5	1.4929 (14)	С5—Н5В	0.9800
N5—H5	0.934 (16)	C5—H5C	0.9800
S1…H2A	2.8400	C5…N1	3.1945 (14)
S1…H3A ⁱ	3.0500	C5···N3 ^x	3.1239 (15)
S1…H4C ⁱ	2.8300	C1…H5B	2.6900
S1…H5A ⁱ	3.0400	C1···H5 ⁱⁱ	2.830 (18)
S1…H5B	2.9000	C1···H2B ⁱⁱⁱ	2.7300
S1…H3B ⁱⁱ	3.0600	C2…H5B	2.8900
S1…H4B ⁱⁱ	3.0000	H2A…S1	2.8400
S1…H2B ⁱⁱⁱ	3.0800	H2A…H5	2.3600
S1…H4A ^{iv}	2.9400	H2B…S1 ⁱⁱⁱ	3.0800
S1…H5C ^{iv}	3.0500	H2B…N4 ⁱⁱⁱ	2.9400
N1…N4	2.1601 (14)	H2B····C1 ⁱⁱⁱ	2.7300
N1…N5	3.2610 (13)	H3A…S1 ^{xi}	3.0500
N1…C5	3.1945 (14)	H3A…N2	2.7800
N2····C4 ^v	3.3800 (16)	НЗА…Н4С	2.5300
N2…N4	2.1867 (14)	НЗА…Н5А	2.4100
N2···C3 ^{vi}	3.2180 (15)	H3A···N2 ^{vi}	2.7200
N3····C5 ^{vii}	3.1239 (15)	H3B…H4B	2.3300
N3····C4 ^v	3.1363 (16)	H3B…S1 ^{viii}	3.0600
N4…C4 ⁱⁱ	3.4054 (16)	H3B…N2 ^{vi}	2.8600
N4…N1	2.1601 (14)	H4A…H5C	2.3400
N4…N5 ⁱⁱ	2.8054 (14)	H4A···S1 ^{iv}	2.9400

N5…N1	3.2610 (13)	Н4В…Н3В	2.3300
N5…N4 ^{viii}	2.8054 (14)	H4B…S1 ^{viii}	3.0000
N1…H5B	2.6600	H4B…N2 ^{ix}	2.8800
N2…H3A	2.7800	H4C…S1 ^{xi}	2.8300
N2…H4B ^v	2.8800	Н4С…Н3А	2.5300
N2…H3A ^{vi}	2.7200	H4C…N3 ^{ix}	2.7900
N2…H3B ^{vi}	2.8600	Н5…Н2А	2.3600
N3····H4C ^v	2.7900	H5…N4 ^{viii}	1.889 (17)
N3…H5C ^{vii}	2.8100	H5…C1 ^{viii}	2.830 (18)
N3…H5A ^{vii}	2.9000	H5A····S1 ^{xi}	3.0400
N4…H2B ⁱⁱⁱ	2.9400	Н5А…НЗА	2.4100
N4…H5 ⁱⁱ	1.889 (17)	H5A···N3 ^x	2.9000
C1C5	3 5255 (16)	H5B···S1	2,9000
C1···C2 ⁱⁱⁱ	3.4785 (16)	H5B···N1	2.6600
C2…C1 ⁱⁱⁱ	3 4785 (16)	H5B···C1	2,6900
C3····N2 ^{vi}	3 2180 (15)	H5B····C2	2.8900
$C4 \cdots N3^{ix}$	3 1363 (16)	H5C···H4A	2.3400
$C4 \cdots N2^{ix}$	3 3800 (16)	H5C····S1 ^{iv}	3 0500
$C4 \cdots N4^{\text{viii}}$	3 4054 (16)	H5C···N3 ^x	2 8100
C5C1	3 5255 (16)	1150 115	2.0100
65 61	5.5255 (10)		
N2-N1-C1	109.70 (9)	C3—C2—H2B	109.00
$N_2 - N_1 - C_2$	120 40 (9)	$H^2A - C^2 - H^2B$	108.00
C1 - N1 - C2	129.63(10)	N5—C3—H3A	109.00
N1—N2—N3	106 46 (9)	N5—C3—H3B	109.00
N2—N3—N4	110, 70, (9)	$C_2 - C_3 - H_3 A$	109.00
N3—N4—C1	107.34(9)	$C_2 = C_3 = H_3 B$	109.00
$C_3 - N_5 - C_4$	107.57(9) 109.02(9)	$H_3A = C_3 = H_3B$	109.00
$C_3 - N_5 - C_5$	113 32 (8)	N5—C4—H4A	109.00
C4-N5-C5	110.51 (9)	N5—C4—H4B	109.00
C5	108.7(11)	N5 $C4$ $H4C$	109.00
C3_N5_H5	108.7(11) 108.2(10)	$H_{4} = C_{4} = H_{4} B$	109.00
C4—N5—H5	106.2(10)	H4A - CA - H4C	109.00
S1 C1 N4	128 17 (0)	HAB CA HAC	109.00
S1 C1 N1	126.17(9) 126.03(9)	N5 C5 H5A	109.00
$N_1 = C_1 = N_1$	120.03(9) 105.80(9)	N5 C5 H5B	109.00
N1 C2 C3	105.00(9) 114.73(0)	N5_C5_H5C	109.00
$N_{1} = C_{2} = C_{3}$	114.75(9) 114.26(0)		109.00
$N_{3} = C_{3} = C_{2}$	114.20 (9)		109.00
N1 = C2 = H2R	109.00	H5R C5 H5C	109.00
$C_2 = C_2 = H_2 \Lambda$	109.00	115B-C5-115C	109.00
C5-C2-112A	109.00		
C1 - N1 - N2 - N3	-0.17(12)	N1—N2—N3—N4	-0.04(12)
$C_{2} N_{1} N_{2} N_{3}$	-174.75(10)	N2—N3—N4—C1	0.24(12)
$N_2 - N_1 - C_1 - S_1$	179 98 (9)	N3—N4—C1—S1	-180.00(8)
$N_2 N_1 C_1 N_4$	0.31(12)	N3—N4—C1—N1	-0.33(12)
C_{2} N1 C_{1} S1	-6.09(17)	C4-N5-C3-C2	-166 23 (9)
$C_2 = N_1 = C_1 = N_4$	174 24 (10)	C_{5} N5 C_{3} C_{2}	70.26(12)
	1, 7.27 (10)	05 115 03 02	, 0.20 (12)

N2—N1—C2—C3	-68.63 (13)	N1-C2-C3-N5	-81.52 (12)
C1—N1—C2—C3	118.00 (12)		

Symmetry codes: (i) x+1, y, z; (ii) -x+2, y+1/2, -z+1/2; (iii) -x+2, -y+2, -z; (iv) -x+2, -y+2, -z+1; (v) -x+1, y+1/2, -z+1/2; (vi) -x+1, -y+2, -z; (vii) x, -y+5/2, z-1/2; (viii) -x+2, y-1/2, -z+1/2; (ix) -x+1, y-1/2, -z+1/2; (ix) x, -y+5/2, z+1/2; (ix) x-1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
N5—H5…N4 ^{viii}	0.934 (16)	1.889 (17)	2.8054 (14)	166.2 (16)
C2—H2A···S1	0.99	2.84	3.3039 (12)	109
C4—H4C···S1 ^{xi}	0.98	2.83	3.7275 (13)	153

Symmetry codes: (viii) -x+2, y-1/2, -z+1/2; (xi) x-1, y, z.