Hindawi Publishing Corporation
Journal of Ophthalmology

Volume 2015, Article ID 250812, 9 pages
http://dx.doi.org/10.1155/2015/250812

Review Article

Histone Deacetylases Inhibitors in the Treatment of
Retinal Degenerative Diseases: Overview and Perspectives

Hua Zhang,' Xufeng Dai,' Yan Qi,' Ying He,' Wei Du,” and Ji-jing Pang">

'Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
Department of Ophthalmology, University of Florida, Gainesville, FL, USA

Correspondence should be addressed to Ji-jing Pang; jpang@ufl.edu

Received 6 August 2014; Accepted 9 September 2014

Academic Editor: Xinhua Shu

Copyright © 2015 Hua Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Retinal degenerative diseases are one of the important refractory ophthalmic diseases, featured with apoptosis of photoreceptor
cells. Histone acetylation and deacetylation can regulate chromosome assembly, gene transcription, and posttranslational
modification, which are regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. The histone
deacetylase inhibitors (HDACis) have the ability to cause hyperacetylation of histone and nonhistone proteins, resulting in a variety
of effects on cell proliferation, differentiation, anti-inflammation, and anti-apoptosis. Several HDACis have been approved for
clinical trials to treat cancer. Studies have shown that HDACis have neuroprotective effects in nervous system damage. In this
paper, we will summarize the neuroprotective effects of common HDACis in retinal degenerative diseases and make a prospect to
the applications of HDACis in the treatment of retinal degenerative diseases in the future.

1. Introduction

A nucleosome is the fundamental unit of eukaryotic chro-
mosomes, whereas the core of the nucleosome is composed
of histones (H2A, H2B, H3, and H4). Histone acetylation
and deacetylation can regulate the binding of DNA and
transcription complexes and further regulate chromosome
assembly, gene expression, mitosis, and posttranslational
modification [1, 2]. Histone acetylation and deacetylation are
regulated by histone acetyltransferases (HATs) and histone
deacetylases (HDAC:s), respectively. HATs and HDACs can
regulate the dynamic acetylation equilibrium of histone and
nonhistone proteins and play an important role in cell
proliferation, apoptosis, differentiation, angiogenesis, cancer
treatment, neuroprotection, and anti-inflammatory effects
(2, 3].

The histone deacetylase inhibitor (HDACI) can interfere
with the deacetylase function of HDACs, improve the acety-
lation level of histone and nonhistone proteins, and regulate
gene transcription. Clinically, HDACis are effective drugs
in the treatment of a variety of cancers, such as pancreatic,
ovarian, breast, colon, prostate, and thyroid cancer [4-9].

Large amounts of data have shown that HDACis also have
important neuroprotective effects in the treatment of diseases
of the nervous system [10-13]. HDACis are known to reduce
apoptosis, increase cell survival, regulate the expression of
various neurotrophic factors, and enhance anti-inflammatory
responses [10, 11, 14-16]. Apoptosis of retinal photoreceptor
cells is a main feature of retinal degenerative diseases [17, 18],
and neurotrophic factors have positive protective effects on
retinal degenerative diseases [19, 20]. Thus, HDACis may
have therapeutic potentials for retinal degenerative diseases.
In this paper, we will focus on the progress of studies on
using HDACis in the prevention and treatment of retinal
degeneration.

2. Histone Deacetylase

There are 18 HDACs in human, and they are divided into
four different classes based on their homology to yeast protein
RPD3, Hdal, Sir2, and HOS3 (Table1) [3]. Classes I, II,
and IV HDACs are Zn**-dependent and homologous to the
yeast RPD3, Hdal, and HOS3, respectively, whereas Class
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TaBLE 1: Class, homology, catalytic subunit, compound, and localization of HDAC:s.
Class Homology Catalytic subunit Compound Localization References
I RPD3 Zn** HDACs 1-3 and 8 Nucleus [3,21]
Ila Hdal Zn** HDACs 4, 5,7, and 9 Nucleus/cytoplasm [3,21]
Ib Hdal Zn** HDACs 6 and 10 Mostly cytoplasm (3,21]
111 Sir2 NAD* SIRT1-7 Nucleus/cytoplasm [3,21]
v HOS3 Zn** HDAC 11 Nucleus/cytoplasm [3,21]
TaBLE 2: Class, common compound, HDAC target, and main functions of HDACis.
Class Compound HDAC target Function References
(21,22, 41, 42,
TsA Classes I and IT ADGAR gf’ R, NG, and 88]
Hydroxamic acids SAHA Classes [ and 11 A, CP.S, TR, and AI [21, 67, 69, 70,
LBH589 Classes I 'and IT A GA TR, and P 74]
PXD101 Classes I and II A GA ar;d TR [21, 33, 89]
i [21, 33]
Cyclic peptides FK228 Class I A, GA, D, and TR (21, 33, 90]
Benzamides MS-275 HDACs 1, 2,and 3 A, D, S, and GA [21,77]
MGCDO0103 Class I A, TR, Al, and GA [21, 91, 92]
VPA Classes I and Ila A, AIATII;’ i;}géﬁd GA [10, 11, 21, 51]
Aliphatic acids PBA Classes I and IIa A D. GA ALTR.S. and (21, 93, 94]
NaB Classes I and Ila T N (’; > [11, 15, 21, 57]

A: cell apoptosis/death; AI: anti-inflammatory effect; TR: transcriptional regulation; NG: neurogenesis; S: cell survival; CP: cell-cycle progression; P:

proliferation; R: regeneration; D: differentiation; GA: growth arrest.

II1 HDACs are NAD"-dependent and homologous to yeast
Sir2. Class I HDACs include HDACs 1, 2, 3, and 8, which
are localized in the nucleus [21]. Class I HDACs can regulate
neurogenesis, cell senescence, proliferation, differentiation,
and embryonic development [22-25]. HDACs 4, 5, 6, 7, 9,
and 10 make up Class II HDACs, which are localized both
in nucleus and in cytoplasm. Class II HDACs consist of two
subclasses: Class ITa (HDACs 4, 5, 7, and 9) and Class IIb
(HDAC:s 6 and 10). Compared to Class I HDACs, Class IT has
more tissue-specific functions, such as cardiac, microtubule,
and chondrocyte differentiation defects [26-28]. Class III
HADCs consist of sirtuins (SIRT1-7), whereas Class IV
contains only HDACII and relatively little is studied about
this subtype [3, 21]. In this paper, we introduce mainly the
progress of Class I and I HDACs inhibitors in the treatment
of retinal degenerative diseases.

3. Histone Deacetylase Inhibitor

According to the different chemical structures, HDACis can
be divided into four classes, which include hydroxamic acids,
cyclic peptides, benzamides, and aliphatic acids [21, 29]
(Table 2). Hydroxamic acids can inhibit Class I and Class
II HDACs, which include trichostatin A (TSA), vorinostat
(SAHA), panobinostat (LBH589), and belinostat (PXD101)
[30-33]. Cyclic peptides, romidepsin (FK228), have the
most complex structure. Benzamides include entinostat (MS-
275) and mocetinostat (MGCDO0103). Common aliphatic
acids include valproic acid (VPA), sodium butyrate (NaB),

and phenylbutyrate (PBA) [34]. HDACis can cause hyper-
acetylation of histone and nonhistone proteins and further
regulate transcription process, cellular microenvironment,
and immune responses [35]. HDACis have an important
role in the inhibition of tumor cell proliferation and in
the induction of cell differentiation [36-38]. Studies have
shown that HDACis can promote the transcription of retinal
photoreceptor genes by histone acetylation, resulting in
effectively reversing the course of retinal photoreceptor cell
degeneration [39-41]. Several HDACis have been approved
for clinical trials, such as SAHA, FK228, Mgcd0103, LBH589,
PXD-101, and MS-275 [35]. Currently, the studies of HDACis
focus mainly on cancer therapy, cell differentiation, neuro-
protection, and heterochromatin fields, and as yet, research
has just started in retinal degeneration.

4. Trichostatin A

TsA is a hydroxamic acid, a Class I and Il HDACi, which is the
first natural hydroxamic acid found to inhibit HDACs, and is
one of the most studied HDAC:is, especially in the retina [31].
TsA has an important role in the prevention and treatment of
neurodegenerative conditions [12, 42]. TsA can regulate the
levels of apoptosis-related proteins and improve neurological
performance in the rat permanent middle cerebral artery
occlusion (pMCAOQO) model of stoke [11] (Table 3).

TsA suppressed TNF-a expression and signaling in
retina from rat ischemic injury and changed the level
of acetylated histone 3 (AcH3) and the secretion of
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TABLE 3: Function and molecular targets of common HDAC:is in nervous system diseases.

HDACI Function Molecular targets References
A Bcl-2 and apaf-1 [11]
TSA Al IL-6, TNF-a, and NF-kappaB [42]
TR HSP70, AcH3, AcH4, PI3K/Akt, BDNEF, and NF-«xB [11]
A Caspase 3 and HSP70 [10, 11, 51, 52]
VPA Al OX-42, ED-1, and iNOS (11]
TR HSP70, AcH3, pERK, bcl-2, pCREB, pAkt, bcl-xl, NF-«B, and JNK [10, 11, 51, 52]
Al 0X-42, ED-1, and iNOS [11]
NaB N BDNE-TrkB [16]
A Caspase 3 and HSP70 [11]
TR HSP70, AcH3, AcH4, Spl, p21, and p27 [11, 67]
A: cell apoptosis/death; Al: anti-inflammatory effect; TR: transcriptional regulation; N: neurogenesis.
TABLE 4: Function and molecular targets of common HDAC:is in retinal degenerative diseases.
HDACi Function Molecular targets References
Cp Wht signaling and notch signaling [22]
P Notch signaling, cyclinD1, CDK, and p-Rb [22]
A Caspase 3, apaf-1, and PARP (41, 49]
TsA
R RARf and AcH3K9 [46]
Al TNF-a [43]
TR AcH3, TNF-a, MMP-1, and MMP-3 [43]
A Caspase 3, Caspase 12, apaf-1, HSP70, and cytochrome C [14, 56, 58, 59]
VPA N Caspase 3, CREB, and pERK1/2 [14, 56, 58, 59]
TR HSP70, AcH3, cytochrome C, GRP78, CHOP, TrkB, and pERK1/2 [14, 56, 58, 59]
A BDNF-TrkB and AcH3K14 [58]
NaB S AcH3 and AcH4 [57]
TR AcH3, AcH4, Akt, and Erk [57]

A: cell apoptosis/death; Al: anti-inflammatory effect; TR: transcriptional regulation; S: cell survival; CP: cell-cycle progression; P: proliferation; R: regeneration.

matrix metalloproteinase-1 (MMP-1) and MMP-3 [43]. TsA
also improved the electroretinography (ERG) responses in
ischemic injury retina [43, 44]. In the zebrafish retina, TsA
can regulate cell-cycle progression and neurogenesis by Wnt
and notch signaling pathways [22]. TsA also regulates the
apoptotic process by upregulating the expression of apoptotic
protease activating factor-1 (apaf-1) and caspase 3 in the
developing mouse retina [41]. TsA treatment attenuated the
downregulation of Femlc®*gene expression, delayed the pro-
gressive damage, and reduced apoptosis to retinal ganglion
cells (RGCs) in aged DBA/2] mice [45]. TsA induced axonal
regeneration by inducting expression of AcH3 and retinoic
acid receptor 8 (RAR) in adult rat RGCs [46], which play
an important role in development and differentiation [47]. In
in vitro retinal explants of retinal degeneration 1 (rdI) mice,
TsA treatment decreased the rate of cells apoptosis, enhanced
the photoreceptor cell survival, and prevented photoreceptor
degeneration by suppressing poly(ADP-ribose) polymerase
(PARP) activity, which promoted cell death of rdl retina
[39, 48, 49]. However, in retinal explants of normal mice,
TsA inhibited the expression of pro-rod transcription factors
Otx2, Nrl, and Crx and the development of rod photoreceptor
cells [40], which had the opposite effect compared with
retinal degeneration mice. TsA treatment inhibited the pro-
liferation and the TGF-f2-induced epithelial-mesenchymal
transition (EMT) pathway by downregulating TGF-f/AKkt,

MAPK, ERKI1/2, and notch signaling pathways in human
retinal pigment epithelial (RPE) cells. This may have a
clinical value in the prevention and treatment of proliferative
vitreoretinopathy (PVR) [50] (Table 4).

5. Valproic Acid

As a short chain fatty acid, VPA is a broad-spectrum HDACi
and is currently used widely as an anticonvulsant drug. Many
studies have shown that VPA has neuroprotective effects
against the damage of central nervous system (Table 3). VPA
has been shown to reduce brain damage in a rat transient
focal cerebral ischemia model and to improve functional
outcome by reducing caspase 3 activation and increasing
heat-shock protein 70 (Hsp70) levels [10]. In a rat pMCAO
stoke model, VPA increased the anti-inflammatory effect by
inhibiting inducible nitric-oxide synthase (iNOS) and OX-
42, regulated the levels of apoptosis-related proteins, and
improved neurological performance [11]. In rat intracerebral
hemorrhage (ICH) model, VPA reduced perihematomal cell
death and activities of caspases 3, 8, and 9 and alleviated
inflammation by regulating transcriptional activation [51].
Under hypoxic conditions, VPA treatment prevented neuron
apoptosis, increased levels of AcH3, activated NF-xB, and
reduced JNK activation in the primary rat hippocampal and
cortical cultures in vitro [52].



VPA has also an important role in protecting the RGCs
(Table 4). In a rat ischemia/reperfusion (I/R) model, VPA
prevented axon damage of RGCs [14, 53]. After I/R damage,
VPA attenuated retinal neuron apoptosis by inhibiting the
activation of caspase 3, upregulation of apaf-1, and release
of cytochrome C. At the transcriptional level, VPA upreg-
ulated the expression of Hsp70 and enhanced acetylation
of histone H3 and Hsp70 promoter [14]. VPA treatment
prevented significantly the retinal histological damage and
the loss of RGCs by reducing endoplasmic reticulum (ER)
stress-induced apoptosis. VPA decreased the expression of
C/EBP homologous protein (CHOP) and caspase 12 [53].
CHOP is a transcription factor involved in ER stress-induced
apoptosis [54], whereas caspase 12 is a proapoptotic factor
activated by ER stress [55]. After optic nerve crush (ONC)
in rat, VPA has a neuroprotective effect by increasing RGCs
survival and expression of pERK1/2, inhibiting caspase 3
activity, and inducing the DNA binding of cAMP response
element binding protein (CREB) in the injured RGCs [56]. In
purified rat RGCs, VPA enhanced cell survival and delayed
spontaneous cell death [57]. In a rat model of ONC, VPA
treatment can inhibit apoptosis of RGCs via the activation of
brain-derived neurotrophic factor (BDNF) and tropomyosin-
related kinase B (TrkB) signaling [58]. VPA can induce
expression of HSP70 and attenuate the photoreceptor cell
death induced by N-methyl-N-nitrosourea in mice [59].
In clinical trials of retinitis pigmentosa (RP), VPA may
reduce the loss of photoreceptor cells. VPA has an effective
therapeutic potential for RP, but efficacy and safety of VPA
in the treatment of RP need to be assessed by further clinical
trials [60].

6. Sodium Butyrate

Sodium butyrate (NaB) is a short chain fatty acid, which
can increase histone acetylation levels, inhibit tumor cell
proliferation, and promote tumor cell senescence and apop-
tosis [61-64]. NaB is widely used as an animal feed additive
[65] and plays also an important role in the prevention and
treatment of neurodegenerative conditions [12, 13] (Table 3).
It has anti-inflammatory effects in rat brain-derived primary
microglia cells [66]. In the ischemic brain of pMCAO rat,
NaB stimulated neurogenesis and induced cell proliferation,
migration, and differentiation by BDNF-TrkB signaling [15].
Like VPA, NaB also has anti-inflammatory effects and neu-
roprotective effects in the rat pMCAO stroke model [11]. NaB
can induce the activation of BDNF promoter IV in the rat
cortical neurons in vitro [16]. NaB can regulate Gl-to-S cell
cycle progression by cyclin-dependant kinase (cdk) inhibitors
p21 and p27 in adult mouse neural stem cells (NSCs) [67].
In vitro, NaB can delay spontaneous cell death, enhance
cell survival in purified rat RGCs, and increase levels of AcH3
and AcH4 [57]; it can also increase the level of AcH3 and
induce morphological changes in Y79 cells, a retinoblastoma
cell line [68]. After NaB treatment, original round morphol-
ogy of Y79 cells changed into spindle or irregular morphol-
ogy. After ONC injury in rat, NaB can promote survival of
RGCs, increase ERG responses, upregulate phosphorylation
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of Akt and Erk, and increase hyperacetylation of histone
H3K14 [58] (Table 4).

7. Other HDACis

SAHA, a hydroxamic acid derivative, is the first HDACi
drug approved by the Food and Drug Administration (FDA)
for the treatment of cancer in the United States [21]. In
clinical trials, SAHA has been used to treat cutaneous T-
cell lymphoma. Many studies have also shown that SAHA
has neuroprotective effects [69-72]. Like NaB, SAHA can
also regulate cell cycle progression by p21 and p27 in adult
mouse NSCs [67] and SAHA also has a good protective
effect in corneal haze and injury [73, 74]. SAHA can induce
caspase-dependent apoptosis and reduce cell survival in
human retinoblastoma (RB) cells [75, 76]. MS-275, a synthetic
benzamide derivative, which selectively inhibits HDACs 1,
2, and 3, is also a HDACI drug used in cancer treatment in
clinical trials. Ms-275 can protect RGCs differentiation and
survival following optic nerve injury in Thy-1 CFP mice [77].

8. Discussion

Retinal degenerative diseases, such as RP, Leber congenital
amaurosis (LCA2), achromatopsia, juvenile macular degen-
eration, and cone-rod dystrophy, are the major blinding
fundus diseases, and the pathogenesis of these diseases is
very complex. Apoptosis of photoreceptor cells is a common
feature of retinal degeneration, and a variety of stimuli,
such as tumor necrosis factor (ITNF), Fas ligands (FasL),
mitochondria, and ER stress, can lead to cell death. These
stimuli can cause caspase cascade, activate firstly the initiator
caspases (caspase 8, 9, 10, and 12), further activate down-
stream effector caspases (caspase 3, 6, and 7), and lead to
apoptotic cell death [55], whereas antiapoptotic HSP70, B-
cell lymphoma-2 (Bcl-2), and B-cell lymphoma-extra large
(Bcl-xL) can inhibit this caspase cascade [11, 55]. HDACis can
upregulate the expression of antiapoptotic HSP70 and Bcl-2
and downregulate the expression of proinflammatory TNF-«
[11, 78, 79]. In retinal diseases, studies showed that HDACis
treatment upregulated the expression of Hsp70, downregu-
lated the expression of apaf-1 and caspase 3, inhibited the
translocation of cytochrome C and activation of Akt and
Erk, increased the rate of cell survival, and decreased the
apoptosis process [14, 49, 58]. Akt and Erk signaling can
inhibit apoptosis by preventing cytochrome C release [55].
VPA, NaB, and TsA regulate the activation of Akt and Erk
signaling and further regulate the apoptosis process [50, 58].

Some factors, such as growth factors and cytokines,
can activate PI3K/Akt, PKC, and Erk signaling, prevent
the expression of antiapoptotic glycogen synthase kinase-
3 (GSK-3), forkhead in rhabdomyosarcoma (FKHR), Bcl-2
antagonist of cell death (Bad), and Bcl-xL, and increase cell
survival [55]. Neurotrophic factors also regulate the apoptosis
of photoreceptor cells in the development of the visual
system [55]. Ciliary neurotrophic factor (CNTF) can control
photoreceptor differentiation in rat retina [80]. HDAC:s,
VPA, NaB, and TSA increased the expression of glial cell
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line-derived neurotrophic factor (GDNF) and BDNF in the
rat astrocytes [81]. In rdI retinal explants, BDNF and CNTF
activate the Erk, Akt, and CREB pathways to decrease the
apoptosis of photoreceptor cells [82]. After ONC in rat,
HDAC:is activate BDNF-TrkB signaling, upregulate the level
of antiapoptotic Bcl-2, and downregulate the activation of
caspase 3 [58]. These data suggest that HDACis have the
potential to alter gene expression of neurotrophic factors and
further regulate the apoptosis of photoreceptor cells in the
retina.

Gene regulation is also an important function of
HDAC:s in retinal degenerative diseases. Since the acetyla-
tion/deacetylation of histone and nonhistone proteins has
extensive effects on gene regulation, upregulation of acety-
lation caused by HDACis would likely lead to significantly
altered transcription of genes related to retinal degeneration.
HDAC:s have been shown to inhibit the expression of FasL
and proinflammatory cytokine interleukin-6 (IL-6), increase
the acetylation of histone H3, activate the transcription of
downstream genes Akt, Erk, CREB, and HSP70, and thus
unregulated the levels of antiapoptotic proteins Bcl-2 and Bcl-
xL, and eventually lead to the downregulation of caspase 3 [11,
51]. In retinal degenerative diseases, HDACis treatment can
induce acetylation of histone H3, regulate Akt, Erk, CREB,
and TrkB signaling, and further inhibit the activity of caspase
3 [14, 56, 58]. HDACis also can regulate the expression of
neurotrophic factors [58].

Several factors can lead to the death of photoreceptor
cells. In addition to spontaneous apoptosis and retinal degen-
eration, certain ocular adverse events, such as surgery and
gene therapy, can also lead to the loss of photoreceptor
cells. Gene therapy has broad application prospects and
has achieved great success in the treatment of LCA2 [83].
It has been reported that gene therapy can restore visual
function in animal models and clinical trials; but apoptosis
of remaining photoreceptor cells could progress slowly and
continuously in treated areas, and the restored visual function
by gene therapy gradually weakens [83-86]. In addition
to retinal detachment caused by subretinal injections and
the release of toxic substances around the treated areas,
continued photoreceptor loss is also related to photoreceptor
cells having begun the irreversible apoptosis process before
treatment [84, 87]. It is important to correct the negative
effects of gene therapy that appeared in the ongoing clinical
trial, and HDACis may be a good option. Considering the
fact that HDACis can prevent death of photoreceptor cells
and protect retinal damage, we hypothesize that HDACis
may play a role in preventing the continuing death of
photoreceptor cells after gene therapy and are conducting
these experiments.

In this paper, we summarized the neuroprotective
effects of common HDAC:s in retinal degenerative diseases
(Figure 1). Currently, clinical trials of VPA in RP have been
carried out. As in-depth studies of HDACis, more and
more molecular mechanisms of HDACis on neuroprotec-
tive effects will be found in retinal degenerative diseases.
HDAC:is can inhibit the apoptosis of photoreceptor cells
during retinal damage process; therefore, HDACis may be a
group of promising agents to be explored in the prevention

Neuroprotective effects of HDAC:is in retina
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FIGURE 1: Possible mechanisms of HDACis in the prevention of
retinal degenerative diseases. HDACis acetylate histone and nonhi-
stone proteins, such as AcH3, AcH4, and HSP70, regulate transcrip-
tion process. HDACis promote cell regeneration and proliferation,
improve cell survival, enhance anti-inflammatory effects, attenuate
cell apoptosis, and upregulate the expression of neurotrophic factors.
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of apoptosis of photoreceptors and in the treatment of retinal
degenerative diseases.
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