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Abstract: Virtual screening (VS) is a computational practice applied in drug discovery research.
VS is popularly applied in a computer-based search for new lead molecules based on molecular
similarity searching. In chemical databases similarity searching is used to identify molecules that
have similarities to a user-defined reference structure and is evaluated by quantitative measures of
intermolecular structural similarity. Among existing approaches, 2D fingerprints are widely used.
The similarity of a reference structure and a database structure is measured by the computation of
association coefficients. In most classical similarity approaches, it is assumed that the molecular
features in both biological and non-biologically-related activity carry the same weight. However,
based on the chemical structure, it has been found that some distinguishable features are more
important than others. Hence, this difference should be taken consideration by placing more weight
on each important fragment. The main aim of this research is to enhance the performance of similarity
searching by using multiple descriptors. In this paper, a deep learning method known as deep belief
networks (DBN) has been used to reweight the molecule features. Several descriptors have been
used for the MDL Drug Data Report (MDDR) dataset each of which represents different important
features. The proposed method has been implemented with each descriptor individually to select
the important features based on a new weight, with a lower error rate, and merging together all
new features from all descriptors to produce a new descriptor for similarity searching. Based on
the extensive experiments conducted, the results show that the proposed method outperformed
several existing benchmark similarity methods, including Bayesian inference networks (BIN), the
Tanimoto similarity method (TAN), adapted similarity measure of text processing (ASMTP) and the
quantum-based similarity method (SQB). The results of this proposed multi-descriptor-based on
Stack of deep belief networks method (SDBN) demonstrated a higher accuracy compared to existing
methods on structurally heterogeneous datasets.

Keywords: virtual screening (VS); similarity searching; deep learning; deep belief networks (DBN);
feature selection

1. Introduction

In recent years, chemoinformatics has been an active multidisciplinary research area
that is beneficial to chemistry and drug discovery, with the use of various tools and
technologies. The use of virtual screening (VS) in chemoinformatics is considered as
pertinent to scrutinize records of molecules and identify those structures that are most
anticipated to be able to be attached to a drug target. The two main classes of VS are
ligand-based and target-based VS [1,2]. Recently, some combinations of both structure-
based and ligand-based methods have been introduced [3,4]. In the chemical databases,
all ligands are ranked accordingly to their maximum score, and the one with the best
score is then subjected to further investigation. The VS is conducted based on structural
similarity, searching between known and potentially active ligands, and focusing on the
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molecular similarity principle, which specifies that molecules with similar structure may
have similar activity. Among the most frequently employed procedures for ligand-based
VS, similarity searching is commonly used. In this approach, a chemical database is
explored to discover the molecules with the closest similarity to a user-defined reference
structure [5]. All forms of similarity measures come with three fundamental constituents:
(a) the representation, which portrays the structures to be taken into account; (b) the
weighting scheme, which designates significance-allocating weights to various sections of
the structural representation; and (c) the similarity coefficient, which puts a figure on the
level of similarity between two fittingly-weighted representations [6].

The process of measuring the similarity between any two objects involves comparing
their features. Molecular features range from physicochemical properties to structural
features and are stored in different ways, which are commonly called molecular descriptors.
A molecular descriptor is the ultimate outcome of a logical and arithmetical process, which
converts data encrypted within a symbolic depiction of a molecule into functional num-
bers. A molecular descriptor may also be the outcome of a regulated experiment [7]. The
performance of 2D fingerprint descriptors, which are frequently employed for accelerated
screening during substructure and similarity searches, may involve the use of a fragment
dictionary or hashed methods applied to the 2D structural drawings of molecules. This
fingerprinting process converts a chemical structure into binary form (a string of “0”s and
“1”s), which denotes a kind of chemical shorthand that detects the presence or absence of a
certain structural feature in the chemical molecule.

Data fusion is a technique involving the combination of multiple data sources which
are translated into a single source, in which the result for the fused source is expected to
be more informative compared to the results of the individual input sources [8,9]. The
concept of combining multiple information sources has been successfully applied [6] and
recent studies have found that, in terms of similarity, more potential actives among top
ranking molecules can be identified using fusion of several similarity coefficients than
can be obtained by using individual coefficients [10]. In the method proposed in [11], an
average set of new rankings is produced by all possible combinations of any number of
coefficients for each compound. It was found that, based on the new ranking, in com-
parison to the best individual coefficient, the best performing coefficient combinations
(2 to 8) returned more actives among the top 400 compounds. In general, it is expected that
the individual coefficient that excels on its own will be more likely to excel in combina-
tions. Most high performing combinations involved the Russell/Rao, Simple Matching,
Stiles, Jaccard/Tanimoto, Ochiai/Cosine, Baroni-Urbani/Buser, and Kulczynski (2) coef-
ficients [11]. There are numerous fusion techniques in the area of information retrieval
that can be adapted for chemical information retrieval. Fusion normally involves two
basic components: the types of objects to fuse and the fusion technique. In text retrieval,
combinations of document representations, queries, and retrieval techniques have been
fused using various linear and non-linear methods. In chemoinformatics, molecular repre-
sentations, query molecules, docking scores, and similarity coefficients have mostly been
combined using linear combination techniques [12]. In many fusion experiments, either in
text retrieval or chemical compound retrieval, the use of a fused source has shown better
results than a single source. In achieving the best retrieval performance through data
fusion, two requirements must be taken into consideration: the accuracy of each individual
source and the independence of sources relative to one another.

Various techniques have been introduced to reduce dataset dimensionality. One of the
best-known techniques developed to deal with data dimensionality is principal component
analysis (PCA). This mathematical procedure is used to ensure that the reduction of large
dataset variables into smaller sets does not affect the most useful information. The number
of (possibly) correlated variables is transformed into a (smaller) number of uncorrelated
variables, which are called principal components. PCA is designed to preserve the greatest
variability of data and ensure that the data are later translated into new variables that
are linear functions of the original dataset. These new variables have a consecutively
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maximized variance and are uncorrelated with each other [13]. The use of PCA aims to
discover relationships between observations, by extracting crucial data information, detect-
ing, and removing outliers, and reducing data dimensionality, in terms of the relevancy of
information. All of the aims of PCA are attained by discovering the PCA space, in which
the maximum direction of the variance prior to the provided data is represented [14]. The
PCA space is comprised of orthogonal principal components (PCs), i.e., axes or vectors.
The calculation of the PCs involved in solving the covariance matrix.

Recently, deep learning (DL) techniques have been successfully used in several fields.
The learning of parameters in deeper architectures can be a challenging optimization task,
similar to that found in a neural network with multiple hidden layers. Hinton et al. [15]
suggest that learning in deeper architectures can be conducted in an unsupervised and
greedy, layered pattern. The initial input is sensory data, as learning information in the
initial layers. The initial layers then train according to the inputs, while their outputs
(denoting the initial levels of learned representation) are conveyed as learning information
to the secondary layers. Iterations are performed until the desired numbers are acquired, at
which point the deep networks are wholly trained. Representations learned in the last layers
can be utilized for various tasks. If tasks are of the categorization type, other supervised
layers are placed on top of the previous layers while their parameters are learned, both
randomly and through the use of supervised data, while the remaining network is set,
and the entirety is fine-tuned. The application of DL techniques based on deep artificial
neural networks has been a game-changer in the fields of computer vision [15–20], speech
recognition [21–26] and natural language processing [27–32]. It is believed that deep
learning has brought machine learning closer to achieving its nature goal, which is artificial
intelligence [33]. The use of deep learning is known to be beneficial when applying a
general-purpose procedure, where features can be learned automatically. The procedure
is implemented by involving the deep neural networks (DNNs) of a multilayer stack of
simple neural networks with non-linear input-output mappings [22,23,27,34]. Particularly,
researchers have investigated the use of one of best deep learning techniques, known
as deep belief networks (DBN) as a new way to reweight molecular features and thus
enhance the performance of molecular similarity searching, DBN techniques have been
implemented successfully for feature selection in different research areas and produced
superior results compared to those of previously-used techniques in the same areas [35–37].

The DBN’s deep-learning procedure is made up of two phases: layer-wise feature ab-
straction and reconstruction weight fine-tuning [15]. In the first stage, a family of restricted
Boltzmann machines (RBMs) is utilized by the DBN [38] to calculate the layer of recon-
struction weights. Later, in the second stage, backpropagation is performed by the DBN to
fine-tune the weights that were gathered during the first stage [15], [39]. First, the DBN has
been trained on all the molecules in the MDDR datasets to calculate the molecular feature’s
weight. Only a few hundred features are then selected, based on their new weight and
lowest error rate. In previous studies, the MDDR datasets have been represented by several
2D fingerprints, which include, atom type extended connectivity (ECFP) fingerprints, atom
type extended connectivity fingerprint counts (ECFC), functional class daylight path-based
fingerprint counts (FPFC), functional class extended connectivity fingerprint counts (FCFC),
atom type connectivity fingerprint counts (EPFC), functional class daylight path-based
fingerprints (FPFP), ALogP types extended connectivity fingerprint counts (LCFC), ALogP
types daylight path-based fingerprint counts (LPFC), functional class extended connectivity
fingerprints (FCFP), ALogP types daylight path-based fingerprints (LPLP), and ALogP
extended connectivity fingerprint (LCFP) [40–42]. Each of these fingerprints has different
important features and different molecular representations. In this study, we implemented
a stack of DBNs with each of these molecular fingerprints and only the important features
selected from each fingerprint were combined to form a new descriptor, which is used to
obtain improved performance of molecular similarity searching for chemical databases. In
summary, major contributions of this paper are as follows:
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• An improved deep learning method for molecular similarity searching that utilizes
feature selection.

• An introduced Stack of DBN method for features reweighting is proposed by empha-
sizing more weights to the important features.

• The proposed method showed promising results in terms of overall performances in
comparison to the benchmark methods.

2. Related Works

The core principle of feature selection is to choose a subset of all variables, so that
a large number of features with little discriminative and predictive information is elim-
inated [43,44]. The molecular fingerprints consist of many features; however, not all of
them are important. Hence, removing some features can enhance the similarity measure
recall [45]. These redundant and irrelevant features would potentially interfere with data
mining methods, such as clustering, and make it hard to translate [46]. There are two
known approaches for reducing dimensionality, which are feature transformation and
feature selection. In feature transformation, a linear or non-linear function is added to
the original features to eliminate dimensions; thus, a subset of the original features is
selected. In contrast, feature selection is used particularly to preserve the significance of
the original features.

Most of the current similarity measures consider all molecular features to be of equal
value with the same importance, and all these features are used in calculating similarity
measures, which is considered as a drawback. According to Vogt et al. [45], the recall of
similarity measure can be enhanced by feature selection, thus allowing more weights to be
added on important fragments whilst removing the unimportant ones. Various studies on
weighting functions have been carried out by Abdo et al. [47] and a new fragment weighting
scheme for the Bayesian inference network in ligand-based virtual screening has been
introduced. Ahmed et al. [48] focused on developing a fragment reweighting technique by
applying reweighting factors and relevance feedback to improve the retrieval recall of a
Bayesian inference network. In comparison to the conventional similarity approaches used,
the Bayesian inference network model has enhanced performance and has been widely
used in virtual screening as an alternative similarity searching method [49–53].

Various text retrieval studies have shown that, even if the effectiveness of the provided
algorithms is similar, the use of different models of retrieval or ranking algorithms will
result in low overlap between identified relevant and non-relevant documents [54]. Thus,
Turtle and Croft [55] developed an inference network-based retrieval model whereby
different document representations and versions of a query are combined in a consistent
probabilistic framework. Various researchers have used a range of different methods to
combine multiple retrieval runs, which results in better performance than a single run [56].
Moreover, the use of a progressive combination of different Boolean query formulations
could potentially lead to a progressive improvements in retrieval effectiveness [57]. The
combined effect of using multiple representations was discussed by [58]. Specifically, the
INQUERY system was used by Rutgers University [55] and a modified version of the
SMART system was used by Virginia Tech. Results from both of these studies showed
that the combination methods often led to a better and improved results compared to any
individual retrieved set. Another study, conducted on various types of datasets by Ginn
et al. [59] used data fusion methods to combine search results, based on multiple similarity
measures. They concluded that the application of data fusion offers a simple, but efficient
solution to integrate individual similarity measures. Croft et al. [60] investigated a retrieval
model that can incorporate multiple representations in accordance to information needs,
and found that the combination of different versions of a query gave better performance
than the individual versions.

PCA has been used in chemo-informatics in several previous studies. Cao et al. [61]
conducted a study on the use of PCA for image acceleration reconstruction in fluorescence
molecular tomography (FMT) to overcome the obstacles presented by dimensionality,



Molecules 2021, 26, 128 5 of 24

due to the massive computational load and memory requirement in the inverse problem.
Reducing the dimensionality enables faster reconstruction of an image. The result was
highly positive, in that the proposed method was able to assist in accelerating image
reconstruction in FMT almost without degrading the image quality. A paper by Yoo and
Shahlaei [62] discusses different aspects and applications of PCA in quantitative structure
activity relationship (QSAR) and suggests that the main purpose of PCA in a typical QSAR
is to study the information in the data with regard to interrelationships between descriptors
and molecules and decide whether the PCA can integrate related information represented
by different structural descriptors into the few first PCs without focusing on a particular
data range. Thus, no loss of important information will occur during analysis of the original
matrix of descriptors.

A study of DBN techniques has been successfully conducted to perform feature
abstraction and reconstruction of images [35,63–65]. The results shown an enhancement
of the sample classification accuracy on a multi-level feature selection in selecting the
least number of the most discriminative genes [66]. The application of DBN has also been
conducted on feature selection for remote sensing scene classification [35]. Zhuyun and
Weihua [67] proposed using feature fusion based on DBN with multisensory feature fusion
for bearing fault diagnosis. The purpose of multisensory information fusion is to produce
more reliable and accurate information representations compared with those of single
sensor data, because multisensory signals always contain redundant and complementary
information which is useful for diagnosis.

Most similarity techniques are based on the assumption that molecular fragments
without links to any biological activity are similar in weight to the crucial fragments.
Generally, chemists refer to elements in structural diagrams, such as functional groups and
place importance on certain fragments over others. Researchers in this domain scrutinize
all fragments in the chemical structure of compounds and assign additional weights
to the more important fragments. Thus, a match involving two molecules with highly
weighted features would be of more significance to the overall similarity than a match
involving molecules with low weighted features [68,69]. In addition, using these important
features in feature selection improves the performance of the similarity searching. Feature
selection is known to be an efficient method for the removal of irrelevant content in data
loads, as it delivers an uncomplicated learning model while ensuring reduced time for
training and performance of classification. The intricacy of interactions among features,
together with the considerable size of the search space, render the selection of beneficial and
applicable features difficult. Generally, interactions can result in two different outcomes:
(a) the interaction of an irrelevant feature with other features may lead to its relevancy for
classifying or learning, and (b) the interaction of a relevant feature with other features may
render it dispensable [70]. For this reason, the authors of the present research propose a
new method to reweight the molecular features based on stacked deep belief networks with
multi-descriptors that determine the important features for each descriptor and combine
all these features to introduce a new descriptor for enhancing the performance of the
molecular similarity search.

3. Materials and Methods

This section presents the methods used in the research, which involve the use of the
Stack of deep belief networks method (SDBN) model for molecular similarity searching.
We first describe the concept of the DBN method for molecular feature reweighting and
then present the proposed SDBN method for molecular similarity searching.

3.1. General Structure of the DBN

Figure 1 illustrates the general framework of the proposed method using the DBN
model. Based on this model, there are two dominant stages, which are layer-wise feature
abstraction and reconstruction weight fine-tuning. In the first stage the calculation of the
reconstruction weights is done layer-wise, using a family of restricted Boltzmann machines
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(RBMs). In the second stage, backpropagation is performed to fine-tune the results, based
on the weights obtained from the first stage. The reconstruction weight in DBN can be
obtained from the layer-wise weights, based on the input features. A reconstruction error
can be calculated for each input feature provided, and all layer-wise weights are given.
The differences in reconstruction errors are commonly produced based on the variation
of features. Normally, features with lower reconstruction error are more re-constructible;
thus, they are more prone to retain their intrinsic characteristics. In protein-ligand binding,
the key is to identify the feature’s intrinsic characteristics. A selection of the more re-
constructible features is proposed as the discriminative features and is later used as an
input to a new feature-selection method for ligand-based virtual screening. An iterative
procedure of feature learning in the DBN model is performed to remove the feature’s
outliers, in order to obtain a reliable reconstruction weight. Large reconstruction errors,
which are also known as feature outliers, can be identified by analyzing the distribution of
the reconstruction errors. The final reconstruction weight matrix is expected to be more
reliable for feature reconstruction, as the feature outliers have been eliminated during the
iterative feature learning procedure. The weight matrix attained from training on bioactive
compounds is then used to achieve feature selection for further virtual screening. The
feature selection is based on a certain threshold after sorting the error values.
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As shown in Figure 1, this phase includes a stack of RBMs. The output is obtained
from the (i− 1)th RBM in the hidden layer, which serves as the input to the visible layer of
ith RBM [71]. The output of the lower-level RBM is treated as the input of the higher-level
RBM, resulting in an individual training of the RBM, starting from the ist RBM within
the stack. Once the first batch of RBMs in the stack finishes the training, the features of
the input or an abstract output representation are generated in the hidden layer. These
features later serve as the 2nd batch of RBMs in the stack and perform the next training.
The procedure continues until the last RBM in the stack finishes its training. RBM is
also well-known as an undirected graphical model with two layers [72–74], in which the
first layer, referred to as the visible units, is comprised of the observed variables, while
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the second layer, described as hidden units, comprises the latent variable. As it carries
the name of Boltzmann Machine [75], RBM is also known as a specific type of log-linear
Markov random field (MRF) [76,77]. The differences between the RBM and the general
Boltzmann machine is that in an RBM, only inter-layer connections between the visible
and hidden units are included. Hence, intra-layer connections between visible-visible,
hidden-hidden units are excluded. The architecture stack of the restricted Boltzmann
machines is illustrated in Figure 1.

Generally, RBM has the structure of an energy based model that can be used for the
visible and hidden layers <v; h> possessing the weights matrix W, that is linked to the
connection between v and h [78]. An RBM’s weights and biases dictate how much energy
there is in a joint configuration of the visible and hidden units having model parameters
θ = {W, b} and vi, hj ∈ {0, 1}, where W represents the symmetric weight parameters that
have the following V× H dimensions and b represents the bias parameters. It is interesting
to note that the RBM itself is a dependent among the variables. Because an RBM does
not have any intra-layer connections, each pair of units in every layer is conditionally
independent from another layer. Hence, one can factorize the conditional distributions
over hidden and visible units as follows:

p(v|h) =
n

∏
i=1

p(vi|h) (1)

p(h|v) =
K

∏
j=1

p(hj|v) (2)

The probability for every unit within the hidden layer hj = 1, where hj ∈ {0, 1} is

p
(
hj = 1

∣∣v) = σ

(
bj + ∑

i
vi, wij

)
(3)

and σ refers to the logistic function with the following definition:

σ(x) = (1 + e−x)
−1 (4)

Similarly, we can calculate the conditional probability of vj = 1 as

p(vi = 1|h) = σ

(
ai + ∑

j
hj, wij

)
(5)

We can obtain the network’s learning rules in the log-likelihood-based training data
using alternating Gibbs sampling [16,78]. In Gibbs sampling, every iteration involves
an update of every hidden unit in parallel, using Equation (3). All of the units in the
visible layer are then updated in parallel using Equation (5) [78]. The derivative of the
log probability of a training vector in terms of a weight can be calculated by applying the
following formula:

− Ә log p(v)
Ә wij

= < vihj >data − < vihj >model (6)

The angle brackets denote the expectations given within the distribution, specified
by the succeeding subscript. This creates a very simple learning rule that can be used to
conduct the stochastic steepest ascent for the training data’s log probability:

∆wij = ε
(
< vihj >data − < vihj >model

)
(7)
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where parameter ε represents the learning rate. Similarly, the learning rule for the bias
parameters can be presented as

∆ai = ε(< vi >data − < vi >model) (8)

∆bj = ε
(
< hj >data − < hj >model

)
(9)

Since no direct connections exist between the hidden units in an RBM, these hidden
units can be considered as independent of the visible units [79,80]. Using the above sections
as the basis, it is possible to obtain the gradient of log probability of training data using
Equation (6). There is a need to calculate < vihj >data and < vihj >model in order to
compute the gradient and adjust parameters based on Equation (7). Based on the usage
in the majority of the RBMs literature, the calculation of < vihj >data is referred to as the
positive phase, while the < vihj >model calculation is referred to as the negative phase.
These phases correspond to the positive and negative gradients, respectively. Since no
interconnections between hidden units exist, they are considered independent. Thus, we
can calculate < vihj >data by taking the visible units ν (their values have been established
by training data) into consideration and giving the value 1 to every hidden unit that has
a probability value of p

(
hj = 1

∣∣v) with respect to Equation (3). The main issue is found
within the negative phase. In practice, the distinction between various DBN learning
methods (e.g., persistent contrastive divergence or contrastive divergence) lies in the
sampling during their negative phase [80]. To calculate the < vihj >model , the Gibbs
sampling method was utilized. This method begins by using random values in visible
units. The steps of the Gibbs sampling method need to go on for a long time. Each Gibbs
sampling step results in an update of all hidden units, based on Equation (3). All visible
units are then updated based on Equation (5). The Gibbs sampling is shown in Figure 2,
where < vihj >0, denotes the expectations for the data distribution and < vihj >k denotes
the expectations under the model distribution and ε is the learning rate. Furthermore, the
visible or hidden unit activations are considered to be conditionally independent, given
hidden or visible units, respectively [78].
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3.2. The Proposed SDBN Model

This section presents the proposed model, which utilizes the stacked DBN based
multi-descriptors method for molecular similarity searching. Eight 2D fingerprints were
generated by SciTegic Pipeline Pilot and PaDEL descriptor software [81]. These were
120-bit ALOGP, 1024-bit CDK (CDKFP), 1024-bit ECFC4, 1024-bit ECFP4, 1024-bit path
fingerprints (EPFP4), 1024-bit graph only (GOFP) and 881-bit Pubchem fingerprints (PCFP).

The key element of the method is the representation used to translate a chemical
structure into mathematical variables. Some descriptors and molecular representations
are complementary to other descriptors, and thus could yield better results when used
in combination. This means that different descriptors may produce different results for
molecular similarity searching. It incorporates several molecular representations in merg-
ing and combining the features from multi-descriptors that can improve the performance
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of the similarity search. In this study, we trained five of these descriptors (ECFC4, ECFP4,
EPFP4, Graph, and CDK) and all the combined probability stages have been undertaken
as follows:

(1) All stages combine two descriptors (i.e., (ECFC4, ECFP4), (ECFC4, EPFP4), (ECFC4,
Grapgh),....)

(2) All stages combine three descriptors ((ECFC4, ECFP4, ECFC4), (ECFC4, ECFP4,
Graph), . . . .)

(3) All stages combine four descriptors ((ECFC4, ECFP4, EPFP4, Graph), (ECFC4, ECFP4,
EPFP4,CDK), )

(4) Then, combine five descriptors (ECFC4, ECFP4, EPFP4, Graph, CDK).

After training all these stages, we found that the best results were obtained with the
combination of three descriptors: ECFC4, ECFP4, EPFP4. The results of this combination
were then used as a new descriptor for the similarity search. The design for combining
multi descriptors with DBN for reconstruction of feature weights is shown in detail in
Figure 3.
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3.3. Reconstruction of Features’ Weights

The training of DBN was conducted in both stages (pre-training and fine tune). In this
study, DBN was trained with different architectures and different numbers of RBMs. The
DBN trained with two RBMs, three RBMs, Four RBMs, and five RBMs successively and
with different learning rates (0.01, 0.05, 0.06), and different epochs (20, 30, 50, 70, 100). The
weights were randomly initialized between 0 and 1. The configuration that obtained the
best results was that using five RBMs (2000, 1800, 1300, 800, 300), 70 epochs and learning
rate =0.05. The size of the input layer in the first RBM was 1024; it was similar to the size of
the dataset vector with reference to all the molecular features, while the size of the output
layer in the first RBM was 2000. After completing the training of the first RBM, the output
from the first RBM became the input layer to the second RBM and the size of the output
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layer was 1800. The third RBM input layer was the output from the second RBM, with size
1800, and the size of the output layer was 1300. Similarly, the output of this RBM was used
as the input to the fourth RBM where the output layer size was 800. Finally, the last RBM
input layer size was 800 and the output layer was 300. During the training of the RBMs,
we used epoch = 70, Gibbs steps = 50, batch size = 128, and learning rate = 0.05. After
training in the first stage, backpropagation was used to fine-tune the weights obtained
from the first stage “pre-training stage”. The output from this training was pretrained as
the new vector with the new weight. For testing, we calculated the reconstruction features’
weight by comparing them with the original features’ weight. Once all the RBMs had been
trained and the weights saved for all RBMs, the DBN pre-training was complete. DBN
then performed a backpropagation to fine-tune the weights. A reconstruction error was
calculated for each input.

Figure 4 shows the process and steps used to obtain the reconstruction features’ weight.
The reconstruction error of feature vi was calculated by using ei=‖vire − vi‖, where vire is
the reconstruction feature corresponding to vi . This new error rate was compared with the
error rate calculated from previous training by using ‖ei − ei−1‖ ≤ e, where e is the error
rate value given to run the code, the inference forward will be used again if ‖ei − ei−1‖ > e.
The training was considered to be complete when there was no more change in the error
rate and all the weights were fixed; thus it was considered that the network had been
learned.
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The next step after training of the DBN is complete, and all new weights for all
molecules have been stored, is to apply PCA. PCA has been used to decrease the molecules
dimensionality (features) and filter features according to the percentage of reconstruction
feature error, as shown in Figure 5. Section 3.4 explains PCA in detail and how it is used in
this proposed method.
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3.4. Principal Component Analysis (PCA)

PCA remains among the fastest algorithmic methods used in the implementation of
non-linear dimensional reductions, to decrease the dimensionality of each feature vector
while gaining more efficient features [82]. The aim of the PCA technique is to find a
lower dimensional space or PCA space that will later be used to transform the data X =
{x1, x2, x3, . . . , xN} from a higher dimensional space, RM, to a lower dimensional space,
RK, where N represents the total number of samples or observations and xi represents ith

sample, pattern, or observation. All samples have the same dimension
(

xi ∈ RM). This
means each sample is assigned by M variables, i.e., each sample is assigned as a point
in M-dimensional space. The direction of the PCA space represents the direction of the
maximum variance of the provided data. The PCA space is comprised of K principal
components (PCs). The first PC ((PC1 or v1) ∈RM∗1) shows the direction of the maximum
variance of the data, the second PC has the second largest variance, and so on [83].

In this proposed method, three different types of data sets were trained for the di-
mension reductions which are MDDR-DS1, MDDR-DS2, and MDDR-DS3. Each data set
contained 102516 molecules (samples), and each molecule was represented by 1024 features
(variables). We used X to represent the training data set as a training matrix, N is the number
of samples or molecules and M is the number of dimensions for each molecule (sample).

X =

 x1,1 · · · x1,M
...

. . .
...

xN,1 · · · xN.M

 (10)

Each vector in the training matrix X represents one molecule with M features, so that each
molecule has 1024 features.
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Vi =
[

xi,1 xi,2 · · · xi,1024
]

(11)

Each column in the training matrix X represents a feature for N molecules or samples,
where N is equal to 102,516 molecules.

Fi =


x1,i
x2,i
x3,i

...
x102516,i

 (12)

Three different structures of the DBN method were used in this study for reweight-
ing molecular features, as described in Section 3.1 and 4.2. The outputs from the DBN
methods involved were converted into new matrices of similar size to those of datasets
(102,516*1024), although the new matrices represented the newly reconstructed feature
weights for the molecules in all input data sets. We used Y to represent the new matrix for
the new feature weights of all the molecules:

Y =

 y1,1 · · · y1,M
...

. . .
...

yN,1 · · · yN.M

 (13)

where yi,j represents the jth feature weight for the ith sample or molecule. The reconstructed
features error were calculated by subtracting the final weight of the new feature weights
from the original feature weight as E = ‖X−Y‖. We used E to presents the reconstructed
feature error training matrix, where each value in this matrix, ei,j, represents the jth recon-
structed feature error for the ith molecule. The main purpose of this dimension reduction
is to determine which features have lower error rate and which features have high error
rate values. It is very important to select features with lower error values for molecular
similarity searching.

E =

 e1,1 · · · e1,M
...

. . .
...

eN,1 · · · eN.M

 (14)

Prior to implementing PCA, the reconstructed feature error matrix (E) is transformed
as follows: T = ET to have new dimensions (M* N) (1024*102,516), where each vector
represents one reconstructed feature error for all the molecules in the dataset. Implementing
the PCA depends on calculating the covariance matrix (C). Before calculating the covariance
matrix (C), we need to calculate the deviation matrix (D) as follows: DM∗N = ei,j − µi,

where µi is the mean value of the ith sample and is defined as µi =
M
∑

j=1
ej,i. The covariance

matrix is then calculated as follows: CM∗M = DDT . Figure 6 summarizes all the proposed
methodological steps used in this study, starting from training the DBN to calculate the
reconstructed feature’s weight, then calculating the feature’s reconstruction error, after
which the deviation matrix and covariance matrix are calculated and the PCA is applied.

The PCA space represents the direction of the maximum variance of the given data.
This space consists of k principal components (PCs) and we used k = 3 to obtain PCA1,
PCA2, and PCA3 and used the 3D coordinates to draw the features based on the three
values, as shown in Figure 7. Only the three values for PCA1, PCA2, and PCA3 of all
features were used to depict 3D coordinates, using whichever features were proximate to
the original points (0, 0, 0) and featured lower error rates.
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Following this, the distances between all features and original points were calculated

through D =
√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2, with the distance to the original points

(0, 0, 0), such that xj = yj = zj = 0; this can be expressed as D =
√
(xi)

2 + (yi)
2 + (zi)

2.
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In this study, we selected 300 features from each fingerprint, using those features
which had lower error rates after filtering all the features according to the percentage of
reconstruction feature error and applying the threshold. Figure 8 shows all the features
selected based on the error rate and using a threshold value equal to three to select only
the features with lowest error rates.
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4. Experimental Design

To evaluate the performance of the proposed method, we conducted a series of
experiments to fulfill the aims of this research, which are (1) What is the performance of the
proposed DBN for similarity searching in virtual screening? (2) What is the performance
when using stacked DBNs with multi-descriptor features reweighting and selection? (3)
How does the proposed SDBN improve the performance of the similarity searches?

MDL Drug Data Report (MDDR) datasets were used to validate the effectiveness of
the SDBN method with multi-descriptors, using reweighting of molecular features and
feature selection for molecular similarity searching.

4.1. Dataset

MDDR collection of datasets [84] remains among the most common databases used in
chemo-informatics [85,86]. It comprises 102,516 chemical compounds which include sev-
eral hundred diverse activities, some of which relate to therapeutic applications, including
antihypertensives, while others relate to particular enzymes, including renin inhibitors. The
database molecules were converted with Pipeline Pilot ECFC 4 and folded within 1024 bits
in size and with corresponding connecting fingerprints extended [81]. All screening ex-
periments used three datasets from the common MDDR database, which are denoted as
MDDR-DS1, MDDR-DS2, and MDDR-DS3. Of the eleven activity classes found in MDDR-
DS1, some are involved in activities that are homogeneous in structure, whereas others
are involved in activities that are heterogeneous in structure (structurally diverse). There
are ten are homogeneous activity classes included in the MDDR-DS2 dataset, while the
MDDR-DS3 dataset comprises ten heterogeneous activity classes, as shown in Tables 1–3.



Molecules 2021, 26, 128 15 of 24

Table 1. The MDDR-DS1 structure activity classes.

Activity Class Active Molecules Activity Index

Renin inhibitors 1130 31,420
HIV protease inhibitors 750 71,523

Thrombin inhibitors 803 37,110
Angiotensin II AT1 antagonists 943 31,432

Substance P antagonists 1246 42,731
5HT3 antagonist 752 06,233

5HT reuptake inhibitors 359 06,245
D2 antagonists 395 07,701

5HT1A agonists 827 06,235
Protein kinase C inhibitors 453 78,374
Cyclooxygenase inhibitors 636 78,331

Table 2. The MDDR-DS2 structure activity classes.

Activity Class Active Molecules Activity Index

Adenosine (A1) agonists 207 07,707
Adenosine (A2) agonists 156 07,708

Renin inhibitors 1130 31,420
CCK agonists 111 42,710

Monocyclic β-lactams 1346 64,100
Cephalosporins 113 64,200
Carbacephems 1051 64,220
Carbapenems 126 64,500

Tribactams 388 64,350
Vitamin D analogous 455 75,755

Table 3. The MDDR-DS3 structure activity classes.

Activity Class Active Molecules Activity Index

Muscarinic (M1) agonists 900 09,249
NMDA receptor antagonists 1400 12,455

Nitric oxide synthase inhibitors 505 12,464
Dopamine β-hydroxylase inhibitors 106 31,281

Aldose reductase inhibitors 957 43,210
Reverse transcriptase inhibitors 700 71,522

Aromatase inhibitors 636 75,721
Cyclooxygenase inhibitors 636 78,331

Phospholipase A2 inhibitors 617 78,348
Lipoxygenase inhibitors 2111 78,351

4.2. Evaluation Measures

One of the important measures using a quantitative approach is the Significance Test
which is used to measure the performance of the similarity approach. The Kendall W test
of concordance is used [87] in this study. Kendall’s W can be translated as the coefficient of
concordance, which also known as the measure of agreement among raters. It is assumed
that, for each case available, it is either a judge or rater and each variable is either an item
or person being judged. The sum of ranks is calculated for each variable. The range of
Kendall’s W is between 0 (no agreement) and 1 (complete agreement). Suppose that object
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i (search similarity method) is given the rank ri,j by judge number j (activity class), where
there are in total n objects and m judges. Then, the total rank given to the object i is

Ri =
m

∑
j=1

ri,j (15)

and the mean value of these total rankings is

R =
1
2

m(n + 1) (16)

The sum of squared deviations, S, is defined as

S =
n

∑
i=1

(
Ri − R

)2 (17)

and then Kendall’s W is defined as

W =
12 S

m2(n3 − n)
(18)

The Kendall W test shows whether a set of judges can make comparable judgments
about the ranking of a set of objects. In the experiments conducted as part of this paper, the
activity classes of each of the data sets were considered as the judges, and the recall rates
of the various search models were considered as the objects. The results gave the value
of the Kendall coefficient and associated significance levels, which indicates whether the
value of the coefficient could have occurred by chance. If the value was significant, (for
which cut-off values of both 1% and 5% were set), then it was possible to give an overall
ranking to the object. The similarity methods based on the reweighted fragment were also
compared to standard methods such as BIN [51], TAN [88], ASMTP [86], and SQB [85].
However, any evaluation of the performance of a specific case depends on the queries,
the methods, and the datasets, so all comparisons between methods in this paper were
conducted using the same queries and datasets.

4.3. Comparison Methods

This section presents various existing methods that serve as the basis for performance
evaluation for the proposed model. These include:

• SQB: This is a molecular similarity method that utilizes a quantum mechanics ap-
proach. The method specifically relies on the complex pure Hilbert space of molecules
for improving the model’s performance.

• ASMTP: This is a similarity measure based on ligand-based virtual screening. The
method was designed to utilize a textual database, p, for processing chemical struc-
ture databases.

• TAN [88]: This method is widely used in both binary and distance similarity coeffi-
cients. Generally, there are two formulae for binary and continuous data, one of which
is known as the main molecular similarity method.

• BIN [51]: This serves as an alternative form of calculation used for finding the similar-
ity of molecular fingerprints in ligand-based virtual screening.

5. Results and Discussion

Experimental simulations of virtual screenings using MDDR datasets demonstrated
that this proposed technique allows various means of improving the efficiency of ligand-
based virtual screenings, particularly for more diverse datasets. The MDDR benchmark
datasets (MDDR-DS1, MDDR-DS2, and MDDR-DS3) are three different types of datasets
chosen from the MDDR database. The MDDR-DS1 includes eleven activity classes, some
actives of which are structurally homogeneous while others are structurally heterogeneous.
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The MDDR-DS2 dataset includes ten homogeneous activity classes, while the MDDR-DS3
data set includes ten heterogeneous activity classes.

From MDDR-DS1, MDDR-DS2, and MDDR-DS3, ten active molecules were randomly
selected from each activity class, which are called as reference structures. The similarities
between each reference structure and all the molecules in each database were calculated.
The results of this similarity were then ranked in decreasing order and only 1% and 5%
were selected for each reference structure. The results obtained for each reference structure
were investigated to see how many active molecules belonged to the same activity group,
referred to as true positive values of the retrieval results. These values were calculated for
the ten reference structures, and the average of these values, known as the recall value for
the activity class was calculated for the 1% and 5% cutoffs. This procedure was repeated
for all datasets. Tables 4, 6, and 8 show the dataset activity classes in the first column, while
the other columns show the average of recall values for all activity classes at the cut-off
1%. Tables 5, 7, and 9 show the dataset activity classes in the first column, while the other
columns show the average of recall values for all activity classes at the cut-off of 5%. The
end of each column shows the overall average recall results of all classes. The best average
recall for each class is highlighted. At the bottom of each column, there is a row of shaded
cells that corresponds to the total number of shaded cells for all the similarity methods that
achieved best results.

Some molecular representations and descriptors are complementary to the others;
hence, their combination can yield good results. This indicated that use of different de-
scriptors could yield differing similarity searching results since they incorporate various
molecular representations. Based on these reasons, the SDBN model has shown an improve-
ment for the molecular similarity searching based on reweighing and combining different
molecular features. The key idea of using SDBN in this work is to learn a rich representation
using unsupervised learning to provide a better similarity metric for ligand-based virtual
screening. The reconstruction weights for all molecules’ features were obtained, along
with PCA to reduce the dimensionality of these molecular features based on selecting the
features that have a low error reconstruction error rate and removing the features’ outliers.
SDBN was implemented with the important features selected from all the descriptors that
were combined to improve the molecular similarity search process.

The results obtained by SDBN are shown in Tables 4–9. The proposed SDBN method
is compared with four different benchmark methods that have been used recently for
similarity searching, which are BIN, TAN, ASMTP, and SQB.

Tables 4 and 5 show the results of applying the SDBN proposed method to MDDR-DS1
and the results were then compared with different benchmark methods (BIN, SQB, ASMTP,
and TAN). The SDBN was trained with many different architectures and the best results
were obtained by using DBN with five RBMs (2000, 1800, 1300, 800, and 300) with 70 epochs,
batch size of 128 and learning rate of 0.05 as mentioned in the experimental design section.
The results show that SDBN performed better with MDDR-DS1 than all the benchmark
similarity methods (BIN, TAN, ASMTP, and SQB) with gains over these methods of 1.7,
2.62, 4.55, and 4.77 percent respectively for overall average results with top 1% of recall
results and gains of 3.13, 3.06, 4.72, and 6.06 percent, respectively, for the overall average
results with top 5% of recall results. The proposed DSBN method achieved good results
when applied to MDDR-DS1, and it outperformed the other methods (BIN, TAN, ASMTP,
and SQB). SDBN achieved promising results in eight out of 11 classes with a cut-off of 1%
and seven out of 11 with a cut-off of 5%.

The MDDR-DS2 dataset includes ten homogeneous activity classes. The molecules in
this dataset are more alike and have low diversity. Tables 6 and 7 show the results of the
recall values of SDBN, which were then compared with different benchmark methods (BIN,
TAN, ASMTP, and SQB). Table 6 shows the top 1% retrieval results, where the proposed
SDBN method performed better than all the other benchmark similarity methods (BIN,
TAN, ASMTP, and SQB) with gains over these methods of 1.06, 1.54, 7.29, and 19.67 percent,
respectively, for overall average results. In the overall average results of MDDR-DS2 with
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the top of 1% of retrieval results, SDBN achieved good results and outperformed the other
methods (BIN, TAN, ASMTP, and SQB). The SDBN method achieved good results on the
MDDR-DS2 in 5 out of 10 classes with a cutoff of 1%. For the top 5% of recall results, the
ASMTP and SQB benchmark methods performed better than SDBN, with gains of 2.68%
for ASMTP and 1.93% for SQB.

Table 4. Retrieval results of top 1% for MDDR-DS1 dataset.

Activity Index SDBN BIN SQB ASMSC TAN
31,420 74.21 74.08 73.73 73.84 69.69
71,523 27.97 28.26 26.84 15.03 25.94
37,110 26.03 26.05 24.73 20.82 9.63
31,432 39.79 39.23 36.66 37.14 35.82
42,731 23.06 21.68 21.17 19.53 17.77
06,233 19.29 14.06 12.49 10.35 13.87
06,245 6.27 6.31 6.03 5.5 6.51
07,701 14.05 11.45 11.35 7.99 8.63
06,235 12.87 10.84 10.15 9.94 9.71
78,374 17.47 14.25 13.08 13.9 13.69
78,331 9.93 6.03 5.92 6.89 7.17
Mean 24.63 22.93 22.01 20.08 19.86

Shaded cells 8 3 0 0 0

Table 5. Retrieval results of top 5% for MDDR-DS1 dataset.

Activity Index SDBN BIN SQB ASMSC TAN
31,420 89.03 87.61 87.75 86 83.49
71,523 65.17 52.72 60.16 51.33 48.92
37,110 41.25 48.2 39.81 23.87 21.01
31,432 79.87 77.57 82 76.63 74.29
42,731 31.92 26.63 28.77 32.9 29.68
06,233 29.31 23.49 20.96 26.2 27.68
06,245 21.06 14.86 15.39 15.5 16.54
07,701 28.43 27.79 26.9 23.9 24.09
06,235 27.82 23.78 22.47 23.6 20.06
78,374 19.09 20.2 20.95 22.26 20.51
78,331 16.21 11.8 10.31 15 16.2
Mean 40.83 37.70 37.77 36.11 34.77

Shaded cells 7 1 1 2 0

Table 6. Retrieval results of top 1% for MDDR-DS2 dataset.

Activity Index SDBN BIN SQB ASMSC TAN
07,707 83.19 72.18 72.09 67.86 61.84
07,708 94.82 96 95.68 97.87 47.03
31,420 79.27 79.82 78.56 73.51 65.1
42,710 74.81 76.27 76.82 81.17 81.27
64,100 93.65 88.43 87.8 86.62 80.31
64,200 71.16 70.18 70.18 69.11 53.84
64,220 68.71 68.32 67.58 66.26 38.64
64,500 75.62 81.2 79.2 46.24 30.56
64,350 85.21 81.89 81.68 68.01 80.18
75,755 96.52 98.06 98.02 93.48 87.56
Mean 82.30 81.24 80.76 75.01 62.63

Shaded cells 5 3 0 1 1
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Table 7. Retrieval results of top 5% for MDDR-DS2 dataset.

Activity Index SDBN BIN SQB ASMSC TAN
07,707 73.9 74.81 74.22 76.17 70.39
07,708 98.22 99.61 100 99.99 56.58
31,420 95.64 65.46 95.24 95.75 88.19
42,710 90.12 92.55 93 96.73 88.09
64,100 99.05 99.22 98.94 98.27 93.75
64,200 93.76 99.2 98.93 96.16 77.68
64,220 96.01 91.32 90.9 94.13 52.19
64,500 91.51 94.96 92.72 90.6 44.8
64,350 86.94 91.47 93.75 98.6 91.71
75,755 91.6 98.35 98.75 97.27 94.82
Mean 91.68 90.70 93.61 94.36 75.82

Shaded cells 1 3 2 4 0

Nevertheless, SDBN with the top 5% of recall results still showed a good performance
in this case and performed better compared with BIN with gains of 2.68% for overall
average results and 15.86 % with TAN.

The MDDR-DS3 dataset includes ten heterogeneous activity classes. The molecules in
this dataset are highly diverse. The best SDNB results were obtained with the MDDR-DS3
dataset compared with the other two datasets. Tables 8 and 9 present the results of the
SDBN proposed method with MDDR-DS3 compared with those of different benchmarks
methods (BIN, SQB, and TAN). The results show that SDBN performed better with MDDR-
DS3 than all the other benchmark similarity methods (BIN, SQB, and TAN) with gains of
4.95%, 5.88%, and 6.63% respectively for the overall average results with the top 1% of
recall results and gains over the other methods of 6.09%, 6.47%, and 6.04%, respectively, for
the overall average results with top 5% of recall results. In the overall average results for
MDDR-DS3, SDBN achieved good results and outperformed other methods (BIN, SQB,
and TAN). SDBN achieved good results in 9 out of 10 classes with a cut-off of 1% and 10
out of 11 with a cut-off of 5%.

Table 8. Retrieval results of top 1% for MDDR-DS3 dataset.

Activity Index SDBN BIN SQB TAN
09,249 19.47 15.33 10.99 12.12
12,455 13.29 9.37 7.03 6.57
12,464 12.91 8.45 6.92 8.17
31,281 23.62 18.29 18.67 16.95
43,210 14.23 7.34 6.83 6.27
71,522 11.92 4.08 6.57 3.75
75,721 29.08 20.41 20.38 17.32
78,331 11.93 7.51 6.16 6.31
78,348 9.17 9.79 8.99 10.15
78,351 18.13 13.68 12.5 9.84
Mean 16.38 11.43 10.50 9.75

Shaded cells 9 1 0 0

The performance of the similarity methods of the MDDR datasets was ranked by
applying Kendall’s W test of concordance. Here, the judge ranking (raters) of the similarity
methods (ranked objects) is considered based on the recall values for all activity classes
(11 classes for MDDR-DS1, 10 classes each for MDDR-DS2 and MDDR-DS3). The Kendall
coefficient (W) and the significance level (p value) are the outputs of this test, where the
p value is considered as significant if p < 0.05; only then is it possible to give an overall
ranking to the similarity methods.
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Table 9. Retrieval results of top 5% for MDDR-DS3 dataset.

Activity Index SDBN BIN SQB TAN
09,249 31.61 25.72 17.8 24.17
12,455 16.29 14.65 11.42 10.29
12,464 20.9 16.55 16.79 15.22
31,281 36.13 28.29 29.05 29.62
43,210 22.09 14.41 14.12 16.07
71,522 14.68 8.44 13.82 12.37
75,721 41.07 30.02 30.61 25.21
78,331 17.13 12.03 11.97 15.01
78,348 26.93 20.76 21.14 24.67
78,351 17.87 12.94 13.3 11.71
Mean 24.47 18.38 18.00 18.43

Shaded cells 10 0 0 0

In Tables 10 and 11, for all used datasets, the results of Kendall W test, and it can be
seen that the values associated with probability (p) are less than 0.05. This indicates that for
all cases, the results for the SDBN method are significant with cut-off of 1%. As the results
show, based on overall ranking of techniques, the SDBN with MDDR-DS1 and MDDR-DS3
at both cut-off of 1% and 5% is superior to BIN, SQB, ASMSC, and TAN. For MDDR-DS2,
the BIN method had a higher ranking that the other methods with cut-off of 1% while with
cut-off of 5%. The ASMSC provided the best ranking among the methods.

Table 10. The results of Kendall W test for DS1 and DS2 datasets.

Dataset Recall Type W P SDBN BIN SQB ASMSC TAN

MDDR-DS1
1% 0.321 0.021 4.727 4.091 2.273 2.000 1.909
5% 0.613 0.0036 4.364 2.727 2.818 2.818 2.273

MDDR-DS2
1% 0.521 0.0013 3.8 4.1 3.3 2.5 1.6
5% 0.715 0.00016 2.7 3.5 3.7 3.8 1.3

Table 11. The results of Kendall W test for DS1 and DS2 dataset.

Dataset Recall Type W P SDBN BIN SQB TAN

MDDR-DS3
1% 0.496 0.006 3.8 2.9 1.7 1.6
5% 0.318 0.004 4 2 2 2

6. Conclusions

This study has emphasized the usefulness of deep learning methods for exploring
ways to enhance similarity searches in virtual screenings. In addition, the use of deep belief
networks associated with the concept of data fusion has been investigated in this study.
The aim of this research was to ensure that reliable reconstruction weights for all molecular
features were obtainable in several molecular descriptors to reweight molecular features
and selected only the important features, i.e., those have more weight with lower error rates
and to remove the feature outliers. The feature outliers are those with large reconstruction
errors, which can be identified by analyzing the distribution of the reconstruction errors.
The experimental results showed that the SDBN with multi-descriptors enhanced the
effectiveness of ligand-based virtual screening in chemical databases, establishing that the
SDBN can be implemented successfully to enhance the performance of similarity searches.
The experiments were conducted based on the MDDR benchmark dataset and revealed
the ligand-based virtual screening of chemical databases, to be more effective than the
other methods considered. Generally, the screening and evaluation results indicated that
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the proposed model provides an improvement over other similarity procedures, such as
TAN, the SQB method, BIN, and ASMTP. The evaluation of the results achieved from
conducting the screening showed that the performance obtained by the proposed measure
was improved and, particularly, that the performance of SDBN with the structurally het-
erogeneous data sets (MDDR -DS1 and MDDR -DS3) achieved superior results compared
with the other methods which have been used in previous studies to enhance molecular
similarity searching.
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