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Abstract: Background: Adequate bowel cleansing is important for colonoscopy performance evalua-
tion. Current bowel cleansing evaluation scales are subjective, with a wide variation in consistency
among physicians and low reported rates of accuracy. We aim to use machine learning to develop a
fully automatic segmentation method for the objective evaluation of the adequacy of colon prepa-
ration. Methods: Colonoscopy videos were retrieved from a video data cohort and transferred to
qualified images, which were randomly divided into training, validation, and verification datasets.
The fecal residue was manually segmented. A deep learning model based on the U-Net convolutional
network architecture was developed to perform automatic segmentation. The performance of the
automatic segmentation was evaluated on the overlap area with the manual segmentation. Results:
A total of 10,118 qualified images from 119 videos were obtained. The model averaged 0.3634 s to
segmentate one image automatically. The models produced a strong high-overlap area with manual
segmentation, with 94.7% ± 0.67% of that area predicted by our AI model, which correlated well
with the area measured manually (r = 0.915, p < 0.001). The AI system can be applied in real-time
qualitatively and quantitatively. Conclusions: We established a fully automatic segmentation method
to rapidly and accurately mark the fecal residue-coated mucosa for the objective evaluation of
colon preparation.

Keywords: artificial intelligence; automated segmentation; U-NET; colonoscopy; colonoscopy preparation
quality

1. Introduction

Colorectal cancer (CRC) is one of the main malignancies affecting humans, accounting
for the second and third most common causes of cancer-related death, respectively, in
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males and females globally [1]. In the Asia–Pacific area, CRC incidence is also increasing
rapidly, and CRC was ranked as the most common cancer over 10 years in Taiwan [1,2].
Colonoscopy is used to image the mucosa of the entire colon and is an effective method for
reducing the CRC burden, since colonoscopy can detect CRC early and be used to remove
adenomatous polyps, which can significantly improve CRC survival [3,4]. Despite this fact,
interval cancer can sometimes be noted in patients who underwent a CRC surveillance
program, which may stem from missed lesions due to an incomplete colonoscopy caused
by inadequate bowel preparation [5–8].

Both the American and European Societies of Gastrointestinal Endoscopy have pub-
lished guidelines on colon preparation to ensure the quality of bowel preparation during
colonoscopy [9–11]. Inadequate bowel preparation may lead to repeated colonoscopies, pro-
longed prospective procedure time, increased operative risk, and rising medical costs [12].
Currently, there are three main validated bowel preparation scoring systems for evalu-
ating the quality of colonoscopy preparation, including the Aronchick Scale, the Ottawa
Bowel Preparation Scale (OBPS), and the Boston Bowel Preparation Score (BBPS) [13–15].
The Aronchick Scale and OBPS evaluate colon preparation before washing and suction-
ing, while the BBPS evaluates it afterwards [13–15]. OBPS also subjectively evaluates the
amount of washing and suctioning required to achieve optimal visualization. In addition,
the grading system, and the segments used to evaluate preparation (from the whole colon
to five divided segments), are also different between the three systems [16,17]. The main
concern with these scoring systems is that these scales depend on subjective evaluations to
grade bowel cleanliness, which suffer from opinion-related bias [18,19]. That is to say, the
inter-observer reliability, measured by intraclass correlations (ICC) or kappa coefficients,
would be the major concern of these scales. For example, the Aronchick Scale showed a
fair-to-substantial ICC of 0.31–0.76. The ICC of OBPS seems good at 0.94, but this was
actually the result from a small-scale study on just a single gastroenterologist and a staff
fellow for 97 colonoscopies. In addition, OBPS showed a fair agreement between nurses
and physicians with a Pearson’s r = 0.60 [20]. The reliability of BBPS is more frequently
studied with a fair weighted kappa of 0.67 to 0.78. Among the three scales, the BBPS
is the most thoroughly validated and is the most recommended one for use in a clinical
setting [18]. Generally, the application of these three scales is time-consuming and requires
detailed assessments and documentations. Therefore, in prospectively collected data from
a large national endoscopic consortium, the proper application of these scales is rare; only
about 11% of doctors in the United States thoroughly evaluate and document the suggested
BBPS in clinical practice [21].

In recent years, with the application of artificial intelligence (AI), computer-aided de-
tection and diagnosis software systems have been developed to help endoscopists enhance
and characterize polyps during colonoscopy [22–25]. AI and machine learning techniques
have also emerged to evaluate the quality of bowel preparation. Two previous studies
explored the evaluation of bowel cleanliness in capsule endoscopy and colonoscopy [26,27].
These applied AI to classify bowel cleanliness based on experts’ subjective grading. With
this approach, human factors can still lead to potential bias in scoring due to the fair
interobserver reliability of the grading scales used in these reports (capsule endoscopy,
ICC = 0.37–0.66; colonoscopy, weighted kappa of 0.67–0.78 with BBPS). In our current study,
we used a completely different approach by using a segmentation method to precisely label
fecal material in the training dataset. With this method, we attempted to develop a fully
automatic segmentation method through the application of convolutional neural networks
(CNNs) to mark the mucosal area coated with fecal material using prospectively collected
colonoscopy video imaging data. The proposed model can be a useful and novel tool for
objectively evaluating the quality of colon preparation. To achieve this goal, we used U-Net,
an AI architecture that focuses on biological images, as the backbone in the process [28].
The U-Net architecture won the 2015 International Symposium on Biomedical Imaging
(ISBI) cell tracking challenge and is often used for brain tumor cutting [29], retinal image
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segmentation [30,31], endoscopy image segmentation [32,33], and other medical image
segmentation tasks [34–36].

2. Materials and Methods
2.1. Data Collection

Endoscopy video and images from Jan 2019 to Feb 2020 were obtained from the
Colonoscopy Video Database from the Endoscopy Center of Taipei Veterans General Hos-
pital. The Colonoscopy Video Database was established by patients who were willing to
contribute their colonoscopy video and related profiles for clinical study and consists of
520 videos as of February 2020. All the patients signed an informed consent form to
contribute their colonoscopy video for clinical study, and a validated questionnaire for
enquiring as to the possible factors contributing to the cleanliness of the bowel preparation
was distributed to the participants. All patients received standardized bowel preparation
with either 2 L of polyethylene glycol solution or BowKlean® powder (containing sodium
picosulfate and magnesium oxite, Genovate Biotechnology, Taiwan) before the colonoscopy.
Their endoscopy videos were prospectively obtained from the Colonoscopy Video Database
from the Endoscopy Center. All colonoscopies were performed by using an Olympus Evis
Lucera Elite CV-290 video processor and a high-definition colonoscope CF-HQ 290 or
CF-H290 (Olympus Co., Ltd., Tokyo, Japan). The colonoscopy videos were recorded with
a resolution of 1920 × 1080. The patients’ individual information was de-identified and
stored in the database. The study was approved by the Institutional Review Board of Taipei
Veterans General Hospital.

2.2. Image Preprocessing

Initially, all videos were transformed into images according to their sampling rate
in frames per second (FPS). Unqualified images were filtered out to ensure good image
quality. The unqualified images were too blurred or murky to be recognized, low resolution,
or in the improper format, or included frames without stool, or full of stool. Extranious
information, such as the examination time, patient ID, name, and sex, were removed. These
images were randomly divided into training (90% of the total images) and validation (10%
of the total images). After establishing the final model, an independent verification dataset
was collected from our center in different period to the time for training/validation [37]. The
images used in the different datasets (training/validation/verification) were independent
at patient level, indicating that the images from the same patients should be attributed
to one particular dataset. The training and validation datasets were used to establish AI
models, and the verification dataset served to verify the performance of established AI
models. In this task, the data augmentation skill was applied to overcome the limitation of
the data quantity and reinforce the performance of the AI model. It is worth mentioning
that augmentation skill was only applied to the training dataset to enhance the variation in
the training image, and measurement (augmentation) was not used in the validation and
verification dataset. The augmentation methods included (1) random rotation (randomly
rotated images with preservation), (2) random horizontal flip (horizontally flipped images
with random radians), (3) random zoom in/out (zoomed in/out images at random scales),
and (4) random Gaussian noise (randomly adding Gaussian noise to images).

2.3. Image Labeling

LabelMe (https://github.com/wkentaro/labelme, accessed on 1 October 2021), an
annotation tool for executing image segmentation, is an open-source software and has
been widely applied to perform image annotation tasks. The software was installed on a
Windows system, and 3 senior endoscopic technicians were trained to perform endoscopy
image segmentation labeling (Figure 1). The images show the areas where staining, residual
stool, and/or opaque liquid, which influenced the visualization of mucosa, were marked
for segmentation [14]. After the annotation, another senior technician rechecked the images
to ensure labeling quality. When facing difficulty in image labeling, an experienced endo-

https://github.com/wkentaro/labelme
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scopist (Wang YP) was consulted to make the final decision. All images with discernible
information were removed and given a random serial number for subsequent model use.
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Figure 1. The manual segmentation samples. The figure represents the different types of fecal
residues that were annotated and applied in this study.

2.4. Establishment and Validation of AI Models

U-Net was selected as the main architecture for developing our AI model since U-Net
has been deemed valid for medical image recognition [28]. U-Net included 2 parts, the
encoder and the decoder. The encoder extracted the important features of the images
using the convolution method, and then the decoder applied these features to perform
the segmentation task (Figure 2). Various encoders can be selected as the backbone in
U-Net architecture for executing feature extraction, such as VGG19, ResNet34, InceptionV3,
and EfficientNet-B5 [38]. EfficientNet-B5 was selected in our model because of its better
accuracy and lower computational power (Table 1). One of the characteristics of U-Net
was that it extracted features that can be transmitted and superimposed on subsequent
layers to enhance the information and resolution of neural networks. The output result of
U-Net was a probability map, and each pixel of an image had a binary value (0 or 1). The
value of the pixels at the target location was segmented as 1, and the other pixel values
were assigned to 0. Finally, the result of image segmentation was visualized based on each
pixel value.

In U-Net, there still existed some hyperparameters that could be adjusted to enhance
the AI performance, such as learning rate, number of epochs, and batch size. During
the training process, the validation dataset was used to validate the performance in each
trained model. Then, the model with the best performance was saved as the final model.
The AI models were trained using Google cloud’s platform with a two-core vCPU, 7.5 GB
RAM, and an NVIDIA Tesla K80 GPU. Keras 2.2.4 and TensorFlow 1.6.0 running on CentOS
7 were used for training and validation.
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Figure 2. The architecture of U-Net. U-Net contained 2 parts: encoder and decoder. Initially, the
input image included features extracted by the encoder, and those features were transmitted to the
decoder as the important information for identifying whether each pixel was the target location. The
red line and green line indicate the encoder and decoder, respectively, in the U-Net AI model.

Table 1. Comparison of accuracy using U-Net with different encoders.

Model Top 1 Accuracy (%) Top 5 Accuracy (%) Parameters (M)

VGG19 71.1 89.8 143
Resnet34 73.31 91.4 26

ResNet50+SE 76.86 93.3 28
ResNeXt50 77.15 94.25 25
SENet-154 82.7 96.2 145.8

Inception V3 78 93.9 23.8
DenseNet121 74.5 91.8 8
MobileNet_v2 74.9 92.5 6
EfficientNet-B5 83.3 96.7 30

2.5. Verification of AI Models and Statistical Analysis

An independent dataset was selected for the verification of the best-established train-
ing model. The concept of a confusion matrix was applied to verify the performance of
our trained AI model. In our image, the manually marked mucosal area coated by fecal
residue was set as the ground truth, which was defined as the union area of false negative
(FN) and true positive (TP) (Figure 3). The AI model-predicted area, i.e., the automated
segmentation of fecal residue-covered mucosa, involved both the TP and false positive
(FP). The intersection area of the ground truth and AI-predicted area was the TP. The area
outside of the union of the ground truth and the AI-predicted area was defined as the true
negative (TN). Accuracy was calculated as the addition of TP plus TN in proportion to
the total mucosal area and was used to represent the performance of our AI model. The
defined parameters are given in the following equations:

Intersection over Union (IOU) = TP/(TP + FP + FN)

Accuracy (Acc) = TP + TN/total area

Predict = (TP + FP)/total area

GroundTruth = (FN + TP)/total area

Non_union_percent = TN/total area

Intersection_percent = TP/total area
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Figure 3. The major parameters in this study. The confusion matrix contained 4 parameters. The
yellow area (true positive, TP) represents the intersection area of ground truth and the AI-predicted
area. The union of red (false negative, FN) and yellow (true positive, TP) indicate the ground truth
area. The blue area (false positive, FP) and yellow area (true positive, TP) indicate the AI-predicted
area. The rest of the area out of the union of ground truth and the AI-predicted area was the true
negative (TN).

The obtained area in pixels was measured, and all the data are presented as the mean
± S.E.M. The number of pixels in the AI-predicted surface area coated by fecal residue was
computed. The proportion of AI-predicted surface area coated by fecal residue against total
mucosa area as the octagonal area in the image was also computed and displayed in real
time. Pearson correlation and a two-sided t-test were used to evaluate the association of the
proportion of labelled areas against total area between automatic and manual segmentation.
All statistical tests were performed at the α < 0.05 level.

We also selected 3 short videos, each representing poor, good, and excellent prepara-
tion, for real-time verification. The final AI model was applied in the video to perform the
auto-segmentation of mucosa covered by fecal residue in the video.
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3. Results
3.1. Data Collection

A total of 119 endoscopy videos were collected from 119 patients (mean age: 53.13 years;
male/female: 54/65). Successive image frames were then extracted from these videos.
After image quality control, a total of 9066 images were selected and randomly divided into
two groups, i.e., a training dataset with 8056 images (90% of all images) and a validation
dataset with 1010 images (10% of all images). Another dataset for verification containing
1052 images was independently collected from those patients who underwent colonoscopy
in a different time period from the training/validation datasets.

3.2. The Details of Model Establishment

U-Net, an AI architecture focused on biological image segmentation, was selected
as the core architecture in this research. In the training stage, each image was resized to
288 × 288 pixels, the optimizer was set as Adam, the learning rate was set to 1e-4, and the
loss function was set as binary cross-entropy. The total training epoch was set to 30, and
the batch size was set to four (Table 2).

Table 2. The detailed parameters for training the models.

Model U-Net

Backbone EfficientNet-B5
Optimizer Adam

Loss function binary cross entropy
Learning rate 1e-4

Batch size 4
Total number of epochs run during training 30

3.3. The Performance of Automatic Segmentation (Results of Model Verification)

The average time required for the model to generate the automatic segmentation
of each image was 0.3634 s. The accuracy of our AI model achieved 94.7 ± 0.67% with
an IOU of 0.607 ± 0.17. The ground truth (technician-labelled) area of the total area was
14.8 ± 0.43%, while the AI-predicted area was 13.1 ± 0.38% of the total area. The intersection
area of the ground truth and AI-predicted area was 11.3 ± 0.36% (fecal material detected
by both technician and AI), and the area outside of the union of the ground truth and the
AI-predicted area (nonunion area) was 83.4 ± 0.45% of the total measured area (Table 3).

Table 3. The detailed performance of the final trained models.

Mean S.E.M.

IOU 0.607 0.17
Accuracy 0.947 0.0067
Prediction 0.131 0.0038

Ground truth 0.148 0.0043
Intersection area 0.113 0.0036
Nonunion area 0.834 0.0045

IOU = Intersection over union.

Such results suggest that the AI-detected area is 3.5% less than the ground truth
(technician-labelled area) (14.8% minus 11.3%), and the rate at which our model misdetected
normal mucosa as fecal material is smaller at 1.8% (13.1% minus 11.3%). Example images
of the best and worst results of our AI model are displayed in Figures 4 and 5.
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Figure 4. The better annotation example of AI model segmentation. The intersection over union
(IOU) of those samples achieved approximately 0.90, meaning that the annotation result of the AI
was similar to manual labeling. In those figures, the left, middle, and right columns represent the
raw, manually annotated, and AI-annotated images, respectively. The green and blue lines indicate
the segmentation labeled by endoscopy technicians and the trained AI model.
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Figure 5. The worse annotation samples of the AI model segment. In each image, the left, middle,
and right columns represent the raw, manually annotated, and AI-annotated images, respectively.
The green and blue lines indicate the segmentation labeled by endoscopy technicians and the trained
AI model. The IOU of these samples was less than 0.5.

In each visualized result, the left panel represents the raw image of the verification
dataset. The green line in the middle panel indicates the ground truth annotated by
endoscopic technicians, and the navy blue line in the right panel represents the result
from the AI model prediction. The scatterplots in Figure 6 show that the area segmented
manually was highly correlated to the area predicted by the AI (r = 0.915, p < 0.001), which
suggested the independence of the accuracy with the bowel preparation adequacy. Our AI
model was applied in real time in a colonoscopy video with a simultaneous display of the
area of auto-segmentation and its percentage of AI-predicted fecal residue-covered mucosa.
Example videos of poor, good, and excellent colon cleanliness are shown in Supplementary
Videos S1–S3.
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Figure 6. Scatterplots show a comparison of the area produced from manual and automatic segmen-
tation methods.

4. Discussion

In the current study, we used machine learning to evaluate colon preparation using
automated segmentation of the mucosal area covered by fecal residue. We demonstrated
that this automated segmentation displayed comparable results and high accuracy when
compared with manual annotation. To the best of our knowledge, our current article may
present the first examples of deep CNN being used for automatically segmenting in the
evaluation of the quality of bowel preparation during colonoscopy.

Proper reporting of the preparation quality after colonoscopy is extremely important.
Inadequate bowel preparation in colonoscopy will lead to an increased risk of missed
lesions, increased procedural time, increased costs, and potentially increased adverse
events [21,37]. Furthermore, good preparation scored by the validated bowel preparation
scale is associated with an increased polyp detection rate [18]. Currently, there are three
main validated bowel preparation scoring systems for evaluating the quality of colonoscopy
preparation, including the Aronchick Scale, the OBPS, and the BBPS [13–15]. It has been
reported that reliability varies between studies and between scales [18,19]. All these scoring
systems depend on the endoscopists’ subjective evaluations and are dependent on the raters’
interpretation of visual descriptions. The potential subjective opinion-related bias may
lead to a wide difference in grading the adequacy of bowel preparation among physicians,
especially in patients with moderate preparation quality that may lead to poor scoring
and to a repeat colonoscopy [19]. In this study, we first established an objective evaluation
system for bowel preparation by measuring the area of clearly visible mucosa and colon
mucosa not clearly visualized due to staining, residual stool, and/or opaque liquid. This
machine learning-based scoring system can shift the subjective grading into objectively
obtained mucosal areas. The accuracy of this CNN-based model is highly comparable to
the manually marked measurement. With this objective measurement system, we may
evaluate colon preparation more precisely compared with the subjective grading system.
Future studies are mandatory to apply the current AI model to real-world practice and set
up an objective threshold for adequate bowel preparation.

Most of the past studies on AI for medical image recognition used retrospectively
collected images or video frames to develop their AI models [38–40]. In our study, however,
we only used video frames to develop our model, which will experience more difficulty
achieving a satisfactory result than studies using images or images combined with video
frames. This is because video frames are more easily influenced by focus distance, lighting,
and vibrations. Therefore, the quality of the frame will often be much lower than that of
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still images. In some studies, the video verification dataset was significantly lower than
the image verification dataset [41–43]. Nevertheless, our current model, developed from
video frames, displayed satisfactory performance with high auto-segmentation accuracy.
Furthermore, after the establishment of our AI model, we verified our model using a dataset
that was independent from the dataset used to develop the model. This approach was used
to avoid overlap of the training and validation datasets [43].

As shown in the Introduction, we chose U-Net as the core architecture because of
its good performance. It may be argued that other architectures may perform better. For
example, DeepLab achieved a higher IOU than U-Net in other reports [44–48]. In the decode
part, DeepLab would directly quadruple the encoder features as the output result [49], while
U-Net obtained the output result by repeating the up-sampling process four times [28].
Hence, U-Net can preserve more low-level features in the final output result. In our case,
the fecal material in the image may be relatively small when compared to the entire image.
Therefore, we suggest that U-Net may be able to detect more fecal materials, at greater
detail, which is more suitable for our purpose. Recent research does suggest that there may
be new lightweight encoder networks that may be able to achieve performance on par with
the current available encoder with fewer samples while having faster image processing [50].
Future investigations comparing different backbones, especially the lightweight ones, may
be necessary to further improve the accuracy and efficiency in AI-assisted fecal material
detection during colonoscopy.

Limitations are present in this study. The accuracy of our model when detecting
material is high (94%), while the IOU is relatively low (0.61). This may be due to the
relatively small annotated area when compared to the entire image, contributing to a high
TN in the current model. In addition, our data showed that the area between our model and
the ground truth sat in the best line below 0.4 (40% of total area), and it seemed to become
more disparate after 0.4 on the scatterplot. Such a result suggests that the current AI model
can be less predictive upon poor bowel preparation (images with fecal material more than
40% of total area). The disparate results may be due to the relatively small amount of
fecal material in most images used for training. By including more images of poor bowel
preparation containing more fecal material during training, we may be able to increase the
IOU and improve the accuracy. Concerns may also be raised regarding the accuracy of the
manual segmentation as the ground truth, since there are multiple potential variabilities
during human annotation. In addition, the cut-off value used to represent the adequacy of
bowel preparation and its comparability with the currently validated scoring system are
unknown. Additionally, severe bowel inflammation, ulcerations or bleeding may mimic
poor colon preparation that influence the evaluation accuracy. Furthermore, we treated
the current model as a proof of concept, so the model was established with relatively few
images in the validation dataset and lacks the application of k-fold cross-validation. Future
studies are mandatory to see whether there are differences among endoscopic technicians
on the same images and whether our model falls into the same percentage of errors and
deviations in future confirmatory clinical trials.

5. Conclusions

In conclusion, we used deep CNN to establish a fully automatic segmentation method
to rapidly and accurately mark the mucosal area coated with fecal residue during colonoscopy
for the objective evaluation of colon preparation. It is important to evaluate the clinical
impact by comparing the application of this novel AI system with the currently available
bowel preparation scales.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12030613/s1, Video S1: Example video of poor colon
cleanliness, Video S2: Example video of good colon cleanliness, Video S3: Example video of excellent
colon cleanliness.
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