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Abstract
DNA methylation-based clocks provide the most accurate age estimates with practical implications for clinical and forensic 
genetics. However, the effects of external factors that may influence the estimates are poorly studied. Here, we evaluated 
the effect of alcohol consumption on epigenetic age prediction in a cohort of extreme alcohol abusers. Blood samples 
from deceased alcohol abusers and age- and sex-matched controls were analyzed using the VISAGE enhanced tool for age 
prediction from somatic tissues that enables examination of 44 CpGs within eight age markers. Significantly altered DNA 
methylation was recorded for alcohol abusers in MIR29B2CHG. This resulted in a mean predicted age of 1.4 years higher 
compared to the controls and this trend increased in older individuals. The association of alcohol abuse with epigenetic 
age acceleration, as determined by the prediction analysis performed based on MIR29B2CHG, was small but significant 
(β = 0.190; P-value = 0.007). However, the observed alteration in DNA methylation of MIR29B2CHG had a non-significant 
effect on age estimation with the VISAGE age prediction model. The mean absolute error in the alcohol-abusing cohort was 
3.1 years, compared to 3.3 years in the control group. At the same time, upregulation of MIR29B2CHG expression may have 
a biological function, which merits further studies.

Keywords  DNA methylation · Alcohol abuse · Epigenetic age prediction · VISAGE enhanced tool for age estimation of 
DNA from somatic tissues

Introduction

DNA methylation (DNAm) is an epigenetic modification 
involved in the regulation of gene expression and processes 
responsible for normal organism development and growth, 
including genome imprinting and X chromosome inactiva-
tion. An important finding in DNA methylation (DNAm) Danuta Piniewska-Róg and Antonia Heidegger contributed equally 
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research was the demonstration that the alteration of DNAm 
patterns is correlated with age [1–3]. As a result of this dis-
covery, epigenetic clocks have been developed that provide 
an accurate estimate of chronological age [4–6]. A num-
ber of subsequent studies have shown that these epige-
netic clocks are able to capture epigenetic age acceleration 
(EAA), observed when an individual’s DNA methylation 
age is greater than their chronological age [7–9]. EAA has 
been documented in aging-related diseases, stress, cancer, 
and cardiovascular disease, and is a predictor of mortality 
[10–14]. In addition, it was found that DNA methylation 
levels at some loci may be more sensitive to an individual’s 
overall health condition [12], and further studies developed 
the dedicated EAA-capturing clocks [8, 9]. The ability to 
measure biological age and EAA has practical implica-
tions including the prevention and treatment of diseases 
and life extension [15, 16]. In contrast, current forensic 
DNA analysis uses age estimation as a source of investiga-
tive leads and aims to accurately predict chronological age, 
treating the difference between predicted and actual ages 
as measurement error. EAA, which causes an increase in 
the chronological age prediction error, shows some level 
of heritability but can also be modified by extrinsic fac-
tors such as clinical and lifestyle parameters [10, 17–19]. 
As sensitivity to environmental influence can vary between 
markers, the appropriate selection of stable forensic age 
predictors can enable a more accurate estimation of chrono-
logical age [20, 21]. Recently, the VISAGE enhanced tool 
for age estimation of DNA from somatic tissues including 
blood, buccal cells, and bones (hereafter referred to as VIS-
AGE Age Tool) was developed by the VISAGE (VISible 
Attributes through GEnomics) Consortium [22]. The VIS-
AGE Age Tool targets eight well-validated DNA meth-
ylation markers (ELOVL2, MIR29B2CHG, KLF14, FHL2, 
TRIM59, PDE4C, EDARADD, and ASPA), of which 6 CpG 
sites are included in the age estimation model for blood. 
These are ELOVL2 C7 chr6:11,044,634, MIR29B2CHG 
C1 chr1:207,823,681, KLF14 C4 chr7:130,734,375, FHL2 
C1 chr2:105,399,282, TRIM59 C8 chr3:160,450,202, and 
PDE4C C5 chr19:18,233,105. The blood model explains 
98.2% of the age-related variance and predicts age with a 
mean absolute error (MAE) of 3.2 years [22]. The usefulness 
of this tool in forensics is particularly due to the high sensi-
tivity of DNA methylation measurements using multiplexed 
targeted massively parallel sequencing (MPS), which pro-
vides good accuracy of chronological age prediction. Vali-
dation of this method should include an assessment of the 
effect of potential confounders on age estimation. It has been 
shown that alcohol dependence leads to premature aging and 
precipitates the onset of age-related diseases [23–25]. Exces-
sive alcohol consumption has been hypothesized to reduce 
telomere length, partly due to oxidative stress related to acet-
aldehyde accumulation in the body [26–28]. There are few 

studies that have explored the influence of alcohol consump-
tion on epigenetic age, and their results are inconclusive. 
The use of Horvath’s epigenetic clock detected increased 
age acceleration during the childhood and adolescence of 
the offspring of drinkers [29]. Furthermore, studies explor-
ing the aging rate in relation to alcohol consumption using 
Hannum’s epigenetic clock reported a dose-dependent influ-
ence with accelerated aging in light and heavy drinkers but 
decelerated aging in moderate alcohol drinkers [30]. A posi-
tive influence of moderate doses of alcohol consumption on 
age was also reported by Quach et al. [31], who considered 
that this may be related to the anti-inflammatory effects of 
light alcohol intake, which are associated with decreased 
circulating levels of inflammatory markers such as IL-6 and 
CRP [31, 32]. The PhenoAge clock indicated epigenetic 
age acceleration in alcohol use disorder and suggests that 
disease severity further accelerates epigenetic aging [33]. 
Considering that excessive alcohol abusers may have dif-
ferent levels of methylation compared to healthy controls, 
we examined whether severe alcohol consumption might 
be associated with accelerated aging and increased error of 
age estimation using the VISAGE Age Tool. Our objective 
was to track potential dysregulation of DNA methylation in 
blood through excessive alcohol abuse at the eight markers 
used for forensic chronological age estimation.

Materials and methods

Study samples

The study was approved by the ethics committee of the Jag-
iellonian University in Krakow (KBET/122.6120.86.2017). 
Samples were collected during routine autopsies, per-
formed by a forensic medical examiner at the Department 
of Forensic Medicine, Jagiellonian University Medical Col-
lege in Krakow, Poland. The time from death to autopsy 
ranged from 1 to 5 days. Blood was collected from 212 
deceased people aged 30–60 at the time of death, includ-
ing 106 individuals extensively abusing alcohol and 106 
sex- and age-matched controls. Extensive alcohol abusers 
were identified based on family/community history, medical 
records, and prosecutor’s documentation. While analyzing 
the medical data, we focused on the following underlying 
causes: long-term abuse of alcohol (at least several years), 
alcoholic liver disease, alcohol dependence syndrome lead-
ing to hospital treatment, acute alcohol poisoning, and inci-
dents of alcohol withdrawal seizures, usually characterized 
by one or two generalized tonic–clonic events, although 
sometimes status epilepticus was reported. The following 
information on the study participants was obtained from 
medical examination reports and autopsies. The standard 
forensic autopsy protocol includes an investigation into 
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alcohol addiction and we were able to focus on the signifi-
cant pathological changes associated with alcohol abuse and 
thus direct information about alcohol-induced damage to the 
body. The chronic abuse of alcohol often leads to specific 
pathologic changes that affect organs such as the digestive 
and cardiovascular systems. In the digestive system, the liver 
may exhibit steatosis (fatty liver), steatohepatitis (alcoholic 
hepatitis), or cirrhosis, which was considered for classifi-
cation. In addition, an important selection factor was the 
histopathological assessment of soft tissue changes char-
acteristic of alcohol abusers. Given the range of alcohol-
related pathologies, particular attention was paid to the liver 
(focal/diffuse steatosis, fibrosis, cirrhosis), pancreas (acute 
and chronic pancreatitis), lung (pneumonia), and heart (car-
diomyopathy). The alcohol-related pathologies were deter-
mined from a combination of macroscopic examination of 
organs during the autopsy and histological assessments. Fur-
thermore, toxicological testing at the time of death (drug 
and /or alcohol use) was made in both tested groups. In all 
alcohol abusers, the whole blood ethanol concentration was 
high, unlike the control group. There was no organ damage 
or pathological changes noticed in the control group, accord-
ing to autopsy and histopathology protocols, and no alco-
hol abuse was reported according to the family/community 
interview, medical records, and prosecutor’s documentation. 
In both tested groups, the psychiatric disorders or abuse of 
narcotic drugs or psychotropic substances was not recorded.

DNA methylation analysis

Peripheral blood (500 μL) was collected on NucleoCard 
(Macherey–Nagel, Düren, Germany), allowed to dry over-
night at room temperature, and stored under such condi-
tions until analysis. Total DNA was extracted from the card 
punches using a silica-based method with the Sherlock AX 
kit (A&A Biotechnology, Gdynia, Poland), according to 
the manufacturer’s guidelines. DNA was quantified using 
the Qubit dsDNA HS Assay Kit on a Qubit 4 Fluorometer 
(Thermo Fisher Scientific, Waltham, MA, USA), following 
manufacturer’s guidelines. Bisulfite conversion (BC) was 
performed with 500 ng DNA using the EZ DNA Methyl-
ation-Direct Kit (Zymo Research, Irvine, CA, USA) and 
eluted in 25 μL. DNA methylation levels were quantified 
using the VISAGE Age Tool [22]. The VISAGE Age Tool 
MPS assay is based on PCR enrichment of targeted regions 
from bisulfite-converted DNA [34] and allows analysis of 
44 CpG sites in eight age informative markers, namely 
ELOVL2, KLF14, TRIM59, FHL2, MIR29B2CHG, PDE4C, 
ASPA, and EDARADD. In brief, 10 μL of the bisulfite-con-
verted DNA samples were amplified in one multiplex PCR 
assay and libraries were prepared using the KAPA Hyper 
Prep Kit and KAPA Unique-Dual Indexed Adapters (both 
Roche, Basel, Switzerland). Four out of 212 samples were 

excluded from sequencing due to low library concentrations 
and therefore a set of 208 samples was sequenced on the 
MiSeq FGx instrument using the MiSeq FGx Reagent Kit 
(600 cycles; both Verogen, San Diego, CA, USA) with 2x 
200 cycles. Control and corresponding test samples were 
sequenced together in one run if the used indexes allowed 
for multiplexing to avoid batch effects. Pooled libraries were 
diluted to 7 pM and sequenced with a 2 μL 20 pM PhiX 
spike in. Generated FASTQ files were aligned against a 
custom reference using bwa-meth as described in Woźniak 
et al. [22]. The number of reads at all 44 CpG positions 
were extracted using bam-readcount with minimum mapping 
quality and minimum base quality set to 30 (https://​github.​
com/​genome/​bam-​readc​ount). DNA methylation levels were 
calculated as the C reads percentage (C reads/(C reads + T 
reads) * 100). For two samples, the established minimum 
threshold of 1000 paired (R1 + R2) reads was not reached 
(within CpGs in PDE4C and ELOVL2), which resulted in a 
final missing data rate of only 0.25%.

Statistical analyses

The DNA methylation percentage at particular CpG sites 
was compared between individuals from the alcohol abus-
ers’ group and sex- and age-matched healthy controls using 
an independent sample Student’s t test. A proper distribu-
tion of age in the alcohol abusers’ group and controls was 
confirmed with a nonparametric Kolmogorov–Smirnov test. 
The sex ratio between the tested groups was compared with 
chi-square (χ2) statistics. Due to the known differences in age 
prediction accuracy between younger and older individuals 
[35], the whole cohort was divided into two age catego-
ries including individuals aged 30–45 and 46–60 years, and 
calculations were performed for each age group separately. 
Age predictions were made using a linear regression-based 
age prediction model for blood developed in Woźniak et al. 
[22]. The model was developed based on individuals with 
no signs of alcohol abuse. This model comprises 6 CpG 
sites in 6 genes, namely ELOVL2, MIR29B2CHG, KLF14, 
FHL2, TRIM59, and PDE4C. In addition, a model based on 
MIR29B2CHG alone was developed using linear regression 
with enter mode of variable selection. Samples lacking data 
for ELOVL2 and PDE4C were excluded from all prediction 
analyses. For all missing samples, sex- and age-matched 
samples were excluded from statistical analysis resulting 
in a group of 200 individuals analyzed using the VISAGE 
enhanced age model for blood and the MIR29B2CHG C1 
model. The predicted age of alcohol-abusing individuals 
was compared with their true chronological age to calcu-
late MAE. An independent sample Student’s t test was used 
to compare mean predicted age and MAE designated for 
the tested groups. Epigenetic age acceleration (EAA) was 
designated in the form of residuals calculated from linear 
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regression analysis, where predicted age was treated as the 
dependent variable and chronological age as the independent 
variable as described in [7, 36]. Association analysis of alco-
hol abuse with EAA was tested using linear regression, con-
trolling the results for the effects of age and sex. Analyses 
were performed using IBM SPSS Statistics 26 and R [37].

Results

Assay performance and sequence quality

The VISAGE Age Tool showed a good overall perfor-
mance throughout the four sequencing runs, with high 
sample coverage (mean = 316,048.3 ± 28,299.9 paired 
reads) and high read depth at all 44 target CpG positions 
(mean = 39,423.5 ± 3553.6 paired reads; Supplementary 
Fig. 1a). Only two of 208 samples showed a drop below 
the lower limit of 1000 paired reads at PDE4C or ELOVL2 
positions and were consequently excluded from analysis 
along with the matching samples. Normalized read depth 
was calculated from one CpG position per marker to assess 
read distribution across the eight amplicons (Supplementary 
Fig. 1b). The observed read distribution shows two overper-
forming markers (TRIM59 and FHL2) leading to a lower-
than-expected amount of reads for ASPA, ELOVL2, KLF14, 
EDARADD, and PDE4C. However, the average read depth 
at these CpG positions was still above the threshold set for 
quantitative DNAm analysis, showing a minimum mean read 
depth per marker of 9764.6 ± 1100.7 paired reads at PDE4C. 
Results were stable throughout all runs indicating a robust 
performance of the assay. Sequence quality was assessed by 
calculating the base misincorporation rates at target CpG 
positions showing a mean of 0.1% for all four runs. Suc-
cessful bisulfite conversion was controlled by calculating 
the average percentage of T reads at all non-CpG C reads of 
the eight amplicons and showed an overall mean conversion 
efficiency of 99.6% per sample (minimum = 99.2%).

Differences in DNA methylation at CpG sites

The alcohol abusers group used in statistical analyses con-
sisted of 100 individuals with a mean age of 46.19 ± 8.46 
(min = 30; max = 60) and included 83 males (83%). The 
group of controls consisted of 100 individuals at a mean 
age of 46.19 ± 8.46 (min = 30; max = 60), likewise including 
83 males (83%). The groups of alcohol abusers and controls 
were perfectly matched by age and sex. Univariate asso-
ciation analysis involved 44 CpG sites and was conducted 
separately for alcohol abusers and controls for each CpG 
(Supplementary Table 1). In brief, significant association 
with age was observed for all CpGs in the group of controls 
and for all CpGs, except EDARADD (C2 chr1:236,394,371), 
in the alcohol abusers’ group (P-value = 0.476). However, 
another CpG site in EDARADD (C1 chr1:236,394,383) 
showed significant association with age in both tested 
groups (alcohol abusers with P-value = 0.003 and controls 
with P-value = 8 × 10−6). Mean values of DNA methylation 
were compared between both groups using an independent 
sample Student’s t test (Supplementary Table 2). Signifi-
cantly altered DNA methylation was noted in three CpGs in 
MIR29B2CHG (C1, C2, C3 with P-value of 0.029, 0.033, 
and 0.025, respectively). A difference in DNAm between 
alcohol abusers and controls was also observed in one CpG 
in FHL2 (C7 with P-value = 0.014). For all four of these 
CpGs, DNA methylation was found to be lower in alcohol 
abusers than in controls (Fig. 1).

The MIR29B2CHG C1 site is included in the VISAGE 
Age Tool for blood, and thus, the altered DNA methylation 
values at this site may influence age predictions [22]. The 
mean difference in obtained DNA methylation levels com-
prised 2.1, 2.8, and 3.0 for C1, C2, and C3 in MIR29B2CHG, 
respectively, and 1.7 for C7 in FHL2. As DNA methylation 
decreases with age in the case of MIR29B2CHG, this sug-
gests a slightly faster aging of alcohol abusers. The altera-
tion observed in FHL2 C7 is inconsistent with the DNA 
methylation patterns in the other nine cytosine sites studied 
at this locus. Since FHL2 is a locus where DNA methylation 

Fig. 1   Altered DNA methylation at MIR29B2CHG C1, C2, C3; and FHL2 C7. The mean DNA methylation values are marked with an asterisk

2212 International Journal of Legal Medicine (2021) 135:2209–2219



1 3

increases with age, this indicates slower aging in alcohol 
abusers. However, the FHL2 C7 site is not included in any 
of the models and thus has no effect on age prediction.

Differences in the predicted age

In the next step, age was predicted for all samples using the 
VISAGE enhanced model for blood. Supplementary Fig. 2 
shows the DNA methylation level for 6 CpG sites included in 
the VISAGE enhanced model. Mean absolute error (MAE), 
mean error (ME), and predicted age were compared between 
alcohol abusers and controls. The MAE for alcohol abusers 
was 3.1 and for controls 3.3, but the difference was not sta-
tistically significant (P-value = 0.582; Table 1). The mean 
predicted age of alcohol abusers was 1.4 years higher com-
pared to controls; however, this difference was not statisti-
cally significant (P-value = 0.311).

A similar trend was noted when the subjects were divided 
into two age categories. The mean predicted age of alcohol 
abusers was about 2 years higher when compared to con-
trols in the category of older individuals (aged > 45 years, 
P-value = 0.133). The mean error was 1.9  years higher 
in elderly individuals and this difference was significant 
(P-value = 0.033). The results are presented in Table 2.

Out of six CpGs included in the age prediction model 
for blood, significant differences in the percentage of DNA 
methylation were found only in MIR29B2CHG C1. Thus, the 
data generated in Woźniak et al. [22] was used to develop 
a model that included only MIR29B2CHG C1. Based on 
this model, MAE for alcohol abusers was 10.1 and for con-
trols 9.6, and the difference was not statistically significant 
(P-value = 0.634). The mean predicted age of alcohol abus-
ers was 4.5 years higher, compared to controls, and the dif-
ference was statistically significant (P-value = 0.029). When 
the mean error was compared, significant differences were 
observed—the ME was 4.5 years higher in alcohol abus-
ers, when compared to the controls (P-value = 0.007). The 
results are presented in Fig. 2 and Table 3.

Additionally, we predicted the age in different age groups 
for the MIR29B2CHG C1 model. The predicted age of 
younger alcohol abusers (≤ 45) was 1.4 years higher, com-
pared to age-correlated controls, but the difference was not 
statistically significant (P-value = 0.426). In the group of 
elderly alcohol abusers, the difference was up to 7.2 years 
(i.e., alcoholics are predicted to be 7.2 years older than 
controls on average) and this was a statistically significant 
result (P-value = 0.017). Finally, we assessed EAA, which 
is a measure of the discrepancy between the biological age 
(i.e., DNA methylation age) and the chronological age. Indi-
viduals with positive age acceleration values (i.e., the bio-
logical age being greater than their chronological age) are 
experiencing accelerated aging. Our study showed that alco-
hol abuse is significantly correlated with EAA, both when 
using the original VISAGE age model (P-value = 0.020) and 
a model based only on MIR29B2CHG C1 (P-value = 0.007). 
However, when alcohol abusers were divided into two age 
groups, no accelerated aging was found in alcohol abusers 
aged 45 years or younger, while age acceleration occurred 
in those aged 46 years or older (P-value = 0.035). This was 
more significant when using a model based on MIR29B-
2CHG C1 (P-value = 0.009; Table 4).

Discussion

Forensic DNA phenotyping is an evolving discipline that 
uses genetic and epigenetic data to develop, optimize, and 
validate predictive tools and models for the purpose of estab-
lishing forensic intelligence. Currently, the most promising 
available predictive methods include inference of biogeo-
graphic ancestry, eye, hair and skin color prediction, and 
age estimation [38–41]. The VISAGE enhanced tool for 
age estimation from somatic cells contains eight carefully 
selected markers that can be analyzed in forensic samples 
and predict age in blood, buccal cells, and bones [22]. In this 
study, we investigated the stability of age prediction of this 

Table 1   Age prediction 
parameters for alcohol 
abusers (N = 100) and controls 
(N = 100). Predictions made 
using the VISAGE enhanced 
model for blood

Compared groups N Std. deviation Mean difference Std. error 
difference

P-value

MAE
Alcohol abusers 100 3.099 2.894  − 0.229 0.416 0.582
Controls 100 3.329 2.985

ME
Alcohol abusers 100 0.972 4.138 1.419 0.608 0.021
Controls 100  − 0.447 4.461

Mean predicted age
Alcohol abusers 100 47.162 9.970 1.419 1.396 0.311
Controls 100 45.743 9.774
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set of markers in blood of excessive alcohol abusers, which 
potentially represents a confounding factor.

The examination of the data using the VISAGE Age 
Tool for blood showed that the MAE for alcohol abusers 
and controls analyzed in our study was in line with the result 
obtained for the original testing set [22]. Notably, although 
statistical significance was not detected, the mean predicted 
age of alcohol abusers was higher compared to controls. 
This difference was due to alterations of DNA methylation 
in C1 in MIR29B2CHG. Considering the predictive power 
of the VISAGE enhanced model for blood, MIR29B2CHG 
is ranked in 3rd position after ELOVL2 and PDE4C. In 
univariate analyses, C1 alone explained almost 81% of the 
age-related variation [22]. Increased hypomethylation of 
MIR29B2CHG C1 was found in alcohol abusers compared 
to controls, and this created an increase in the predicted 
age of individuals from this group. Association analysis of 
alcohol abuse with EAA showed a significant correlation 
and was most evident after dividing alcohol abusers into 
two age categories. Although there was no association of 
alcohol abuse with accelerated aging in the younger group, 
statistical significance was observed in older individuals, 
for both the original VISAGE enhanced age model and the 
adapted model based on MIR29B2CHG C1 alone. It can be 
hypothesized that prolonged periods of alcohol consumption 

will be responsible for the stronger effect of methylation loss 
observed in this marker.

The observed accelerated hypomethylation of the 
MIR29B2CHG promoter region in response to extensive 
alcohol consumption may result in upregulation of MIR29B-
2CHG. The gene MIR29B2CHG located on chromosome 
1q32.2 is known to contain two microRNAs, Mir-29b2 and 
Mir-29c, and probably is a so-called host gene for these 
microRNAs [42]. Interestingly, an increased gene expres-
sion of Mir-29b and Mir-29c was found in a mouse model 
of Hutchinson–Gifford progeria syndrome [43]. Previous 
studies have shown limited alterations of DNA methylation 
levels in five markers included in both VISAGE age predic-
tion tools [22, 44] in response to different types of external 
factors, including extreme exercises and various diseases, 
with no effect on MIR29B2CHG observed in these studies 
[36, 45]. However, this gene was hypermethylated in patients 
after hematopoietic stem cell transplantation (HSCT). It 
has been speculated that MIR29B2CHG can be involved in 
graft function after HSCT, impacting the self-renewal of 
hematopoietic stem cells [46]. The exact biological func-
tion of the observed differences in DNA methylation at the 
MIR29B2CHG gene promoter in response to excessive alco-
hol consumption is unclear. Tharakan et al. [42] hypothe-
sized that methylation changes may reflect critical biological 

Table 2   Age prediction parameters for alcohol abusers and controls included in two age categories: 1: 30–45 years old and 2: 46–60 years old

a. Mean absolute error (MAE) in two age categories
Compared groups N MAE Std. deviation Mean difference Std. error difference P-value
Age category 1
Alcohol abusers 47 2.556 2.158  − 0.927 0.559 0.101
Controls 47 3.483 3.167
Age category 2
Alcohol abusers 53 3.582 3.365 0.390 0.604 0.520
Controls 53 3.192 2.836
b. Mean error (ME) in two age categories
Compared groups N ME Std. deviation Mean difference Std. error difference P-value
Age category 1
Alcohol abusers 47 0.373 3.345 0.897 0.842 0.289
Controls 47  − 0.524 4.706
Age category 2
Alcohol abusers 53 1.503 4.700 1.882 0.873 0.033
Controls 53  − 0.379 4.276
c. Mean predicted age in two age categories
Compared groups N Mean predicted age Std. deviation Mean difference Std. error difference P-value
Age category 1
Alcohol abusers 47 38.778 5.716 0.897 1.241 0.472
Controls 47 37.880 6.302
Age category 2
Alcohol abusers 53 54.598 6.362 1.882 1.242 0.133
Controls 53 52.715 6.428
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Fig. 2   Age prediction parameters in alcohol abusers and controls using the model based on MIR29B2CHG C1 alone and the VISAGE age 
model. a Predicted age. b Prediction error. The mean error is marked with an asterisk. The horizontal line shows the error value equal to 0
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mechanisms in aging. The transcriptional repressor CTCF 
modulates a so-called hemimethylation of genomic DNA, 
which could cause a progressive loss of methylation at some 
loci over the course of cell division. Consistent with this 
idea, CTCF binding is prevalent at MIR29B2CHG, which 
shows decreased methylation during aging [42].

Chronic alcohol abuse can accelerate biological processes 
associated with aging, thus leading to an earlier onset of 
age-related diseases by activating the hypothalamic–pitui-
tary–adrenal axis and increasing glucocorticoid levels [23]. 
Interestingly, by reducing the supply of S-adenosylmethio-
nine, ethanol may decrease the expression of DNA meth-
yltransferases and increase the expression of demethylase, 
thereby negatively regulating global DNA methylation [47]. 
Importantly, these ethanol-induced epigenetic changes per-
sist well after ethanol or its metabolites have disappeared. 
Hence, even a transient ethanol exposure on tissues, organs, 
and organisms can be sustained across a wide range of time-
scales, with the potential to drive persistent gene regulatory 
changes underlying fetal alcohol spectrum disorders, cancer, 
and metabolic disorders [47–49].

We can speculate that the small age acceleration that we 
have captured studying blood of alcohol abusers may have a 
larger effect size in other tissues. Tissue-specific differences 
have been reported from the effects of alcohol consumption 
on an individual’s DNA methylation profile, e.g., between 

liver and brain [50] and in postmortem brain tissue, when 
DNA CpG islands showed both hyper- and hypomethylation 
[51]. Similarly, DNAm age was shown to be higher than 
chronological age in one blood dataset and one liver tissue 
dataset of individuals with alcohol dependence, but not in 
brain tissue. Interestingly, the average chronological age in 
blood samples was approximately 15 years younger than that 
of the postmortem brain tissue samples and liver cirrhosis 
samples [52].

Importantly, from the perspective of forensic genetics, 
the observed change in DNA methylation in MIR29B-
2CHG due to excessive alcohol abuse has a non-signifi-
cant effect on epigenetic age prediction using the VISAGE 
enhanced age model. This is because the effect of alcohol 
on MIR29B2CHG is small and additionally, any changes 
are compensated by the other five predictors included in 
the model. The results obtained provide further evidence 
that the impact of environmental factors may have dif-
ferent meanings for individual differentially methylated 
regions, and a detailed analysis of molecular pathways 
involving specific age predictors regulated by external fac-
tors can provide insight into the functioning of the human 
genome. The study used data on alcohol abuse gathered 
from autopsy reports and family information. Therefore, 
some limitations need to be considered as no informa-
tion was available on the amount and frequency of alcohol 

Table 3   Age prediction 
parameters for alcohol 
abusers (N = 100) and controls 
(N = 100). Predictions made 
using a model based on 
MIR29B2CHG C1

Compared groups N Std. deviation Mean difference Std. error 
difference

P-value

MAE
Alcohol abusers 100 10.084 8.027 0.503 1.054 0.634
Controls 100 9.581 6.835

ME
Alcohol abusers 100  − 1.604 12.828 4.453 1.634 0.007
Controls 100  − 6.056 10.119

Mean predicted age
Alcohol abusers 100 44.586 16.060 4.453 2.025 0.029
Controls 100 40.134 12.338

Table 4   Epigenetic age 
acceleration calculated based 
on both predictive models in 
all samples and in two age 
categories: 1: 30–45 years old 
and 2: 46–60 years old

* Effect sizes are the standardized beta coefficients from linear regression models adjusted for age (years) 
and sex

Predictive model Groups compared Age category Epigenetic age acceleration

Effect size* t statistic P-value

VISAGE blood Alcohol abusers vs. controls All 0.164 2.350 0.020
MIR29B2CHG C1 Alcohol abusers vs. controls All 0.190 2.748 0.007
VISAGE blood Alcohol abusers vs. controls 1 0.111 1.090 0.279

2 0.207 2.142 0.035
MIR29B2CHG C1 Alcohol abusers vs. controls 1 0.087 0.886 0.378

2 0.252 2.674 0.009
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consumption, the family history of alcohol dependence, or 
drinking behavior. There was also a lack of data on envi-
ronmental factors that can affect DNA methylation levels 
and epigenetic aging, such as diet or other lifestyle aspects. 
However, the study allowed for an overall assessment of 
the effect of objectively proven alcohol abuse, along with 
other factors associated with this extreme behavior, on the 
VISAGE Age Tool for epigenetic age prediction.

Conclusions

In conclusion, the present study shows a low impact of 
excessive alcohol abuse on DNA methylation patterns in 
the eight age markers studied and, consequently, on the 
accuracy of epigenetic age prediction based on the six 
CpG model we have developed for blood. This confirms 
the high informativeness of the VISAGE Age Tool for 
epigenetic prediction of blood age in forensic analyses. 
Further studies on a potential biological function of the 
identified effect of alcohol abuse on DNA methylation in 
MIR29B2CHG may be interesting, as well as confirma-
tion of this effect in other forensically relevant tissues or 
biological fluids. It will also be interesting to assess the 
influence of other potential confounders on epigenetic age 
prediction and age acceleration.
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