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Abstract

Empirical codon models (ECMs) estimated from a large number of globular protein families outperformed mechanistic
codon models in their description of the general process of protein evolution. Among other factors, ECMs implicitly
model the influence of amino acid properties and multiple nucleotide substitutions (MNS). However, the estimation of
ECMs requires large quantities of data, and until recently, only few suitable data sets were available. Here, we take
advantage of several new Drosophila species genomes to estimate codon models from genome-wide data. The availability
of large numbers of genomes over varying phylogenetic depths in the Drosophila genus allows us to explore various
divergence levels. In consequence, we can use these data to determine the appropriate level of divergence for the
estimation of ECMs, avoiding overestimation of MNS rates caused by saturation. To account for variation in evolutionary
rates along the genome, we develop new empirical codon hidden Markov models (ecHMMs). These models significantly
outperform previous ones with respect to maximum likelihood values, suggesting that they provide a better fit to the
evolutionary process. Using ECMs and ecHMMs derived from genome-wide data sets, we devise new likelihood ratio tests
(LRTs) of positive selection. We found classical LRTs very sensitive to the presence of MNSs, showing high false-positive
rates, especially with small phylogenies. The new LRTs are more conservative than the classical ones, having acceptable
false-positive rates and reduced power.

Key words: empirical codon model, rate heterogeneity, hidden Markov models, positive selection, Drosophila substitution
patterns.

Introduction
Markov models of genomic sequence evolution are widely
used in bioinformatics and usually belong to one of three
classes: nucleotide, amino acid, or codon models. Nucleotide
models are widely used, even for coding sequences (CDSs),
because of their simplicity and broad applicability. Amino
acid models are more often applied to diverged alignments.
However, it has been shown that codon models should be
preferred over both nucleotide and amino acid models when
describing CDS evolution (Shapiro et al. 2006; Seo and Kishino
2009), unless the number of sequences in the alignment
makes their use too computationally demanding.

Furthermore, codon models have the convenient property
of being able to detect selective forces acting along
protein-coding DNA sequences by distinguishing between
nonsynonymous (amino acid replacing) and synonymous
(silent) codon changes. They have therefore long been applied
to detect positive selection (for reviews see Yang and
Bielawski 2000; Anisimova and Liberles 2007).

Traditionally, codon models are defined as mechanistic
and rely on a very small number of parameters (e.g., the
model M0, Yang et al. 2000). However, empirical features
have been introduced in codon models by Doron-
Faigenboim and Pupko (2007), who proposed a combination
of a mechanistic codon model (whose parameters are esti-
mated per gene or small genomic region) with an empirical

amino acid model (which is instead pre-estimated from large
databases and thus fixed). Later, other semiempirical models
incorporating amino acid propensities were devised (e.g.,
Delport et al. 2010; Rodrigue et al. 2010).

With larger and more numerous genomic data sets and
more powerful computers, models with increasing complex-
ity have been proposed (for a review see Anisimova and
Kosiol 2009). These new approaches account for phenomena
such as selection acting on synonymous codon substitutions
(see e.g., Nielsen et al. 2007) and substitutions affecting more
than one nucleotide (multiple nucleotide substitutions
[MNSs], see e.g., Whelan and Goldman [2004]).

Kosiol et al. (2007) estimated a full empirical codon model
(ECM) by maximum likelihood. ECMs need large amounts of
data to be estimated but implicitly account for many
biologically relevant phenomena without making any as-
sumptions except for reversibility of the Markov process. In
particular, instantaneous double and triple nucleotide
changes within one codon are accommodated by allowing
for nonzero instantaneous MNS rates in the codon substitu-
tion matrix. These changes may result from mutational
events that affect multiple nearby nucleotides (e.g., see
Schrider et al. 2011). With the classical ECM, all possible
MNSs between codons are treated individually. In this article,
however, we propose a new simplified ECM that makes use of
considerably fewer free parameters when incorporating
MNSs.
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The classical ECM does not account for the heterogeneity
of the evolutionary process along the genome. For example,
some genes or some parts of genes might evolve at signifi-
cantly slower rates than others due to stronger purifying se-
lection or lower mutation rates. Thus, models assuming
homogeneity of rates across a sequence might not be ad-
equate. In fact, using such a rate-homogeneous model can
create a bias, for example, by over-estimating the amount of
MNSs (Smith et al. 2003). For nucleotide models, several
approaches have been pursued to account for rate hetero-
geneity among sites. Yang (1993) used a gamma distribution
to model the pattern of substitution rates among sites. Yang
(1995) and Felsenstein and Churchill (1996) used hidden
Markov models (HMMs), which not only allow different
sites to belong to different evolution classes but also describe
cases in which neighboring sites tend to belong to the same
class. Since then, the application of HMMs for the analysis of
comparative genomic data has been very fruitful (reviewed in
Siepel and Haussler 2004).

Among-site rate variation has also been incorporated into
codon models. In particular, in addition to incorporating het-
erogeneity in the total rate of substitutions (as in nucleotide
models), heterogeneity in selection pressure is modeled via
discrete and continuous distributions for the nonsynon-
ymous/synonymous rate ratio (Yang et al. 2000). Heger
et al. (2009) implemented a mechanistic codon model
within the software package XRATE (Klosterman et al.
2006) with an HMM structure distinguishing the two selective
regimes of intracellular and secreted regions of transmem-
brane proteins. In general, XRATE allows the definition of
an HMM along the sequence as a particular case of a
“phylo-grammar” (Knudsen and Hein 1999), a tool commonly
used to infer protein and gene structure.

In this study, we incorporate HMMs into ECMs. First, we
estimate simple ECMs from new genomic data sets from
several lineages and clades across the Drosophila phylogeny.
Then we use the framework of XRATE to create an empirical
codon HMM (ecHMM): we extend ECMs with an HMM
structure along the sequence defining different classes ac-
counting for variation in codon usage and selective pressure
on amino acids.

Although codon models have also been applied to phylo-
genetic estimation (Ren et al. 2005) and classification of gen-
omic sequences (see Lin et al. 2011, for an application of ECMs
in this field), they are most commonly used to test for positive
selection. We demonstrate the utility of our newly devised
ECMs and ecHMMs by using them in tests of positive selec-
tion on simulated data and on a real data set of 181
Drosophila immunity genes previously investigated by
Sackton et al. (2007).

Materials and Methods

Basic Markov Models for CDSs

Most codon models in common use describe CDS evolution
as a continuous time Markov process. The process is further
assumed to be time homogeneous and thus can be defined
by an instantaneous rate matrix Q ¼ fqijg, whose elements

specify instantaneous rates of change among the 61 sense
codons. Substitutions to/from stop codons are not allowed,
because such events are usually not tolerated by a functional
protein. The diagonal elements of Q are defined by the
mathematical requirement that the rows sum up to zero
(i.e., qii ¼ �

P
j6¼i qij). Given such a Q, the substitution prob-

ability matrix of the Markov process can be calculated as
PðtÞ ¼ fpijðtÞg ¼ eQt, where each entry pijðtÞ is the probabil-
ity that codon i is substituted by codon j after time t.

In the ECM (see Kosiol et al. 2007), the instantaneous
substitution rate from codon i to codon j 6¼ i is defined as

qij ¼ sij�j ð1Þ

where sij ¼ sji is called an exchangeability parameter, and�j is
the frequency of codon j. Therefore, the number of free par-
ameters in the ECM is 61

2

� �
¼ 1, 830 for fsijg and further 60 for

f�jg, so 1,890 in total.
Because such a large number of free parameters is undesir-

able, we tested whether the ECM could maintain a compar-
able performance with greatly reduced complexity. Our new
version of the ECM, the simplified ECM, is obtained by sum-
marizing all exchangeability parameters modeling MNSs with
four parameters. The new exchangeability parameters are ob-
tained setting the following constraints:

qij ¼

sij�j if i! j single nucleotide change
s2s�j if i! j double syn: nt change
s2ns�j if i! j double nonsyn: nt change
s3s�j if i! j triple syn: nt change
s3ns�j if i! j triple nonsyn: nt change,

8>>>><
>>>>:

ð2Þ

thus the four parameters s2s, s2ns, s3s and s3ns replace 1,567
parameters of the ECM (eq. 1), reducing the total number of
free parameters to 323. For small data sets, the estimation of
s2s and s3s might be based only on few MNSs (supplementary
table S2, Supplementary Material online) and thus will not be
reliable (supplementary fig. S8, Supplementary Material
online). Nevertheless, the estimation of these parameters is
less prone to overfitting than the estimation of those in the
classical ECM.

Supplementary files S1 and S2, Supplementary Material
online, define, respectively, the ECM and the simplified
ECM as phylo-grammars. They are the input files we used
in XRATE to estimate the model parameters. We also devised
other variants of the general ECM and investigated different
levels of model complexity without presumptions about what
might best fit real sequence data (see supplementary text,
Supplementary Material online).

Empirical Codon Hidden Markov Models

When modeling CDS evolution, the process is often assumed
to be identical for all sites in a sequence. However, some
aspects of the evolution are variable across sites, such as se-
lective pressure on amino acid state and on codon usage.
To account for variation in these and other factors, we use
an HMM. We assume that each codon in the sequence
alignment can belong to any of a certain number of classes
(the number of classes is fixed a priori). The probability for a
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codon to fall in one class also depends on the class of nearby
codons (each codon is not independent of the others). In this
model, evolutionary features can differ for each class, but the
process is assumed to be homogeneous along the phylogeny.
In particular, here we focus on modeling two variable aspects
in sequence evolution: codon usage (with codon usage site
classes or cu-classes) and nonsynonymous substitution rate
(with R-classes, see later).

Given any two HMM site classes, C0 and C1, we define
the free parameter �01 as the probability that a codon
belongs to C1 conditioned on the previous codon belonging
to C0. Similarly, �10 represents the probability that a codon
belongs to C0 conditioned on the previous codon belong-
ing to C1 (consequently �00 ¼ 1� �01 and �11 ¼ 1� �10).
For a more detailed description of the HMM parameter
space, see the supplementary text, Supplementary Material
online.

Although some ecHMM parameters are defined for a
single class, most of them are shared among classes. For ex-
ample, to model variation in codon usage, we define a set of
60 free parameters f�ðkÞg describing codon frequencies for
each class k. In contrast, all the exchangeability parameters
have the same values for all K classes. The instantaneous rates
for cu-class k are therefore:

qðkÞij ¼ sij�
ðkÞ
j ; ð3Þ

for any k 2 f0, 1, . . . , K � 1g, where K is the total number of
classes. An ecHMM with K cu-classes will be called K
cu-ecHMM (K codon usage classes ecHMM).

Alternatively, to model variation in the total nonsynon-
ymous substitution rate, we use one parameter R in each class
(R-class). Here RðkÞ (k 2 f0, 1, . . . , K � 1g) represents the
relative nonsynonymous rate in class k with respect to the
first class (Rð0Þ ¼ 1). R has a general discrete distribution
among classes f1, . . . , K � 1g. The instantaneous rates for
R-class k are:

qðkÞij ¼
sij�j if i! j syn: change

RðkÞsij�j if i! j nonsyn: change:

�
ð4Þ

The nonsynonymous rate for the first class (k ¼ 0) is only
determined by the exchangeabilities fsijg. Also, the exchange-
ability values are shared among all the classes. The only dif-
ference between R and the parameter ! of classical codon
models is that here R ¼ 1 does not need to correspond to
neutrality. We call this model with K classes KR-ecHMM.

In all ecHMMs, the fsijg are as defined in the simplified
ECM (eq. 2). The fsijg parameter values are always shared
among classes and are estimated together with the
class-specific parameters, RðkÞ or f�ðkÞg. More ecHMMs can
be obtained defining cu-classes (eq. 3) and R-classes (eq. 4)
within a single model. For example, we combine two R-classes
and two cu-classes into a 2R-2cu-ecHMM. This model is pre-
sented as input phylo-grammar for the software XRATE in
supplementary file S3, Supplementary Material online. This
and further types of ecHMM are presented and discussed in
the supplementary text, Supplementary Material online.

Models for Positive Selection Tests

The classical Goldman–Yang model M0 (Goldman and Yang
1994; Yang et al. 2000) is defined as

qij ¼

�j i! j syn: transversion
��j i! j syn: transition
!�j i! j nonsyn: transversion
�!�j i! j nonsyn: transition

0 i! j MNS;

8>>>><
>>>>:

ð5Þ

where � is the transition/transversion rate ratio, and ! is the
nonsynonymous/synonymous rate ratio.

Here, we modify this model to include the genome-wide
empirical codon exchangeability parameter estimates ŝij. This
way, the number of free parameters remains unchanged, but
the new model accounts for MNSs and for different instan-
taneous substitution rates among codons:

qij ¼

ŝij�j i! j syn: transversion
ŝij��j i! j syn: transition
ŝij!�j i! j nonsyn: transversion

ŝij�!�j i! j nonsyn: transition
ŝij�j i! j syn: MNS

ŝij!�j i! j nonsyn: MNS:

8>>>>>><
>>>>>>:

ð6Þ

Here, the ŝij are constants, whereas !, �, and �j are free
parameters. We call this model ecM0. Note that despite
including empirical estimates, this model has only a small
number of free parameters. Therefore, this model is appro-
priate for data sets as small as a single gene.

ECM exchangeability parameters (ŝij in eq. 6) implicitly
include information about the genome-wide average transi-
tion/transversion rate �̂ and the genome-wide average non-
synonymous/synonymous rate !̂. Therefore, values of � and
! in ecM0 (eq. 6) do not have necessarily the same interpre-
tation as in M0 (eq. 5).

We do not correct for the difference in � estimates,
because we are not interested in interpreting or comparing
them. In contrast, in eq. 6, we want to associate purifying
selection to values of! below a certain threshold and positive
selection to values above it. A natural choice for this threshold
is 1=!̂, once we have precisely defined !̂.

As an estimate of !̂, Kosiol et al. (2007) used

!E ¼
�a

�s

0:21

0:79
; ð7Þ

where �a ¼
P
ði, jÞ2N �̂iq̂ij is the total substitution rate of the

set of nonsynonymous codon pairs N . Similarly �s ¼P
ði, jÞ2S �̂iq̂ij is the total substitution rate over the set of syn-

onymous codon pairs S. The constant 0:79=0:21 associated
with neutrality was determined by Nei and Gojobori (1986).

This method is not robust to variation in the transition/
transversion rate ratio. For example, if we consider the model
M0 (eq. 5) as an ECM estimate, we would like !E to approx-
imate !. However, keeping ! constant in M0 and varying �,
the estimate !E changes (supplementary table S1, Supple-
mentary Material online). This happens because, at third
codon position, most nonsynonymous substitutions are
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transversions, or equivalently most transitions are synon-
ymous. Increasing � therefore increases �s relative to �a.

An appropriate definition of !̂ is fundamental for the
identification of positive selection. Therefore, we pursue a
different, more robust, strategy, aimed at having an !̂ that
gives values comparable to the ! of M0. The idea is to esti-
mate nonsynonymous/synonymous rate ratios for transitions
and transversions separately and then average them. More
specifically, we estimate a distinct nonsynonymous/synon-
ymous rate ratio for each mutation type n1 ! n2, with n1

the ancestral nucleotide and n2 the derived nucleotide.
First, we define the average nonsynonymous rate for muta-

tion n1 ! n2

�qN n1!n2
¼

P
ði, jÞ 2 N n1!n2

�̂iq̂ij

P
ði, jÞ 2N n1!n2

�̂i
; ð8Þ

and the average synonymous rate for mutation n1 ! n2

�qSn1!n2
¼

P
ði, jÞ 2 Sn1!n2

�̂iq̂ij

P
ði, jÞ 2 Sn1!n2

�̂i
: ð9Þ

Here N n1, n2
(Sn1, n2

) is the set of nonsynonymous (synon-
ymous) codon pairs ði, jÞ corresponding to substitutions from
codon i to j that involve a single mutation ðn1 ! n2Þ.

The nonsynonymous/synonymous rate ratio for n1 ! n2

is then

!̂n1!n2
¼

�qN n1!n2

�qSn1!n2

, ð10Þ

and the final !̂ is obtained by averaging !̂n1!n2
over all

mutations:

!̂ ¼

P
n1!n2

!̂n1!n2

P
ði, jÞ 2 fN n1!n2[Sn1!n2 g

�̂i

P
n1!n2

P
ði, jÞ 2 fN n1!n2[Sn1!n2 g

�̂i
: ð11Þ

If we consider the model M0 as a special case of an ECM, we
observe that !̂ recovers ! correctly, independently of � (sup-
plementary table S1, Supplementary Material online). To keep
the notation simple, we multiply all nonsynonymous fŝijg

(eq. 6) by the factor 1=!̂, so that ! ¼ 1 in the ecM0 will
correspond to neutrality as in M0.

After this modification, Model ecM0 can be used to
estimate the average selective pressure on amino acids
within a gene. However, to infer positive selection limited
to only a few sites of a gene, we need a model allowing for
different ! at different sites. Among-site variation of ! can
be described by any of several probability distributions. The
simplest site models use the general discrete distribution
with a prespecified number of site classes K. Each site class
i ¼ 0, 1; . . . , K � 1 has a specific ratio parameter !i and a
specific proportion pi of sites belonging to it. The discretized
versions of continuous distributions (such as gamma and
beta) or mixture distributions have been also successfully
applied to positive selection scans (Yang et al. 2000).

Here, we modify the most popular models to include
empirical parameter estimates (as we did for ecM0 in
eq. 6). Analogous to M1a (Yang et al. 2005), we define
ecM1a as a model with two site classes, one for purifying
selection (!0<1) and the other for neutrality (!1 ¼ 1).
This model lacks sites with !>1 and, therefore, can be
used as a null hypothesis in tests of positive selection.
Analogous to the alternative model of M1a, M2a (Yang
et al. 2005), the alternative model ecM2a extends ecM1a by
adding a further (third) site class with !2>1 to accommo-
date sites evolving under positive selection.

Similarly, we modify another test comparing the model M7
versus M8 (Yang et al. 2000). The model ecM7 has a beta-
distributed ! (with 0<!<1), whereas ecM8 has a discrete
class for positive selection (!>1) and a beta-distributed !
(with 0<!<1) in the rest of the codons. We approximate
the beta distribution with 10 site classes. Significance of the
likelihood ratio tests (LRT) was determined at the 5% and
1% level with a �2

2 distribution. A summary of these models
is given in table 1.

We will provide our modified version of codeml (from
PAML 4.2) that we used for tests of positive selection with
empirical models upon request.

Genomic Data Sets

We trained our models on codon alignments of a subset of
the 12 Drosophila genomes (Stark et al. 2007) consisting of
D. melanogaster (Dmel), D. simulans (Dsim), D. yakuba
(Dyak), and D. ananassae (Dana). The choice of species was
made to minimize incomplete lineage sorting (see Pollard
et al. 2006) and saturation caused by large divergence. For
some of the analyses, we added a second Dmel sequence
derived from the consensus of 5 full-genome sequenced indi-
viduals from the Raleigh population of the 50 Drosophila
genomes project (Release 1.0, http://www.dpgp.org/; last
accessed 7 Dec 2012).

Whole-genome CDS alignments were downloaded from
the UCSC table browser (http://genome.ucsc.edu/; last
accessed 7 Dec 2012). We included only one alignment for
each Dmel CDS and excluded CDS alignments with more
than 25% of divergence between any two species. We
excluded CDS alignments with nonsense codons or frame
shifts. We also trimmed start and stop codons (stop
codons could thereby be excluded from the models).
Number of codons and number of CDSs for each data set
are listed in table 2.

We compared ECM estimates from three Drosophila
clades. The melanogaster clade was represented by the align-
ments of Dmel and Dsim, the ananassae clade by alignments
of Dana and D. bipectinata (Dbip), and the pseudobscura
clade by alignments of D. lowei (Dlow) and D. pseudobscura
(Dpse). CDSs of Dana were downloaded from ftp://ftp.flybase.
net (D. ananassae version r1.3_FB2011_05; last accessed 7 Dec
2012). Preliminary Dbip sequence data were obtained from
Baylor College of Medicine Human Genome Sequencing
Center website at http://www.hgsc.bcm.tmc.edu (last acce-
ssed 7 Dec 2012). We aligned Dana and Dbip as described
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in the supplementary text, Supplementary Material online.
The same protocol was used for the species pair Dpse–
Dlow by Palmieri et al. (personal communication) who
kindly gave us access to the alignments.

Finally, we performed a positive selection scan on a real
data set of 181 immune system genes that was created by
Sackton et al. (2007). Orthologous gene alignments were
kindly provided to us by the author. These alignments

comprise six species: Dmel, Dsim, D. sechellia (Dsec), Dyak,
D. erecta (Dere), and Dana.

Simulations

CDS alignments were simulated using the program SimGram
(Varadarajan et al. 2008) in the DART package.

To test the accuracy of the estimation procedure, we simu-
lated data sets using three different ECM real data estimates
(from the two, three, and four species melanogaster data sets),
three different phylogenetic trees estimated from real data
(again the two, three, and four species melanogaster data
sets), and seven different total alignment lengths (5�104,
105, 2�105, 5�105, 106, 2�106, and 3�106 codons). We
then estimated ECMs from these simulated data sets and
checked how well they recovered the true ECMs.

We also tested the accuracy of the estimation of the 2cu-
ecHMM (a K cu-ecHMM with K ¼ 2). We simulated data
according to the 2cu-ecHMM estimated on Dmel–Dsim and
according to the tree from the same data. Although single
exons where simulated with the same mean length as in real
data, the total alignment length was 104, 2�104, 5�104, 105,
2�105, 5�105, or 106 codons.

We created a third set of simulated data to compare the
performance of mechanistic and empirical tests of positive
selection. Each scenario consists of 1,000 genes, each 500
codons long. The simulations were performed on three dif-
ferent phylogenetic trees (the ones estimated on Dmel–Dsim,
on Dmel–Dsim–Dyak, and on Dmel–Dsim–Dsec–Dyak–
Dere–Dana). However, we always simulated under the 2cu-
ecHMM substitution model estimated from the Dmel–Dsim
alignments (but using only one of the two estimated sets of
codon frequencies). The four scenarios we chose to study the
statistical behavior of our tests were inspired by Wong et al.
(2004): we have two scenarios with positive selection and two
without (see supplementary table S10, Supplementary
Material online, for detailed description of the parameter
choices). Corresponding selective pressures are obtained by
scaling the nonsynonymous substitution rates in the empiri-
cal model, so that a neutral codon is simulated according to
an ECM with !̂ ¼ 1. Choosing these scenarios made our
results comparable to those of Wong et al. (2004), although
those were obtained simulating under classical mechanistic
codon models, that is, without MNSs.

The last simulated data set was created to test the perfor-
mance of ecHMMs in detection of positive selection. In con-
trast to the other simulations, the codon sites were simulated
nonindependently, such that each codon position had a high
probability (�50%) of having the same selective pressure
than the previous one (see supplementary table S10,
Supplementary Material online, for details). Again we simu-
lated 1,000 genes, each of 500 codons, for each of four scenar-
ios, two with positive selection and two without. We use a
tree with eight species and with uniform branch lengths.
Furthermore, we use the ECM estimated on Dmel–Dsim–
Dyak to simulate substitutions.

All details for all simulation scenarios are summarized in
supplementary table S10, Supplementary Material online.

Table 2. Performances of Models with Different Levels of Complexity
on Real Data

Model Name Number of
Parameters

BIC Scorea MNS
Proportionb (%)

2Dmel–Dsim: 46,197 CDSs, 5,403,560 codons

Nonrev. ECMc 3,720 — 2.8

ECM 1,890 �4,941 2.7

Simpl. ECMd 323 �22,517 2.3

Combined 162 +67,683 2.4

Nucl. GTRe 69 +282,903 4.0

Dmel–Dsim–Dyak: 44,788 CDSs, 5,162,718 codons

Nonrev. ECM 3,720 — 3.8

ECM 1,890 +53,505 3.7

Simpl. ECM 323 +44,179 2.9

2Dmel–Dsim–Dyak: 43,844 CDSs, 5,046,005 codons

Nonrev. ECM 3,720 — 3.6

ECM 1,890 +56,596 3.5

Simpl. ECM 323 +46,197 2.8

Dmel–Dsim–Dyak–Dana: 25,012 CDSs, 2,267,923 codons

Nonrev. ECM 3,720 — 4.4

ECM 1,890 +126,127 4.1

Simpl. ECM 323 +120,582 2.7

2Dmel–Dsim–Dyak–Dana: 24,331 CDSs, 2,176,111 codons

Nonrev. ECM 3,720 — 4.3

ECM 1,890 +122,044 4.0

Simpl. ECM 323 +115,454 2.7

NOTE.—The best model for each data set according to BIC score is underlined.
aBIC score difference between the current model and the nonreversible ECM trained
on the same data set (models with smaller BIC score are considered preferable).
bEstimated proportion of MNSs.
cNonreversible empirical codon model.
dSimplified empirical codon model.
eCodon extension of the nucleotide general time reversible model.

Table 1. Models Used for Tests of Positive Selection

Model Parametersa Number of
Free Parameters

M1a, ecM1a p0, (p1 ¼ 1� p0), !0<1, !1 ¼ 1 2

M2a, ecM2a p0, p1, (p2 ¼ 1� p0 � p1),
!0<1, !1 ¼ 1, !2>1

4

M7, ecM7 p, q 2

M8, ecM8 p0, (p1 ¼ 1� p0), p, q, !1>1 4

aParameters describing selective pressure distribution: !i refers to selective pressure
in class i (! ¼ 1 corresponding to neutrality), and pi is the proportion of sites
belonging to class i.
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Tree Estimation

For the estimation of empirical models with Xrate, and for
simulations with SimGram, we used phylogenetic trees that
were estimated on whole-genome data sets using baseml
(Yang 2007) with model HKY85 + �. Whenever simulated
data were used, the correct tree was fixed for the estimation
of the models, except in positive selection tests with codeml
(Yang 2007), where branch lengths were re-estimated with
codeml itself.

Results and Discussion

Simplified ECM

We estimated codon models with various levels of complexity
to compare model performances and estimates of MNSs. In
particular, we were interested in investigating whether the
complexity of the ECM could be reduced without affecting
its performance. To this end, models were fitted on data sets
spanning different levels of species divergence. When only
Dmel and Dsim were aligned, their divergence (calculated
here as the proportion of mismatching bases) was 4:0%.
When Dyak is also included, the divergence between Dmel
and Dsim is reduced because many poorly conserved CDSs
are lost from the data set, and the divergence between Dmel
and the outgroup (Dyak) becomes 7:7%. Similarly, when
Dana is added, the divergence between Dmel and the out-
group Dana is 15:8%. Performances of codon models were
compared with AIC (Akaike 1974) and BIC (Schwarz 1978)
scores.

Generally, we find that more complex models tend to fit
the data better, and this is even more pronounced if using
AIC instead of BIC (table 2 and supplementary table S3,
Supplementary Material online). The empirical models out-
performed the codon extension of the nucleotide general
time reversible (GTR) model (see supplementary text,
Supplementary Material online), as expected, because the
latter model cannot account for amino acid affinities. Our
Combined model (obtained by combining an empirical
amino acid and a nucleotide GTR model into a codon
model, see supplementary text, Supplementary Material
online) was also outperformed by ECMs, although it contains
empirical amino acid affinities and mutation rate parameters.
As both the nucleotide GTR and the Combined models were
strongly and generally outperformed (supplementary table
S3, Supplementary Material online), both were removed
from further analysis.

Interestingly, the simplified ECM was always preferred by
BIC score to the standard ECM (but not by AIC score, table 2).
The nonreversible ECM (see supplementary text, Supplemen-
tary Material online) only performed better than the reversi-
ble ECMs when more diverged species such as Dyak and Dana
were added to the closely related species pair Dmel–Dsim.
The reason might be that in the Dmel–Dsim data set, there
are fewer substitutions, and this favors simpler models.

We investigated the accuracy of our methods in estimating
ECMs and recovering evolutionary features. For this purpose,
we used data sets simulated according to three different
phylogenetic trees and three different ECMs (see Materials

and Methods). We then estimated an ECM and a simplified
ECM on each data set and compared the estimated para-
meters with the true ones used for simulations. As a measure
of the estimation error, we used the Euclidean distance
between the vector of parameter estimates, and the vector
of true parameters, normalized by the norm of the vector
with true parameters. As expected, with increased alignment
length, the estimation improved (fig. 1 and supplementary
figs. S2 and S3, Supplementary Material online). On data
simulated according to a short-branched phylogenetic tree,
and according to genomic sizes (2, 000, 000 codons or more),
the model parameters were recovered with error rate below
5% (fig. 1 and supplementary figs. S2 and S3, Supplementary
Material online).

For the largest tree (Dmel, Dsim, Dyak, and Dana), the
estimates were unsatisfactory. This suggests that ECMs esti-
mated on high-divergence data sets should not be used for
interpreting evolutionary patterns, although they could still
be used to describe sequence evolution because of their
better fit to data in terms of BIC and AIC scores. Increasing
the amount of data to beyond 106 codons had generally
negligible effects on the accuracy of the estimates.

We also determined the proportion of MNSs in estimated
ECMs, defined as:

�MNS

�
¼

P
ði, jÞ 2M

�̂iq̂ij

P
ði, jÞ

�̂iq̂ij
, ð12Þ

whereM is the set of pairs of codons separated by at least
two nucleotide changes.

We estimated between 2:3% and 4:4% of MNSs in real
data (table 2). The simplified ECM always showed lower pro-
portions of MNS than the standard ECM. We interpret this as
a symptom of overfitting for the standard model (see later). It
is also noteworthy that for lower divergences (e.g., Dmel and
Dsim), estimates of MNS rates were smaller than for higher
divergences (e.g., Dmel, Dsim, Dyak, and Dana).

In simulated data sets with low and medium divergence
levels, estimates of MNS rate were relatively precise, in fact the
difference between true and estimated proportion of MNSs
was below 1% (fig. 2). For the most diverged simulated data
set, large MNSs rates (far above the simulated ones) were
estimated, suggesting that saturation and overfitting have
contributed to MNS rate overestimation in this and in pre-
vious studies with ECMs (e.g., Kosiol et al. 2007). Other causes
leading to MNS rate overestimation in real data are site and
branch evolutionary heterogeneity. In fact, we later show that
accounting for variability of evolutionary rates among sites
reduces MNSs estimates.

Schrider et al. (2011) estimated that approximately 3% of
mutations in eukaryotes are due to multiple nucleotide muta-
tions (MNMs, mutations affecting simultaneously multiple
nearby nucleotides). Their estimates were derived mutation
accumulation (MA) experiments data comprising several
organisms (including Dmel). In MA experiments, mutations
are accumulated while avoiding the influence of selective
forces. There are three reasons why the estimate by
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Schrider et al. has to be considered an upper bound for our
MNS rate. First, they analyzed both coding and non-CDSs,
and in CDSs, MNMs are likely to be deleterious and, therefore,
to be purged by selection. Second, Schrider et al. considered
mutations separated by less than 20 bp to be MNMs, whereas
we only considered changes within the same codon as MNSs.
Third, we estimated the proportion of MNS events and not
the proportion of nucleotides modified by MNSs, so that our
estimates should be less than half of the 3% estimated by
Schrider et al.

ECMs Estimated on Different Drosophila Clades

We repeated the analysis of the previous section on a larger
collection of data sets to compare evolution among different
clades of the genus Drosophila and to seek confirmation of
our previous results. As described in Materials and Methods
section, we obtained sets of alignments for two additional
pairs of Drosophila species. The first alignment is between
Dana and Dbip (from the ananassae clade) and the second
between Dpse and Dlow (from the pseudobscura clade). The
melanogaster clade is represented by the Dmel–Dsim align-
ment. From the observations of the previous section, we
deduced that we could reliably estimate ECMs from these
three pairwise alignments. We therefore used these three data
sets to estimate all previously introduced ECMs. The compar-
ison of different models led to the same ranking and con-
firmed all other observations of the previous section (table 3
and supplementary table S4, Supplementary Material online).

Here, we focus on the comparison between clades. We
wanted to assess differences in CDS evolution among the
clades and whether the difference scales with their phyloge-
netic relatedness. It is a concern of this analysis that results
can be biased by the different levels of divergence between
species within the pairs. Although the divergence Dmel–Dsim
is comparable to that of Dpse–Dlow (in the first alignment
4.01% of the bases are substituted, in the second 3.58%),
Dana–Dbip shows much larger divergence (8.62%). In more
divergent alignments, we found smaller estimates of the non-
synonymous/synonymous rate ratio (!̂ ’ 0:14 in Dmel–
Dsim, !̂ ’ 0:15 in Dpse–Dlow, and !̂ ’ 0:07 in Dana–
Dbip), probably due to the fact that with higher divergence
we can only align more conserved genes. We also cannot
exclude that other effects may act on the most diverged
pair, such as higher saturation, which could make the para-
meters estimates different from those from the other data
sets.

However, despite all these possible biases, we found that
CDS evolution is more similar between the melanogaster and
ananassae clades than it is for both compared to the pseu-
dobscura clade (table 4 and supplementary table S5, Supple-
mentary Material online). This is consistent with the fact that
melanogaster and ananassae are more phylogenetically
related to each other than they are to pseudobscura. This
result held when we compared instantaneous rates qij,
exchangeability parameters sij, or codon frequencies �i

(table 4 and supplementary table S5, Supplementary
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FIG. 2. Estimation of MNS rate with the ECM. Proportion of MNSs
estimated with ECM using data simulated according to three real phy-
logenetic trees: Dmel–Dsim (4), Dmel–Dsim–Dyak (�), and Dmel–
Dsim–Dyak–Dana (�). Simulations are repeated according to three
different ECMs: the one estimated on Dmel–Dsim (red), the one on
Dmel–Dsim–Dyak (green), and the one on Dmel–Dsim–Dyak–Dana
(blue). Values shown represent the percentage of all substitutions,
which are MNSs. The horizontal lines show the correct values, that is,
the percentage of MNSs that was present in the respective ECM used
for simulations.
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FIG. 1. Estimation error of the ECM. Percent error in estimating ECM
exchangeability parameters 4 and instantaneous substitution rates �
with phylogenies consisting of: Dmel–Dsim (red), Dmel–Dsim–Dyak
(green), and Dmel–Dsim–Dyak–Dana (blue). The ECM used for simula-
tions is the one estimated on the Dmel–Dsim–Dyak–Dana data set. The
vertical purple line represents the amount of codons in the smallest real
data set used. Similar results are observed when simulating according to
different ECMs (supplementary figs. S2 and S3, Supplementary Material
online).
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Material online). Supplementary figures S4–S6, Supplemen-
tary Material online, show bubbleplot visualizations of the
ECMs on the three different clades.

A cross validation experiment also indicated that the mel-
anogaster and pseudobscura clades have evolved differently.

We split both data sets into two subsets: one containing 99%
of the CDSs (randomly chosen), used to train ECM substitu-
tion matrices, and the remaining 1% of CDSs, used to assess
the goodness of fit of the models. The best performing model
was the one trained on the same clade it was tested on (see
supplementary text, Supplementary Material online).

Empirical Codon Hidden Markov Models

We estimated ecHMMs (see Materials and Methods) on the
same data sets used previously for ECMs. In particular, we
assessed whether empirical models that include site hetero-
geneity better describe the process of sequence evolution
and which heterogeneity feature leads to the largest improve-
ment. Models with HMM structure usually outperform
models with multiple independent classes or models in
which codon classes are constant along exons (see supple-
mentary text and supplementary tables S6 and S7,
Supplementary Material online).

Using ecHMMs that account for variation in selective pres-
sure (R-ecHMM, eq. 4), as well as ecHMMs modeling variation
in codon usage (cu-ecHMM, eq. 3), always resulted in a sig-
nificant increase of fit with respect to ECMs (tables 3 and 5
and supplementary table S4, Supplementary Material online).
However, using more than two site classes of the same type
only brought a small fit increase (supplementary table S8,
Supplementary Material online). The combination of the
two class types in the same model (the 2R-2cu-ecHMM, see
supplementary text, Supplementary Material online) always
gave the best fit to data. Furthermore, R-ecHMM and cu-
ecHMM were preferable to the modeling of variable transi-
tion/transversion rate (�-ecHMM), MNS rate (MNS-
ecHMM), or total substitution rate (T-ecHMM) (supplemen-
tary table S7, Supplementary Material online). We also
observed a general decrease in the estimated rate of MNSs
in ecHMMs with respect to simple ECMs (table 5 and sup-
plementary table S8, Supplementary Material online), simi-
larly to what shown by Smith et al. (2003) regarding MNMs.

We tested whether an ecHMM can recover parameters
from data with acceptable error and better precision than
simple ECMs. We simulated alignments of different length
under the 2cu-ecHMM (see Materials and Methods). On
these, we estimated three models: the cu-ecHMM, the
ECM, and the simplified ECM. The 2cu-ecHMM correctly
recovered the codon frequencies of both classes (fig. 3). It
also slightly improved the estimation of exchangeability
rates (supplementary fig. S7, Supplementary Material
online) and MNS rates with respect to simple ECMs (fig. 4).
We also show the error in estimating each MNS parameter of
the simplified ECM individually (supplementary fig. S8,
Supplementary Material online).

In contrast, when simulating and estimating under the 2R-
ecHMM, we did not recover the correct parameter values.
The problem is likely a partially flat likelihood surface (see
supplementary text, Supplementary Material online). This
means that although the R-ecHMM and 2R-2cu-ecHMM
might be often preferable in likelihood, their parameter esti-
mates (in particular nonsynonymous rates) should not be

Table 4. Comparisons between Models Estimated on Different
Clades

Featurea Dmel–Dsim vs.
Dana–Dbip (%)

Dmel–Dsim vs.
Dpse–Dlow (%)

Dana–Dbip vs.
Dpse–Dlow (%)

ECM Q 17.3 20.3 23.8

Simpl. ECM Q 16.8 20.3 23.1

2R-2cu-ecHMM Q 15.2 17.8 22.1

ECM p 7.0 12.5 12.7

ECM nucleotide 7.3 11.5 15.4

NOTE.—Comparison of parameter vectors estimated on different clades. Values show
the Euclidean distances between vectors, normalized by the average of the norm of
the two vectors compared and expressed as a percentage.
aModel feature that is compared between clades: “Q” is the instantaneous substitu-
tion rates matrix, “�” is the codon frequencies vector, and “Nucleotide” stands for
the nucleotide instantaneous substitution rates matrix extracted from the ECM
averaging the single-nucleotide synonymous substitution rates for each ordered
pair of nucleotides.

Table 3. Performance of ECMs Estimated on Data from Different
Drosophila Clades

Model Name Number of
Parameters

BIC Scorea MNS
Proportionb (%)

Dmel–Dsim: 47,689 CDSs and 5,578,031 codons

Nonrev. ECMc 3,720 — 3.0

ECM 1,890 +9,279 3.2

Simpl. ECMd 323 �8,409 2.6

2R-ecHMM 328 �102,306 0.8

2cu-ecHMM 387 �194,133 2.6

2R-2cu-ecHMMe 398 �332,099 1.8

Dpse–Dlow: 29,483 CDSs and 3,796,335 codons

Nonrev. ECM 3,720 — 2.7

ECM 1,890 �18,158 2.7

Simpl. ECM 323 �37,323 2.2

2R-ecHMM 328 �84,089 0.6

2cu-ecHMM 387 �139,756 2.1

2R-2cu-ecHMM 398 �218,253 1.4

Dana–Dbip: 32,962 CDSs and 4,306,332 codons

Nonrev. ECM 3,720 — 4.5

ECM 1,890 +17,655 4.5

Simpl. ECM 323 +9,383 3.2

2R-ecHMM 328 �108,776 1.5

2cu-ecHMM 387 �155,564 2.7

2R-2cu-ecHMM 398 �277,451 2.5

NOTE.—The best model for each data set according to BIC score is underlined.
aBIC score difference between the current model and the non reversible ECM
trained on the same data set.
bProportion of MNSs estimated by the model.
cNonreversible empirical codon model.
dSimplified empirical codon model.
eThe ecHMM having two classes for nonsynonymous/synonymous rate ratio varia-
tion and two classes for codon usage variation.
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considered reliable. Therefore, we recommend the use of the
cu-ecHMM instead.

The computational time required for the estimation of a
2cu-ecHMM from 106 codons with a 2.66 GHz processor on a
MacPro5.1 was �6 h (see supplementary table S9, Supple-
mentary Material online, for more computational times of
this and other ECMs).

Application of ECMs and ecHMMs to Tests of
Positive Selection

We assessed the performance with respect to the power and
the amount of false positives for the new LRTs of positive
selection. ecM1a–ecM2a (empirical with discrete ! classes)
and ecM7–ecM8 (empirical with beta-distributed !) were
compared, respectively, to the classical tests M1a–M2a
(mechanistic with discrete classes) and M7–M8 (mechanistic
with beta-distributed !), on 1,000 genes simulated according
to the same ECM used to define ecM0 (see Materials and
Methods). Model estimations were here performed with a

modification of codeml, which is part of the PAML package
(version 4.2).

We used some of the scenarios simulated by Wong et al.
(2004) that showed that the standard tests for positive selec-
tion are conservative. However, for standard tests M1a–M2a

Table 5. Performances of ecHMMs on Real Data

Model Name Number of
Parameters

BIC
Scorea

MNS
Proportionb (%)

2Dmel–Dsim

2cu-ecHMM 387 �181,736 2.3

3cu-ecHMM 453 �217,866 2.3

4cu-ecHMM 521 �231,229 2.3

2R-ecHMM 328 �100,305 2.0

3R-ecHMM 335 �105,603 2.0

4R-ecHMM 344 �112,395 2.0

2R-2cu-ecHMMc 398 �297,460 1.7

Dmel–Dsim–Dyak

4cu-ecHMM 521 �239,972 2.5

4R-ecHMM 344 �289,980 2.3

2R-2cu-ecHMM 398 �428,746 2.2

2Dmel–Dsim–Dyak

4cu-ecHMM 521 �228,193 2.4

4R-ecHMM 344 �283,604 2.1

2R-2cu-ecHMM 398 �413,221 2.1

Dmel–Dsim–Dyak–Dana

4cu-ecHMM 521 �61,579 2.7

4R-ecHMM 344 �111,026 2.7

2R-2cu-ecHMM 398 �131,030 2.7

2Dmel–Dsim–Dyak–Dana

4cu-ecHMM 521 �59,924 2.6

4R-ecHMM 344 �107,284 2.6

2R-2cu-ecHMM 398 �126,043 2.6

NOTE.—The best model for each data set according to BIC score is underlined.
aBIC score difference between the current model and the simplified ECM trained on
the same data set.
bProportion of MNSs estimated by the model.
cThe ecHMM having two classes for nonsynonymous/synonymous rate ratio varia-
tion and two classes for codon usage variation.
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FIG. 4. Estimation of MNS rate with 2cu-ecHMM. Estimation of MNS
rate on a data set simulated according to a 2cu-ecHMM model. On the
y axis is proportion of substitutions that are MNSs, expressed in per-
centage. On the x axis is the number of codons in the respective data set
used. Blue4 represents the MNS rate estimated by a 2cu-ecHMM (the
simulated model), red � the MNS rate estimated by a simplified ECM,
and green� by an ECM. The horizontal line shows the simulated pro-
portion of MNSs, that is, the true value to be estimated.
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FIG. 3. Estimation error of codon frequencies with 2cu-ecHMM.
Estimation error of the two sets of codon frequencies on a data set
simulated according to a 2cu-ecHMM model and recovered by a
2cu-ecHMM. Codon frequencies for both classes are considered. On
the y axis is the error, expressed in percentage. On the x axis is the
number of codons in the respective data set used.
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and M7–M8, we observed high proportions of false positives
(table 6), often above acceptable levels, especially with small
phylogenetic ftrees (e.g., 26.9% and 28.0% for the Dmel–
Dsim tree). In contrast to Wong et al. (2004), we simulated
with an ECM and therefore generated MNSs. These MNSs are
not accounted for by classical models such as M1a–M2a or
M7–M8 and will be interpreted as multiple substitutions
clustered within the same codon and same branch. If these
substitutions are nonsynonymous, they represent a signal of
positive selection, especially with a small number of species.

For the analysis based on empirical models ecM1a–ecM2a
and ecM7–ecM8, we found that the new tests are more
conservative than the standard ones, having both acceptable
false positives and reduced power (table 6). Alternatively, the
problem of high false positives in classical tests could be
solved by requiring a more stringent significance level, but
this approach lowers the power of classical tests (supplemen-
tary table S13, Supplementary Material online) and priorly
requires an extensive simulation study to determine an
appropriate significance cutoff.

We addressed the question whether the different perfor-
mance of the new tests was due to the generally more precise
modeling of all substitutions or in particular to the inclusion
of MNSs. For this reason, we used a modification of the new
empirical models in which we set the rates of all multiple
nucleotide changes to 0 (we call these new tests restricted).
We also modified the classical M1a–M2a and M7–M8 to
include MNSs (we call these variants +MNS models). We
observed a drop in the false positives for the mechanistic
+MNS models to a level comparable of the empirical

models (supplementary table S11, Supplementary Material
online). Similarly, the restricted empirical tests showed high
false positives. These two observations suggest that the dif-
ference in performance is mainly attributable to the introduc-
tion of MNSs in the model.

We also applied the new empirical tests to the real data set
consisting of the Drosophila immune system gene alignments
created by Sackton et al. (2007) (see Materials and Methods).
We included the ECM parameter estimates from Dmel–
Dsim–Dyak–Dana in the models ecM1a, ecM2a, ecM7, and
ecM8, as constants. Most of the positives found with ecM7–
ecM8 were also detected by M7–M8 (10 of 12), but never-
theless the reduction in number of positives is remarkable:
from 29 to 12 (supplementary fig. S9, Supplementary Material
online). The test ecM1a–ecM2a found no positive genes.

Finally, we assessed whether the introduction of HMM
structure could improve the detection of within-gene positive
selection. In principle, this could happen if sites with positive
selection tend to cluster (hypothesis confirmed in Drosophila
by Ridout et al. [2010]). Therefore, we modified the models
ecM1a and ecM2a to include an HMM structure among the
! classes, the new models being called ecHMM1a and
ecHMM2a (see supplementary text, Supplementary
Material online). The tests were performed using Xrate and
generally gave more conservative results than the previous
tests performed with PAML. We simulated genes distributing
! according to an underlying HMM, clustering sites that
shared similar selective constraints (see Materials and
Methods and supplementary table S10, Supplementary
Material online). In this context, the new LRTs seemed to

Table 6. Performance of Positive Selection Tests on Simulated Data

No Positive Selection (False Positives) With Positive Selection (Power)

Model p0 ¼ 0:9, p1 ¼ 0:1 p0 ¼ 0:5, p1 ¼ 0:5 p0 ¼ 0:45, p1 ¼ 0:45, p0 ¼ 0:45, p1 ¼ 0:45,

x0 ¼ 0, x1 ¼ 1 x0 ¼ 0:5, x1 ¼ 1 p2 ¼ 0:1 p2 ¼ 0:1

x0 ¼ 0, x1 ¼ 1, x0 ¼ 0, x1 ¼ 1,

x2 ¼ 1:5 x2 ¼ 5

Dmel–Dsim

M1a–M2a 11.8% (4.4%) 26.9% (13.1%) 34.3% (17.8%) 88.7% (75.0%)

ecM1a–ecM2a 3.1% (0.8%) 1.1% (0.5%) 3.3% (1.0%) 49.1% (29.7%)

M7–M8 14.0% (5.3%) 28.0% (13.5%) 35.7% (18.5%) 89.3% (75.8%)

ecM7–ecM8 3.5% (1.1%) 1.2% (0.5%) 3.6% (1.0%) 49.8% (30.6%)

Dmel–Dsim–Dyak

M1a–M2a 6.8% (2.3%) 8.8% (2.6%) 21.7% (10.5%) 98.0% (92.8%)

ecM1a–ecM2a 1.4% (0.1%) 0.8% (0.1%) 3.4% (0.9%) 88.4% (75.2%)

M7–M8 8.8% (3.2%) 9.9% (2.7%) 24.2% (11.0%) 98.2% (94.3%)

ecM7–ecM8 2.8% (0.3%) 1.0% (0.1%) 3.6% (1.1%) 89.4% (76.7%)

Dmel–Dsim–Dsec–Dyak–Dere–Dana

M1a–M2a 3.8% (0.7%) 4.3% (1.3%) 9.5% (3.8%) 99.9% (99.3%)

ecM1a–ecM2a 0.6% (0.1%) 0.3% (0.1%) 2.3% (0.6%) 99.3% (97.9%)

M7–M8 7.0% (2.2%) 10.5% (3.7%) 14.5% (6.1%) 99.9% (99.4%)

ecM7–ecM8 1.8% (0.1%) 0.6% (0.1%) 2.4% (0.8%) 99.4% (97.9%)

NOTE.—Proportion of tests detecting positive selection over 1,000 simulations. LRTs were performed with 5% (1%) significance according to a �2
2 distribution. Alignments were

simulated according to substitution rates of the 2cu-ecHMM. The exchangeability parameters of the model used for simulations are also used as constants in ecM1a, ecM2a,
ecM7, and ecM8. Simulations are performed under the phylogenetic trees estimated on real data and indicated in the table (see Materials and Methods and supplementary table
S10, Supplementary Material online).
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slightly outperform the ones with independent sites (supple-
mentary table S12, Supplementary Material online), which
suggests that inclusion of HMM structure can bring a small
improvement in tests of positive selection.

Conclusions
In the future, we expect next-generation sequencing technol-
ogies to heavily contribute to the availability of genome-wide
sequence data sets of related species. These data sets will
represent both an opportunity and a challenge for the mod-
eling of sequence evolution. In particular, there will be the
chance to estimate ECMs from many distinct clades. With
simulations, we have shown that it is possible to accurately
estimate models as complex as ECMs from CDS alignments of
pairs of related species of approximately 106 codons. Most
studied species have exomes of this size or larger, making the
ECM approach generically suitable. On the other hand, model
estimation risks to be inaccurate if alignments of highly
diverged species are used.

A precise model of sequence evolution needs to account
for the heterogeneity of the genome. To accomplish this, we
included an HMM structure in ECMs, and we used this new
ecHMM to describe variation in codon usage. Using simula-
tions, we determined that such a model can be correctly
estimated in similar circumstances as for ECMs. We have
estimated ECMs, ecHMMs, and other less complex models
from several Drosophila data sets. Comparing AIC and BIC, we
have established that ECMs, and in particular ecHMMs, guar-
antee a better fit to the data. Therefore, we recommend the
use of these models in the future, in cases when there are
enough data and low divergence. Furthermore, models esti-
mated from different clades show large differences, above the
error expected from simulations, and the difference between
models grows as the phylogenetic distance between the com-
pared clades increases. This result speaks against the use of
models estimated on data sets with species different from the
ones currently analyzed.

Finally, we applied our newly estimated models to one of
the most important applications of codon models: the detec-
tion of positive selection. We found that, on data simulated
according to an ECM, and with small phylogenies, classical
positive selection tests show high levels of false positives, far
above the standard levels of significance (5% or 1%). Tests
performed with ECMs are immune to this problem but have
reduced power. These results are conditional on the fact that
the ECM is correctly estimated from data. If, for example, the
data come from too diverged species, ECM estimation might
be inaccurate and its performance might be reduced. In sum-
mary, we suggest that the use of codon models that include
MNSs might eliminate spurious signals of positive selection
coming from MNMs and compensatory substitutions, at the
expense of power. We expect that these patterns would be
even more pronounced for branch-site tests (Yang and
Nielsen 2002), because an apparent acceleration of evolution
at a specific codon and at a specific branch is barely distin-
guishable from an MNS event.

Supplementary Material
Supplementary material, files S1–S3, tables S1–S13, and fig-
ures S1–S9 are available at Molecular Biology and Evolution
online (http://www.mbe.oxfordjournals.org/).
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