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Abstract: In the meat industry, microbial contamination, and lipid and protein oxidation are important
factors for quality deterioration. Although natural preservatives have been widely used in various
meat products, their biological activities are often reduced due to their volatility, instability, and easy
degradation. Liposomes as an amphiphilic delivery system can be used to encapsulate food active
compounds, which can improve their stability, promote antibacterial and antioxidant effects and
further extend the shelf life of meat products. In this review, we mainly introduce liposomes and
methods of their preparation including conventional and advanced techniques. Meanwhile, the main
current applications of liposomes and biopolymer-liposome hybrid systems in meat preservation
are presented.
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1. Introduction

Liposomes are self-assembled spherical bilayer delivery systems with amphiphilic
properties, which develop by phospholipids with an aqueous ingredient inside and
a hydrophobic layer on the surface [1]. Because of their biocompatibility, biodegrad-
ability, nontoxicity, and non-immunogenicity, liposomes are considered as powerful drug
delivery systems [2]. The continuous release and stability of substances can be achieved
by liposomal encapsulation which is mainly applicated in food science, cosmetics, and
medical fields.

Meats are a compact matrix with excellent viscoelastic and structural properties, which
contain high contents of protein, saturated or unsaturated fat, water, and vitamins. They
can be further processed into sausage, bacon, burger, dumpling, or ready-to-eat food.
However, during processing and storage, meats are inclined to suffer from lipid and pro-
tein oxidation, resulting in the production of hydrogen peroxide, volatile compounds,
and genotoxic amino acid derivatives, adversely affecting the digestibility, availability,
and sensory of meat products [3]. Furthermore, the abundant nutrients in meats make it
an ideal seminary for contamination and proliferation of microorganisms, leading to food
decay and deterioration. In this context, synthetic substances like propyl gallate (PG),
tert-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), butylated hydroxy-
toluene (BHT) are largely applied to preserve the quality of meats, but consumers prefer
natural antioxidants since they quite worry about potential toxicological effects of synthetic
ones [4]. Therefore, natural herbs, spices, plant extracts and plant essential oils, peptides,
chitosan, bacteriophages can all be used as potential alternatives to instead of synthetic
antimicrobial/antioxidant agents to improve the quality and safety of meat products [5].
However, the applications of these natural preservatives are limited due to their pungent
odor, volatility, and instability. To overcome these shortcomings, liposomal encapsulation
can be applied to the meat industry to preserve and release these components.
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Much public research and reviews have been published on the applications of li-
posomes as bioactive compounds delivery systems in food [6–9]. However, there is no
comprehensive review on the applications of liposomes in meat products. This review
first introduced the preparation of liposomes, including conventional and advanced tech-
nologies. Then, the applications of antimicrobials/ antioxidants-loaded liposomes in meat
products were discussed in detail. Besides, the integration of liposomes and biopolymers
to prepare biopolymer-liposome hybrid systems for meat preservation was also summa-
rized. Finally, the gaps in current research were emphasized to indicate the future research
directions and prospects in meat products.

2. General Information of Liposomes

Liposomes are spherical, closed structures, composed of curved lipid bilayers, which
enclose part of the surrounding solvent in their interior [10]. Hydrophilic compounds
in the aqueous cavity, hydrophobic compounds within the lipidic membrane as well as
amphiphilic substances can be incorporated within these vesicles (Figure 1A) [11]. Phos-
pholipids are the main components of liposomes, which are amphiphilic lipids composed
of a hydrophilic polar head group and two hydrophobic fatty acid chains. The most widely
used natural phospholipids are soy lecithin, egg lecithin [12], marine phospholipid [13],
and milk phospholipid [14]. Synthetic phospholipids are produced by modifying the head
group, fat chain, and alcohol of natural phospholipids, which are more stable than the
natural phospholipids [15], such as 1,2-dis-tearoyl-sn-glycero-3-phosphocholine (DSPC),
1,2-dipalmitoyl-sn-glyc-ero-3-phosphocholine (DPPC) and so on [16]. Cholesterol is also
an important component of liposomes, which is composed of hydroxyl, four-ring steroid
skeleton, and hydrocarbon tail. It cannot form vesicles by itself, but it can be incorporated
into the phospholipid membrane in very high concentrations of up to a 1:1, or even a 2:1, mo-
lar ratio of cholesterol to phosphatidylcholine. In membranes, its aliphatic chain is aligned
parallel to the acyl chains in the center of the bilayer, and the hydroxyl group is oriented
towards the aqueous surface (Figure 1B) [17]. The incorporation of cholesterol can influence
lipid bilayer fluidity, reduce their permeability, and increase their in vitro and in vivo sta-
bility. Besides, there are still many components that can enhance the stability of liposomes,
including propylene glycol and polyethylene glycol (PEG), phytosterols (PS)/phytosterol
esters (PEs) [18], sea cucumber sulfated sterols [19], gum arabic (GA)/sodium alginate
(SA) [20], guar gum (GG) [21], pectin [22], even chitosan [23] as coating materials.

Liposomes can be classified as neutral, negative, and positive liposomes based on
their surface charges. Besides, according to their structures, liposomes can be classified
on the number of lipid bilayers (lamellae) or vesicle sizes (Figure 2). Based on their
lamellarity, liposomes can be divided into unilamellar (ULV, all size range), multilamellar
(MLV, >500 nm) and multivesicular (MVV, >1000 nm) vesicles. Because of their different
sizes, ULV can be either a small unilamellar vesicle (SUV, 20–100 nm), a large unilamellar
vesicle (LUV, >100 nm), or a giant unilamellar vesicle (GUV, >1000 nm). ULVs have
the ability to encapsulate hydrophilic compounds with the presence of a single bilayer.
MLVs present two or more concentric lipid bilayers organized by an onion-like structure,
favorably for the encapsulation of lipophilic compounds. MVVs include several small
non-concentric vesicles entrapped within a single lipid bilayer, which are very suitable
for encapsulating large volumes of hydrophilic ingredients [2]. The vesicle size is a vital
criterion to determine the circulation half-life of liposomes, and both the number of bilayers
and size will influence the loading capacity of active components [7].
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Figure 1. (A) The general structure of liposomes. Reprinted with permission from [2]. Copyright 
(2021), Elsevier. (B) The location of cholesterol in the phospholipid bilayer membrane. Reprinted 
with permission from [24]. Copyright (2019), Elsevier. 
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Figure 2. Liposomal classification is based on lamellarity and size. Reprinted with permission
from [2]. Copyright (2021), Elsevier. SUV: small unilamellar vesicle; LUV: large unilamellar vesicle;
MLV: multilamellar vesicle; MVV: multivesicular vesicle.

3. Preparation of Liposomes

In the past few years, various kinds of techniques have been developed for liposome
preparation (Table 1). Different techniques would influence the physicochemical properties
of liposomes, such as size, lamellarity, encapsulation efficiency, and so on. They could be
categorized as conventional and advanced methods, as well as size reduction methods,
which were discussed and explored in the following section.
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Table 1. Methods of liposomes preparation [2,11,25–29].

Method Advantages Disadvantages Type of Vesicles

Conventional
method

Thin film hydration Simple process. Low EE; organic solvent residue;
small-scale production. MLVs, GUVs

Reverse phase evaporation Simple process; suitable EE. Organic solvent residue; time-consuming. MLVs, LUVs

Solvent Injection Simple, rapid, and reproducible process. Organic solvent residue; time-consuming;
possible nozzle blockage (ether system). SMVs, SUVs

Detergent removal Good particle size control; simple process. Organic solvent and detergent residue;
time-consuming; poor EE. MLVs, LUVs

Emulsion method Simple process. Low yield; organic solvent residue. MVVs

Heating method Simple and fast process; no organic solvent;
no sterilization is needed. Degradation of bioactive compounds. MLVs, SUVs

Advanced
method

Cross-flow filtration
Rapid, scalable, sterile process; homogeneous
size with high stability; easy removal
of detergent.

Understudy method SUVs, LUVs

Modified ethanol injection Simple, rapid, scalable, and continuous
process; homogenous liposomes.

Organic solvent residue;
high-cost material.

SUVs,
LUVs

Dual asymmetric
centrifugation

Simple, rapid, and reproducible process;
homogeneous and small liposomes; high EE
for hydrophilic compounds.

Only laboratory-scale;
high pressure with agitation. SUVs, LUVs

Microfluidic method Good particle size control; scalable process
and used for biological samples

Organic solvent residue;
high cost and complex equipment. SUVs, LUVs, GUVs

Supercritical fluids Control of particle size, possible in situ
sterilization, low organic solvent consumption

High cost, high pressure, usage of
sophisticated instruments. LUVs

SUVs: small unilamellar vesicles; LUVs: large unilamellar vesicles; GUVs: giant unilamellar vesicles; SMVs: small
multilamellar vesicles; MLVs: multilamellar vesicles; MVVs: multivesicular vesicles; EE: encapsulation efficiency.

3.1. Conventional Methods

There are a wide variety of conventional techniques used for liposomal preparation.
Lipids combined with an aqueous phase are needed for all conventional methods.

Thin film hydration is the most commonly used method for liposome preparation. In
this method, lipids and amphiphilic molecules are first solubilized in an organic phase.
Then, the solvent is evaporated by using a rotary evaporator under a vacuum, leaving
a thin film of lipids. After the thin film is hydrated by an aqueous solution, a liposomal is
formed. Relying on different hydration conditions, liposomes with different structures are
developed. An intense shaking during the hydration generates MLVs with heterogeneous
sizes, while mild hydration produces GUVs [1,2]. This method is widely used and easy
to handle in the lab. However, there are still various problems, such as low entrapment
ability, and hard complete removal of organic solvent, which limit its applications on
an industrial scale.

Reverse phase evaporation helps form a mixture of LUVs and MLVs. In this method,
lipids and amphiphilic molecules are first mixed and dissolved in an organic solvent.
Then, an aqueous buffer containing a solubilized active compound is added to the mixture.
Finally, the organic solvent is evaporated under reduced pressure, remaining liposomes in
the aqueous media [1]. This method, on the one hand, provides a high EE. On the other
hand, since the loaded compounds would make contact with an organic solvent, it is not
suitable for fragile molecules like peptides [10].

Solvent injection method involves the dissolution of lipids into an organic phase
(ethanol or ether), followed by the rapid injection of the lipid solution into aqueous media,
forming liposomes [11]. The ethanol injection method is rapid, simple, and reproducible.
At the same time, it does not cause lipid degradation or oxidative alterations. However,
the insolubility of some lipids in ethanol, heterogeneous sizes of liposomes, very low EE
of hydrophilic compounds, and incomplete removal of organic solutions are common
concerns [2]. Other than the ethanol injection, since ether and water cannot dissolve each
other, heating is always used to remove ether from the formed liposome [10].

The detergent removal method is another known technique to produce liposomes. It is
a mild process for producing MLVs and LUVs. Based on the construction of detergent-lipid
micelles, the detergent is removed to form liposomes. The disadvantages of this method
are that the concentration of liposomes and EE of loaded compounds are quite low. The
size and homogeneity of liposomes are based on the rate of detergent removal and the
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initial ratio of detergent to lipid. Besides, it is very time-consuming and often remains the
detergents [10].

For the emulsion method, phospholipids are dissolved into an organic phase and
mixed with an aqueous phase to form a water-in-oil (W/O) emulsion. The mixture is then
added to another aqueous medium to form a double emulsion (W/O/W). The organic
solvent is then evaporated, forming liposomal. This method does not work continuously,
and the amount of production is limited. MVVs can be obtained in this way. But complete
removal of organic solvent needs to be conformed [28].

The heating method was developed by Mozafari [30]. Phospholipids are dissolved
into aqueous media with 3% v/v glycerol at a high temperature. Glycerol is used because
of its water solubility, isotonic, and ability to increase the stability of lipid vesicles and
prevent coagulation and sedimentation [30]. The heating method does not involve organic
solvents or detergents [31]. High temperature, on the one hand, induces minor degradation
of bioactive lipids, on the other hand, avoids further sterilization, thus decreasing time
consumption and process complexity [7].

Preparation of liposomes of homogeneous size is quite necessary for applications in
the fields of food, medicine, and material science since it could influence the physiochemical
properties such as stability, EE, release, and cellular uptake [25] In general, the smaller the
particle size, the more stable and uniform it is. There is a lower tendency for aggregation
and physical instability during storage [32]. Reducing the particle size is helpful to increase
the diffusion ability of the carrier and facilitate uniform distribution in vitro. In comparison
with liposomes, nanoliposomes provide more surface area and circulate in the organism
for a long time [2,33]. Furthermore, tissue distribution and clearance of liposomes in vivo
are related to particle size [33]. Therefore, liposomes produced by traditional methods still
require additional techniques, such as homogenization, extrusion, and sonication (probe
sonication and bath sonication), to help reduce their sizes [12]. For homogenization tech-
niques, liposomes would be forced to pass within an orifice under high pressure to reduce
the sizes by a high-velocity collision. Microfluidization, high-pressure homogenization,
and shear can be included in this category of size reduction. In the extrusion process, the
liposomes would pass through a membrane of a defined pore several times to generate
uniform size distribution. Compared with homogenization, this process needs much lower
pressure and less volume of liposomal suspension [2]. Sonication is most extensively used
for the preparation of SUVs, whose main disadvantages are very low internal volume/EE,
possible degradation of phospholipids and loaded compounds, and metal pollution from
the probe tip [12].

3.2. Advanced Methods

Conventional methods have various shortcomings, such as poor mono-dispersion,
poor stability, high residual organic solvent, and many other side effects. Therefore, ad-
vanced methods have been developed to overcome the above problems and accelerate
the scale-up of industrial production. Some of the advanced methods are based on the
modification or improvement of conventional methods. For example, cross-flow filtration
improved the detergent removal method [34]. Both cross-flow injection and membrane
contractor technology modified the ethanol injection method [11]. Others, like dual asym-
metric centrifugation, microfluidics production, and supercritical fluid (SCF) methods have
great potentials to be developed as alternatives for liposome production.

Dual asymmetric centrifugation (DAC) is a special kind of centrifugation, where
the tube is turned around its center (vertical axis) at a specific distance and speed. The
energy produced by mechanical turbulence and cavitations forms nanoliposomes with
homogenous size distribution. DAC has a high trapping efficiency, but it is used only for
small volumes on a laboratory scale [10].

The microfluidic method is a promising technique for controlling the mixing of fluid
streams in a microfluidic channel. Accurately dispensed nanoliter volumes, exact control
over the interface, diffusion-dominated axial mixing, and continuous mode of operation at
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low volumes are their advantages [26,27], whereas sophisticated devices remain expensive
and time-consuming. Also, volumetric throughput has been greatly limited in view of
the traditional layout of microchannels. Recently, a 3D-printed integrated microfluidic
chip was developed to prepare ultra-high volumetric throughput nanoliposome and could
control the size efficiently [35].

Supercritical fluids (SCFs) integrate some satisfying properties of both liquids and
gases, a small change in pressure or temperature resulting in a large change in the den-
sity of SCF or the solubility of compounds in the SCF [26]. Researchers are increasingly
replacing organic solvents with SCFs. The most extensively used supercritical gas is carbon
dioxide (CO2), due to its non-flammable, low-toxic, cheap, environment-friendly, and easily
manageable properties [25]. Compared with the traditional method, SC CO2 has promoted
the intactness, sphericity, and homogeneity of liposomes, which enables phospholipids
to aggregate into nano/microparticles by regulating the rate of decompression and the
opening diameter of the nozzle [25]. However, the high cost and pressure of sophisticated
instruments limit their applications [7].

Overall, both conventional and advanced techniques can be utilized for liposome
preparation, according to different conditions and needs. In the production of liposomes,
EE, stability, particle size and distribution, residual organic solvents and other factors need
to be considered. Moreover, large-scale and continuous industrial production still faces
great challenges.

4. Application of Liposomes in Meat Products

The applications of liposomes in meat products have been extensively explored mainly
in three aspects: physicochemical properties including controlled release and improved
bioavailability, meat preservation by encapsulating natural antimicrobials and antioxidants,
and integration of biopolymer-liposome hybrid systems including single/multilayer coat-
ing liposomes, active edible films and electrospinning nanofibrous membranes (Figure 3).
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4.1. The Release and Bioavailability of Delivered Molecules

Natural active compounds are often easily volatilized and rapidly degraded so that
their action period is shortened, and the action effect is weakened due to the harsh envi-
ronments. Sustained release systems are capable of achieving a prolonged effect by slowly
releasing active compounds over an extended duration [39,40]. Researchers used liposomes
to encapsulate laurel essential oil and silver nanoparticles to control the pungent flavor of
essential oil and reduce the toxicity of silver nanoparticles [36]. Chitosan and pectin-coated
chrysanthemum essential oil liposomes significantly slowed down the release of chrysan-
themum essential oil and obtained a continuous antibacterial effect against Campylobacter
jejuni on chicken [41]. In addition, stimuli-sensitive liposomes have been developed, which
depended on different environmental factors, such as pH, magnetism, temperature, en-
zymes, and so on, to trigger the release of the bioactive molecule [42]. For instance, the basil
essential oil cationic liposomes nanofibrous system was engineered with responsiveness
to phospholipase secreted by Listeria monocytogenes [43]. Taking advantage of a bacterial
protease secreted from Bacillus cereus, the controlled release of cinnamon essential oil from
proteoliposomes was achieved via proteolysis of protein in proteoliposomes [44].

Bioavailability is defined as the relative amount of an active ingredient that is ab-
sorbed into the bloodstream after ingestion by the body [45,46]. When the liposomes are
hydrolyzed and then reconstructed to form mixed micelles of phospholipids, bile salt, and
fatty acids, the poorly water-soluble compounds would be transferred and solubilized into
the micelles' hydrophobic core, resulting in increased solubilization of the hydrophobic
compound under physiological conditions [6,47]. Then, the bioavailability of loaded com-
pounds could be improved. For example, ferric pyrophosphate showed low bioavailability
because of its poor water solubility [48]. It had been studied that iron pyrophosphate was
encapsulated in liposomes to improve the bioavailability of iron, and further added to meat
pate as a fortifier to prevent iron deficiency in humans [49,50].

4.2. The Antibacterial and Antioxidant Effects

Foodborne pathogens and oxidation are two dominant factors that influence the
quality of meat products during their preparation and storage [41]. To keep meat fresh and
extend its storage period, functional antibacterial and antioxidant agents are attracted much
attention. Liposomes as a type of active food carrier have been applied in meat preservation.
In this section, the antioxidant and antibacterial mechanisms of meat preservation were
illustrated, as well as the applications of encapsulated natural preservatives in the meat
industry were discussed.

4.2.1. The Antioxidant and Antibacterial Mechanisms in Food Products

(1) The antioxidant mechanism in food products

Lipid oxidation is responsible for the loss of nutritional quality and changes in the
flavor and color of meat, resulting in health hazards and economic losses. It is a highly
complex set of free radical reactions between fatty acids and oxygen. Under thermal, redox,
or light stimulus, prooxidants, reactive oxygen species (ROS) and any other oxidation-
favorable conditions contribute to the loss of a hydrogen radical from fatty acids. Then,
oxygen reacts with the alkyl radical of fatty acid and results in peroxide radical formation,
followed by hydroperoxides, the primary products of lipid oxidation form. When harsh
conditions are presented in the meat, the hydroperoxides become vulnerable to further
free radical chain reactions, such as isomerization or decomposition, producing secondary
products including pentanal, hexanal, and malondialdehyde. Finally, the free radicals
react to form stable products [51,52]. Protein oxidation refers to the covalent modification
caused by the direct reaction of protein with ROS or indirect reaction with oxidative stress
by-products. Similar to lipid oxidation, protein oxidation in meat is carried out through
the chain reaction of free radicals [53]. Natural antioxidants such as phenolic compounds,
flavonoids, vitamins, and peptides could direct or indirectly inhibit and delay oxidation
mainly by absorbing UV radiation, quenching singlet oxygen, chelating metal ions (Fe2+,
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Fe3+ and Cu2+), scavenging free radicals, decomposing hydroperoxides and inhibiting
enzymes (Figure 4) [54–56].
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(2) The antibacterial mechanism in food products

Meat products include a high abundance of proteins, lipids, water, and vitamins,
which are suitable for microbial growth and reproduction. Natural antimicrobial agents can
act on microbial cells through the following mechanisms (Figure 5): (i) interact with various
components of the bacterial cell wall (such as peptidoglycan and lipopolysaccharide) to
destroy the cell wall (ii) interact with cell membranes to disrupt the phospholipids or lipid
bilayers, further affecting the fluidity and permeability of the membrane, leading to the
formation of pores and leakage of intracellular components; (iii) damage DNA and RNA
and interfere with protein synthesis; (iv) inhibit the activity of various enzymes needed
for bacterial growth, such as DNA gyrase, fatty acid synthase, ATP synthetase and so on;
(v) interrupt electron transport process to influence respiration and energy metabolism,
inhibit the secretion of bacterial toxins [57–60].
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4.2.2. Applications of Encapsulated Active Compounds in the Meat Industry

Liposome acts as a protective barrier against environmental factors to protect and
stabilize the encapsulated compounds. It is well documented that liposomes can improve
stability (light, heat, pH, and so on). For example, the starting decomposition temperature
of astaxanthin in nanoliposomes was higher than that of free astaxanthin, indicating
that encapsulation could effectively enhance the thermal stability of astaxanthin [61].
The degradation of curcumin in nanoliposomes was significantly lower than that of free
curcumin under alkaline conditions [62]. In the meat industry, to protect from microbial
contamination and lipids and protein oxidation, liposome technology has been applied to
load antimicrobial and antioxidant agents such as essential oils, bacteriophages, peptides,
and bioactive compounds (Table 2).

Table 2. Applications of encapsulated compounds in the meat industry.

Encapsulated Compounds Meat/Meat Products
Effects

References
Antimicrobial Antioxidant

Essential oils

Nutmeg essential oil

Pork, chicken,
beef, mutton

Inhibit the growth of microorganisms
(E. coli and L. monocytogenes)
Have long-term acting
antibacterial effect

/ [63]

Dumplings
Improve the antibacterial effect on
L. monocytogenes in dumplings.
Extend the treatment time.

/ [64]

Pork meat batters Inhibit the growth of microorganisms
(total viable counts)

Inhibit oxidation and
decomposition of lipid and
proteins (TBA, TVB-N, and
carbonyl content)

[65]

Thyme essential oil Chicken
Improve the antibacterial effect on
S. enteritidis
Extend the treatment time.

/ [37]

Zataria multiflora
Boiss. essential oil Beef burger

Inhibit the growth of microorganisms
(total mesophilic and psychrotrophic
bacteria, molds/yeast)

Inhibit oxidation and
decomposition of lipid and
proteins (peroxide, TVB-N)

[66]

Bacteriophages Bacteriophage
Pork Improve the antibacterial activity

against E. coli O157:H7 in pork / [67]

Beef Inhibit E. coli O157:H7 growth in beef / [68]

Bioactive
compounds

Laurus nobilis
leaf extract Minced beef

Inhibit the growth of microorganisms
(total viable counts and
psychrotrophic count, E. coli and
S. aureus)

Inhibit oxidation and
decomposition of lipid and
proteins (peroxide and TBA
value, free fatty acid value,
TVB-N)

[69]

Lupulon–
xanthohumol Cooked beef sausage

Inhibit the growth of microorganisms
(total viable counts,
Clostridium perfringens, coliforms, and
molds/yeast) (nitrite + nanoliposome
combination presented the
best results).

Addition of liposome +
nitrite successfully
prevented lipid oxidation
(TBARS)

[70,71]

Catechin

Chinese dried pork Inhibit the growth of microorganisms
(total viable counts)

Inhibit lipid oxidation
(peroxide, TBARS, pH value) [38]

Sauce duck Inhibit the growth of microorganisms
(total viable counts)

Inhibit oxidation and
decomposition of proteins
(TVB-N, pH value)

[72]

Traditional
Chinese bacon / Reduce the nitrosamines

contents in fried bacon [73]

Peptides Quinoa peptide Burger
Inhibit the growth of microorganisms
(total viable counts, S. aureus, and
molds/yeast)

Inhibit oxidation and
decomposition of lipid and
proteins (peroxide, TBARS
value, TVB-N)

[74]

TBA: thiobarbituric acid; TVB-N: total volatile basic nitrogen; TBARS: thiobarbituric acid reactive substance.

(1) Essential oils

Essential oils can act as preservative agents and active packaging ingredients for
foods. Despite all these applications, less stability, heat sensitivity, and the pungent odor
of essential oils are the main constraint to their effective exploitation. Liposome has been
an efficient tool to overcome these drawbacks. For example, nutmeg essential oil [63–65],
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thyme essential oil [37], and Zataria multiflora Boiss. essential oil [66] were incorporated
into the liposomes system to enhance stability and extend active time. Nutmeg oil, as
a main functional component of nutmeg, was often used in meat products because of its
good antibacterial and antioxidant properties [75,76]. But studies showed that nutmeg
oil was much more volatile, and its antibacterial effect was weakened after 5 days so the
number of bacteria had reached 8.3 Log CFU/mL again. Interestingly, when nutmeg oil was
loaded with liposomes, the stability and antibacterial effect were significantly enhanced.
After 7 days of storage, the number of bacteria remained at around 5.0 Log CFU/mL,
with a 99.9% of sterilization rate [63]. Another research showed that nutmeg oil encapsu-
lated in liposomes could extend the antimicrobial time and effect on L. monocytogenes in
dumplings [64]. In addition, nutmeg essential oil-encapsulated solid liposomes not only
inhibited the growth of microorganisms, but also delayed the proteins and lipids oxidation
in pork meat batters, which modified the viscoelasticity, interfered with the aggregated
process of meat proteins, as well as greatly preserved the texture and color of pork meat
batters [65]. Similarly, compared with free thyme oil, the thyme oil-encapsulated liposome
could significantly improve the bacteriostatic effects against S. enteritidis without causing
any health risk and negative sensorial impact in chicken [37]. Zataria multiflora Boiss. the
essential oil in the nano-liposomal form increased the antioxidant and antimicrobial activity
in beef burgers at 4 ◦C [66].

(2) Bacteriophages

Bacteriophages are viruses that are capable of invading bacterial cells. Lytic bacte-
riophages disrupt bacterial metabolism leading to the death of the bacteria [5]. The use
of bacteriophages in food for the biocontrol of pathogens has fostered much attention,
but they are susceptible to losing bioactivity in food due to the presence of enzymes,
acidic conditions, and others [77]. To enhance their stability, liposomes are introduced
as effective delivery vehicles to protect phages from harsh environments. Lin, Zhu, and
Cui [67] fabricated a novel poly-L-lysine-coated bacteriophages liposomes, which markedly
enhanced the stability and antibacterial effect on E. coli O157:H7, but with no impact on
the quality of the pork. Cui, Yuan, and Lin [68] showed that chitosan film embedded with
liposome-loaded phage exhibited high antibacterial activity against E. coli O157:H7 without
changes in the sensory properties of beef.

(3) Bioactive compounds

Many bioactive compounds derived from plant extracts, such as polyphenols, flavonoids,
organic acids, and tannins have excellent antibacterial and antioxidant activities. But
their volatilization and oxidation sensitivity may lead to a decrease in functional activity.
Therefore, it is necessary to use liposomes to achieve high activity. The extract of bay
leaf (Laurus nobilis) had abundant phenolic and flavonoid compounds. Studies showed
1500 ppm bay leaf extract-loaded nanoliposome in the minced beef not only significantly
delayed the process of microbial spoilage and oxidation, but also inhibited the growth of
Staphylococcus aureus and Escherichia coli, showing that bioactive compounds-encapsulated
liposome could be used to extend the shelf life of beef without causing undesirable odor
and taste, in terms of low oxidative stability and microbial spoilage of free extract [69].
Lupulon and xanthohumol, as two acidic components derived from hop extracts, not only
can eliminate the bitterness of beer, but also have antimicrobial and antioxidant activity [78].
Lupulon–xanthohumol loaded nanoliposome could be used as natural bioactive additives
to replace partial nitrite in cooked beef sausage (60% meat), which remained microbiologi-
cally safe and postponed the oxidation during 30-day storage at 4 ◦C. Surprisingly, it did
not impair the sensory properties of the final product [70,71]. Catechin is a polyphenol with
synergistic antimicrobial and antioxidant properties that can be applied to meat products.
Compared with free catechin, liposome technology significantly enhanced the antioxidant
and antibacterial effects of catechin in Chinese dried pork during 25 days of storage at
room temperature [38], effectively inhibited bacterial reproduction, extended the shelf
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life of sauce duck to more than 24 days [72], and increased the nitrosamines inhibition in
traditional Chinese bacon after long-term storage [73].

(4) Peptides

Antibacterial peptides and antioxidant peptides are easily absorbed by the human
body and have certain biological activities, which are widely used to prevent food ox-
idative deterioration and microbial degradation. Research showed that encapsulated
peptides retained 87% initial antioxidant activities after 30 days, which was higher than
free peptides [79]. In addition, antimicrobial peptide nisin entrapped liposomes could
retain between 70–90% EE despite exposure to elevated temperature and alkaline or acidic
pH [80] These results suggested that liposomes can protect peptides from harsh environ-
ments [81]. In meat products, quinoa peptide-loaded liposomes inhibited the growth
of microorganisms (total bacterial count, Staphylococcus aureus, mold, and yeast counts),
reduced primary (peroxide values) and secondary (TBARS values) lipid oxidation as well
as the decomposition of protein (TVB-N) in burgers. Compared to free peptides, their
antimicrobial and antioxidant properties in burgers were improved [74].

4.3. The Biopolymer-Liposome Hybrid Systems

Conventional liposomes are prone to aggregate, fuse, degrade or hydrolyze, resulting
in the leakage of entrapped compounds. At the same time, their shortcomings of low
resistance to gastrointestinal environments, poor ability to respond to external stimuli,
and rapid elimination from blood circulation still need to be solved [82]. Integration of
liposomes and biopolymers provides a promising strategy for overcoming these limitations
related to stability. Herein, we are primarily concerned with a variety of biopolymer-
liposome hybrid systems used for meat preservation in recent years (Table 3).

Table 3. Applications of biopolymer-liposome hybrid systems in meat products.

Biopolymer Loaded Compounds Meat/Meat Products Effects References

Chitosan coating
Laurel essential oils + nanosilver Pork Protected the quality of pork at 4 ◦C for 15 days [36]

Satureja plant essential oil Lamb meat Effectively retarded microbial growth and
chemical spoilage [83]

Chitosan and pectin coating Chrysanthemum
essential oil Chicken Showed high antibacterial activity against C. jejuni

on chicken, while did not affect its quality [41]

Chitosan films Garlic essential oil Chicken breast fillet
Showed significant synergistic effects in
chemical and bacterial preservation of chicken
fillet samples

[84]

Chitosan and whey
protein films Garlic essential oil Sausage Retarded lipid oxidation and the growth of main

spoilage bacterial groups [85]

PEO nanofibers SiO2-eugenol Beef Higher antioxidant activity on beef [86]

PEO/soybean lecithin-based
nanofibers Basil essential oil Chilled pork Help maintain the quality of chilled pork

during 4-day storage [43]

Chitosan/PEO
nanofibers Tea tree oil Chicken High antibacterial activity against Salmonella [87]

Gelatin/chitosan
nanofiber/ZnO nanoparticles
nanocomposite film

Betanin Beef

The growth of inoculated bacteria, lipid
oxidation, and the changes in the pH and color
quality of the beef samples were controlled by
packaging with the fabricated film

[88]

CEO/β-CD
proteoliposomes nanofibers Cinnamon essential oil Beef

The satisfactory antibacterial efficiency against
B. cereus on beef was achieved without any
impact on sensory quality of beef

[44]

PEO: polyethylene oxide; CEO: cinnamon essential oil.

Biopolymer-coated liposomes are extensively studied because of their simple and
efficient preparation. The single-layered liposomes can be obtained by directly mixing
a polymer solution and a liposome suspension. Their stabilizing effects are mainly at-
tributed to the enhanced electrostatic and steric repulsion provided by the coated layer [82].
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Therefore, various biopolymers, such as chitosan and its derivatives, cellulose, pectin,
polysaccharide gums, and proteins can be applied to liposomes as coating materials. Chi-
tosan has a linear cationic structure of (1→4)-linked glucosamine and N-acetyl-glucosamine
that can be obtained by partial deacetylation of chitin. Based on the electrostatic interac-
tion between the protonated amino groups of chitosan and negatively charged groups
presented on the surface of liposomes, chitosan-coated liposomes could be formed [89].
Taking Satureja khuzestanica essential oils (SKEO) as an example, chitosan coating with
nano-liposomal SKEO showed a much better antibacterial and antioxidant effect on lamb
meat [83]. On the one hand, chitosan layer formed physical barriers to prevent vesicle
aggregation and improve the stability of the liposomes. On the other hand, it lowered
the diffusion of oxygen on the meat surface, consequently inhibiting lipid oxidation by
providing dense mesh covering. Chitosan-coated liposomes can also be used to load multi-
component as co-delivery systems. For example, laurel essential oil was encapsulated in
the lipid bilayer by hydrophobic interaction, and silver nanoparticles treated with lignin
were encapsulated in the internal aqueous core by hydrophilic interaction (Figure 6A). The
prepared chitosan-coated liposomes effectively maintained the quality of pork at 4 ◦C for
15 days owed [36].
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Figure 6. (A) Schematic preparation of CS-Lip/LEO/AgNPs for pork preservation. (Modified
from Wu, et al. [36]). (B) Schematic preparation of pectin-chitosan coated liposomes (C) Schematic
preparation of NLGEO incorporated into chitosan films. (D) Schematic of the preparation of CEO/β-
CD proteoliposomes incorporated into PEO nanofibers. (Modified from Lin, et al. [44]). LEO: laurel
essential oil; AgNPs: silver nanoparticles; CS: chitosan; CHEO: chrysanthemum essential oil; GEO:
garlic essential oil; NLGEO: garlic essential oil nanoliposomes; CEO: cinnamon essential oil; PEO:
polyethylene oxide.

Apart from single-layered coatings, multilayered layered coatings were also developed
to enhance the protective efficacy of liposomes. To improve the stability of liposomes,
chitosan with a positive charge was used as the second layer to coat chrysanthemum
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essential oil (CHEO)-loaded liposomes with a negative charge, followed by pectin with
a negative charge as the third layer (Figure 6B). Results revealed that CHEO triple-layer
liposomes were more stable than single-layer and double-layer liposomes. Besides, CHEO
triple-layer liposomes possessed higher antibacterial activity against Campylobacter jejuni
on chicken during 14-day storage at a temperature range from 4 to 37 ◦C, without impact
on the quality of chicken [41].

Biopolymer-based edible films have been widely exploited as active packaging sys-
tems. Chitosan, as a material for edible films, has excellent film-forming properties, broad
antibacterial performance, and compatibility with other substances [90]. The incorpo-
ration of antimicrobial agents-loaded liposomal into chitosan films can be applied to
extend the shelf life of food products. For example, active edible films based on chitosan
loaded with nano-liposomal garlic essential oil (Figure 6C) presented significant synergistic
antibacterial and antioxidant effects on chicken fillets [84]. Besides, active edible films,
based on whey protein or chitosan incorporated with nano-encapsulated garlic essential
oil (NGEO), retarded lipid oxidation and the growth of main spoilage bacterial groups in
cooked sausages [85]. Gelatin is also used to produce active films with a high film-forming
ability [91]. Betanin-loaded nanoliposomes incorporated gelatin/chitosan nanofiber/ZnO
nanoparticles nanocomposite film was fabricated to package fresh beef. Research confirmed
it could control the growth of bacteria, lipid oxidation, and the changes in the pH and color
quality of the beef [88].

Electrospinning is an emerging technique to produce continuous polymeric fibers
with the advantages of simplicity, economy, flexibility, and scale for mass production.
The prepared functionalized nanofibers have the characteristics of small diameters, high
surface-to-volume ratio, suitable porosity, and high encapsulation efficiency for bioactive
compounds [92]. The biopolymer-based nanofibers showed significant potential in the
encapsulation of bioactive ingredients and food packaging coatings. For example, a novel
antibacterial packaging material was engineered by incorporating cinnamon essential oil/β-
cyclodextrin (CEO/β-CD) proteoliposomes into poly (ethylene oxide) (PEO) nanofibers by
electrospinning technique (Figure 6D). After the treatment of CEO/β-CD proteoliposomes
nanofibers packaging, the satisfactory antibacterial efficiency against B. cereus on beef was
realized without any impact on sensory quality of beef [44]. Besides, SiO2-eugenol liposome-
loaded electrospun nanofibrous membranes exhibited excellent antioxidant activity on
beef [86]. Tea tree oil liposomes/chitosan nanofibers could prevent microbial contamination
by Salmonella to extend the shelf life of chicken meat [87]. In a similar way, basil essential
oil-loaded cationic liposomes were incorporated into polyethylene oxide/soybean lecithin-
based nanofibers (BCL-NFs). Results showed that the prepared antibacterial nanofibrous
mats could help maintain the quality of chilled pork during 4-day storage [43].

5. Conclusions and Perspectives

Liposomes can be widely applied in the meat industry to protect sensitive components
from degradation, increase the bioavailability of micronutrients like iron, promote the
efficacy of food additives, such as antimicrobial and antioxidant agents and extend the shelf
life of meat. In addition, liposomes could be combined with polymer coating (chitosan,
pectin), nanoparticles (AgNPs, CuNPs, ZnO NPs), or cyclodextrin to fabricate composite
biological films or nanofibers for the preservation of meat products. They not only improve
the stability of liposomes, but also show synergistic antibacterial and antioxidant potentials
as active food packaging materials. This review can help understand the liposome systems,
as well as provides a scientific basis for the application of liposomes in meat products.

Encouraged by the vigorous development of liposomes, we have proposed several
research perspectives in both basic research and applications: (1) A variety of multi-
component delivery systems could be designed to load hydrophilic and hydrophobic
bioactive ingredients simultaneously in liposomes. For instance, the co-encapsulation of
vitamin C and β-carotene synergistically enhanced the antioxidative activity [93]. (2) New,
generally recognized as safe (GRAS) materials composed of natural biopolymers should be
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explored for the preservation of meat products. (3) The controlled release of substances at
specific sites or environments should be realized, which still needs to be investigated for
the development of stimuli-responsive liposome systems. (4) It is worth noting that not all
liposome applications can bring a beneficial effect. For instance, marine fish skin peptide-
loaded liposomes were added to pork patty, and it showed serious fat oxidation [94].
Compared to free grape seed extract, liposomal encapsulation did not significantly improve
the inhibitory effect on heterocyclic aromatic amine formation during frying beef patties [95].
These phenomena may be due to the structures and physicochemical properties of the
liposome encapsulation system and its interaction with complex food matrices. However,
comprehensive information on the interaction between liposomes and ingredients in the
food system is scarcely discussed. Future work on the application of liposomes in food
science should focus on their properties entering the food system and their interactions
with complex food matrices.
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