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Abstract: Breakthroughs in the field of nanotechnology, especially in nanochemistry and nanofabri-
cation technologies, have been attracting much attention, and various nanomaterials have recently
been developed for biomedical applications. Among these nanomaterials, nanoscale titanium dioxide
(nano-TiO2) has been widely valued in stomatology due to the fact of its excellent biocompatibility,
antibacterial activity, and photocatalytic activity as well as its potential use for applications such as
dental implant surface modification, tissue engineering and regenerative medicine, drug delivery
carrier, dental material additives, and oral tumor diagnosis and treatment. However, the biosafety
of nano-TiO2 is controversial and has become a key constraint in the development of nano-TiO2

applications in stomatology. Therefore, in this review, we summarize recent research regarding the
applications of nano-TiO2 in stomatology, with an emphasis on its performance characteristics in
different fields, and evaluations of the biological security of nano-TiO2 applications. In addition, we
discuss the challenges, prospects, and future research directions regarding applications of nano-TiO2

in stomatology that are significant and worthy of further exploration.

Keywords: titanium dioxide; nanostructure; dental implant surface modification; antibacterial; dental
material additives

1. Introduction

The oral cavity is susceptible to a variety of biological, physical, chemical, and me-
chanical stimulations due to the fact of its dynamic and open characteristics. The hard and
soft tissues of the oral cavity create an ideal environment for microbial growth and biofilm
formation, making it prone to various oral diseases such as tooth and dental pulp diseases,
tooth loss, periodontal disease, oral mucosal disease, tumor, and trauma. Therefore, there
is a need to find a type of material that can meet the requirements for treating various
oral diseases.

Recently, biomedical applications of nanomaterials have received considerable atten-
tion from researchers. Nanoscale titanium dioxide (nano-TiO2) has been widely used in
environmental protection, cosmetics, antibacterial agents, and composite nanofillers [1,2];
due to the fact of its unique size and high specific surface area, nano-TiO2 has more stable
physical and chemical properties compared to titanium dioxide. In addition, nano-TiO2 has
great application potential in biomedical fields [3,4] due to the fact of its good antibacterial
activity, favorable biocompatibility, and unique photocatalytic activity [5].

Nano-TiO2 nanostructures include titanium dioxide nanoparticles (TiO2-NPs) and
titanium dioxide nanotubes (TNTs). In nature, TiO2-NPs mainly exist in the form of ru-
tile, anatase, and brookite. Rutile is a stable phase, whereas anatase and brookite are
metastable phases [6]. Anatase has the highest photocatalytic activity [7–9]. TNTs are
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one-dimensional hollow structures. Preparation methods mainly include template syn-
thesis [10], anodic oxidation [11], and hydrothermal synthesis [12]. Two different TiO2
structures can produce reactive oxygen species to induce oxidative stress and destroy the
cell walls of bacteria, thus exerting antibacterial activity and having strong mechanical
properties in stomatology [13–16]. The most noteworthy are TNTs, which are considered
to be ideal candidate materials for promoting the clinical therapeutic effects of medical
implants among the various nanomorphological modifications of oral titanium (Ti) im-
plants due to the fact of their enhanced biological activity and ability to achieve local drug
elution [17,18].

The oral cavity’s physiological function and pathological changes are closely related
to the health of other parts of the body. Therefore, higher safety requirements should be
put forward for materials used in the oral cavity. Before any material can be used in the
mouth, its biosafety and stability in human tissue must be fully understood. Currently,
the biological toxicity of nano-TiO2 is considered to be related to its primary particle
size, shape, agglomeration size, and other factors [19]. For example, the smaller the
size of NPs, the more toxic they are thought to be [20,21]; needle- and short rod-shaped
particles induce more cell damage than spherical- and long rod-shaped particles [22].
However, the existing experimental results and evidence do not specifically prove that
nano-TiO2 has serious effects on human tissue. Nano-TiO2 has many advantages, acting as
an oral cavity biomedical material and having huge application potential in stomatology
(shown in Figure 1). Therefore, the application of nano-TiO2 in stomatology deserves more
in-depth research.
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of its applications in stomatology. Our study should provide a basis for wider and safer
applications of nano-TiO2 in the field of stomatology in the future.

2. Surface Modification of Dental Implants

Ti and its alloys have good corrosion resistance, mechanical strength, and biocom-
patibility, making them ideal materials for dental implants [23–33]. However, the lack of
biological activity on the surface of natural Ti implants makes them highly prone to bacterial
infections [32,34,35] and often causes insufficient bone tissue integration [14]. These issues
limit the application of Ti in dental implants. A bacterial infection usually occurs within
the first two weeks after implantation [36]. Bacteria adhere to and grow on the implant
surface to form a biofilm, which hinders the role of the immune system [37] and is resistant
to antibiotics. In addition, the physical, chemical, and biological properties of the implant
surface affect the proliferation, adhesion, growth, and differentiation of cells which, in
turn, affect the osseous integration of the implant with surrounding tissues [38–42]. There-
fore, the surfaces of implants should be modified appropriately to enhance antibacterial
activity, to inhibit the formation of biofilms, and to avoid the occurrence of peri-implant
infections [25,43], while at the same time guiding the biological behavior of cells, improving
bone integration, and improving the success rate of implant surgery.

Nano-TiO2 is one of the most studied metal oxides with antibacterial activity. It exhibits
good bactericidal action against various Gram-positive and Gram-negative bacteria and
fungi (e.g., Escherichia coli [15,16], Staphylococcus aureus [14,44,45], Streptococcus mutans [46],
Streptococcus sanguis [47], and Candida albicans [48,49]) and, therefore, has potential for
treating various oral infectious diseases [45,50] such as dental caries, periodontitis, dental
pulp infection, and peri-implant inflammation [51]. Furthermore, TNTs can mimic the
nanomorphology of the outer cell membranes of osteoblasts around implants, increasing
the interaction between implant surfaces and neighboring cells, thereby enhancing osseoin-
tegration between native tissues and implant interfaces [52]. Therefore, nano-TiO2 is an
ideal structure for implant surface coating [53]. At present, methods for preparing nano-
TiO2 structural coatings on the surface of Ti and its alloy implants include an anodization
technique [47,48], micro-arc oxidation [54], the sol-gel process [16], vapor deposition [44,55],
pulse laser deposition [56], atomic layer deposition [37], and other methods.

On the surface of implants, nano-TiO2 exhibits a good bacterial killing effect due to the
fact of its small size and strong oxidation capacity; it can be combined with other antibacte-
rial metals (such as silver [16,57]) [46,51] to achieve synergistic antibacterial effects [14,57],
and it can be combined with antibiotics to combat drug-resistant strains [58]. Further-
more, Zhang et al. prepared neutrophils containing photocatalytic TiO2-NPs in vivo, which
fully mobilized the host’s defense mechanism and achieved an effective and powerful
therapeutic response to pathogenic bacterial infection with low drug resistance and low vir-
ulence [59]. In addition to the enhanced antibacterial effect, an implant surfaces modified by
nano-TiO2 also promoted the adhesion, proliferation, and growth of various mesenchymal
stem cells (MSCs) [54,60], improving biocompatibility and bone integration [54,61].

To date, there have been several beneficial research results in the application of nano-
TiO2 to implant surface modification. For example, after preparing TNTs on the surface
of Ti implants by an anodization technique, Huang et al. obtained implant surfaces with
enhanced hydrophilicity and MSC differentiation and a higher percentage of bone–implant
contact (BIC), which showed great potential for clinical applications [62]. Baoe et al. first
loaded TNTs with simvastatin (Sim), a drug that can promote bone formation, and then
coated the nanotubes (NTs) with a thermosensitive chitosan/glycerin/hydroxypropyl
methylcellulose hydrogel (CGHH) coating to control the release of simvastatin. As com-
pared with the Sim@NT and NT groups, the Sim@CGHH group showed higher alka-
line phosphatase (ALP) activity, which was conducive to the osteogenic differentiation
of MC3T3-E1 cells, and the number of E. coli colonies was also lower (as shown in
Figure 2) [63]. Yong et al. prepared a FAgHA-TiO2 (FagHA/TNT) nanocomposite double-
layer coating on the surfaces of implants. The coating could simultaneously provide the
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advantages of both TiO2 and FagHA, and it had excellent antibacterial performance and
cellular compatibility. Moreover, the anchoring effect of TNTs also increased the bonding
strength of the coating by >17 MPa2 and the corrosion resistance by nearly two orders of
magnitude [42]. Although nano-TiO2 in Ti implant surfaces has not been clinically applied
due to the weak mechanical strength between it and Ti implants [64], in vitro studies have
shown that nano-TiO2 can provide good surface topography to improve the clinical per-
formance of dental implants. In the future, nano-TiO2 is expected to provide a promising
surface modification strategy for improving the antimicrobial activity and biocompatibility
of Ti implants with bone tissue.
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Figure 2. (A) The constructed coating. At a normal body temperature (37 ◦C), the hydrogel is in a
sol state, which controls the continuous release of simvastatin and promotes long-term osteogenic
differentiation. When the temperature rises to 40 ◦C, the hydrogel changes from sol to gel, releasing
Gly to stimulate macrophages to polarize into a proinflammatory M1 phenotype to kill bacteria.
(B) The results of the ALP activity of MC3T3-E1 after 14 days of culture. (C) E. coli colony count.
Reprinted from Reference [63]; Copyright 2022, with permission from Elsevier. * p < 0.05; ** p < 0.01;
*** p < 0.001.

3. Applications in Tissue Engineering and Regenerative Medicine (TERM)

Recently, the field of tissue engineering and regenerative medicine in dentistry has
shown great potential in the treatment of craniofacial and tooth defects caused by trauma,
tumor, or other diseases. The field aims to research and develop biosubstitutes to repair
damaged tissue structures and functions using elements such as biocompatible scaffolds,
stem cells, and growth factors [65]. Scaffolds are an important part of research in this area,
because they can provide the optimal aperture range for the specific cells that stem cells
produce, mimic the extracellular matrix, and provide the appropriate culture medium for
cell growth. Studies have shown that the mechanical properties and biological activity of
commonly used bone tissue engineering scaffold materializers (bioceramics, polymers, etc.)
can be improved by adding nano-TiO2 [66,67] and can promote an increase in the produc-
tion of mineralized matrix, making scaffolds with better biocompatibility and biological
activity [67–69].

Although there have been many breakthroughs in the application of TERM in the
oral cavity, it is difficult to achieve satisfactory bone integration after implantation due to
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the inherent biological inertia, stress shielding effects, and limited space for bone inward
growth of Ti implants commonly used in clinics today [70,71]. Therefore, promoting the
regeneration and integration of bone defects around oral implants remains an urgent
problem to be solved. In view of this situation, existing implants should be properly
modified to promote the development of regenerative medicine in the oral cavity and better
benefit patients with oral diseases.

Nanomaterials play a significant role in craniofacial and dental tissue engineering.
Among them, TNTs exhibit excellent biological activity, which can improve the biological
behavior of osteoblasts [72,73], human periodontal ligament stem cells (PDLSCs) [69], hu-
man bone-marrow-derived mesenchymal stem cells (BMSCs) [51,54], and adipose-derived
stem cells (ADSCs) [60,74], thereby promoting bone integration directly. In addition, they
can facilitate the adhesion and proliferation of fibroblasts [72,75], human gingival epithe-
lial cells (HGECs), and human gingival fibroblasts (HGFs) [76], making the soft tissue
around an implant form a protective tissue barrier for potential bone integration. Therefore,
nano-TiO2 can be directly incorporated into tissue engineering scaffolds to improve the
mechanical properties of scaffolds and can also be applied to Ti implant coatings to pro-
vide effective surface modification [62,77]. For example, Roberta et al. prepared TNTs on
implant surfaces and further modified them with polyelectrolyte multilayers (PEMs) based
on Tanfloc (a cationic tannin derivative) and glycosaminoglycans (heparin and hyaluronic
acid), increasing the rate of osteogenic differentiation and bone mineral deposition of
ADSCs [78].

The osteogenic potential of TNTs is also reflected in their antioxidant properties [79].
Human osteogenesis is inhibited under oxidative stress [80], while nanotubes can effectively
attenuate the negative effects of oxidative damage on osteogenesis via the synergistic
effect of ITG α5β1 and the activation of Wnt signaling [81]. The size of TNTs affects the
biological behavior of stem cells. Shen and Seunghan’s study showed that large TNTs were
more conducive to the proliferation and differentiation of osteoblasts [82,83]. In addition,
Yu’s study showed that small TNTs were beneficial to the adhesion and proliferation
of osteoblasts in a normal microenvironment, while large TNTs increased osteogenic
differentiation. After H2O2 treatment (simulating oxidative stress), only large TNTs showed
the cellular behavior of increasing osteoblast adhesion, survival, and differentiation (as
shown in Figure 3) [81], indicating that large TNTs were more suitable for preventing
oxidative damage [84]. These finding have implications for bone integration on implant
surfaces in people with systemic diseases (diabetes, osteoporosis, etc.).
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4. Carrier for Drug Delivery

Targeted drug delivery and local drug delivery are considered to be the most forward-
looking strategies to address the inherent limitations of traditional drug delivery [85].
The characteristics of oral diseases determine that treatment of them often requires local
administration. The ideal oral local administration should provide sustainable and stable
drug release, have a long-term therapeutic effect, and reduce the toxic side effects of drugs
and medication frequency. Recently, advanced nanotechnology has produced various
nanomaterials that are effective carriers of drugs and that are conducive to the efficient
loading, targeted delivery, and controlled release of drugs. TNTs have become an ideal
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substrate for drug delivery in stomatology [86,87] due to the fact of their higher drug
loading capacity and slower drug release kinetics [88] as well as their excellent chemical
inertia, mechanical robustness, and good biocompatibility.

Bacterial infection is the main reason for the failure of implant surgery. In order to
prevent an infection around an implant after surgery, a drug sustained-release delivery
system that can provide continuous release of antibacterial drugs at therapeutic concentra-
tions over 4–6 weeks should be mounted on an implant surface [89]. Numerous studies
have shown that TNT modification and antibiotic loading can significantly enhance the
antibacterial ability and osteogenic activity of implants [90,91]. However, as a drug delivery
system, TNTs have the disadvantage of uncontrollable drug release [92]. Researchers have
found that covering the surfaces of the TNTs with a polymer layer is a promising way
to solve the problem of their sudden release. Chitosan (CS) is a biopolymer with wide
application potential. Coating the CS layer on porous TNT arrays can effectively control
the release rate of drugs by controlling the thickness and degradation kinetics of the CS
film [93–95]. Seyed et al. first prepared a completely regular titania nanotube (cRTNT) array
on a titanium substrate, then prepared chitosan nanofiber (CH) and reduced graphene
oxide (RGO) double-layer coatings on the nanotube, and finally loaded vancomycin (VM)
into the system for experiments. The results showed that the system could improve the
drug burst release and prolong the release time, as well as improve the osteogenic and
antibacterial activity (as shown in Figure 4) [94]. This drug delivery system, which uses
TNTs as carriers to prepare multifunctional surfaces through reasonable assembly of com-
ponents with certain characteristics, has been used for loading and releasing a variety of
antibiotics [17,92,96], indicating a promising direction for the development of advanced
drug delivery systems.

In addition to CS, TNTs modified in other ways can also play an important role in drug
delivery [97]. Baoe et al. found that the incorporation of AgNPs into TNTs showed valuable
biological and time-dependent antibacterial properties. In the early stage, TNTs exhibited
strong “release sterilization” activity that could prevent an initial infection after surgery.
Then, they intelligently changed to exhibit “contact sterilization”, thereby protecting im-
plants from chronic infection, reducing the biosafety problems of AgNPs, and meeting
various antibacterial requirements in different periods after biomaterial implantation [36].
Dong et al. prepared a pH-dependent AgNP-releasing implant through transplanting
AgNPs onto the surface of an implant modified with TNTs via a low pH-sensitive acetal
joint (TNT-Al-AgNPs). In the case of bacterial infection, the pH of the surface around the
implant was reduced from 7.4 to 5.5 due to the bacterial metabolism and acid production, in-
ducing the implant to release a higher dose of AgNPs than under physiological conditions,
which increased the antibacterial efficiency of Staphylococcus aureus and Enterobacter coli by
12.7 times and 5.1 times, respectively, compared to that without infection, and it also en-
hanced the proliferation and differentiation of osteoblasts [98]. The photocatalytic activity
of Nano-TiO2 can only be triggered under ultraviolet (UV) irradiation, but UV has a limited
penetration depth in tissue and can cause photodamage to biological tissues. Zhao designed
a near-infrared (NIR) controlled drug delivery system with two hydrophilic structures
using upconversion (UC) correlation strategies. The system triggered the photocatalytic
activity of TiO2-NTs through NIR and realized the controllable release of drugs; therefore,
the hydrophobic monolayer on the surfaces of NTs could effectively reduce the toxicity of
reactive oxygen species (ROS) on healthy skin cells, broadening the biological application
of nano-TiO2 [99]. These results indicate that TNTs can be used as a promising material for
an oral medicine drug delivery system.
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groups. Reprinted from Reference [94]; Copyright 2022, with permission from Elsevier.

5. Additives in Dental Materials

TiO2-NPs are ideal additives for enhancing the properties of polymer materials owing
to their unique photocatalytic activity and chemical stability. As promising additives for
dental materials, TiO2-NPs mainly improve the antibacterial properties and mechanical
strength of dental materials [100,101]. TiO2-NPs have broad-spectrum antibacterial activity
against microorganisms, with a noncontact bactericidal role [102], and they can be used
as antibacterial fillers for dental composites [103]. Kuroiwa et al. applied a nano-TiO2
coating on orthodontic resin to develop an orthodontic resin with antibacterial properties,
and it achieved satisfactory results [104]. Moreover, the addition of TiO2-NPs has been
shown to improve the vinyl conversion degree of a resin [105] and to remarkably upgrade
mechanical properties such as bending strength and hardness [106], thus enhancing the
bond strength of the binder to teeth [107].

There have been many beneficial explorations of TiO2-NPs as additives to enhance
the antimicrobial properties and mechanical strength of dental materials. Two striking
examples include poly(methyl methacrylate) (PMMA) and resin-modified glass ionomer
cements. PMMA is one of the most widely used materials in the oral cavity, but its porous
surface (conducive to microbial adhesion) and weak mechanical properties (leading to
wear or fracture) are major problems in its application [108]. Adding TiO2-NPs to PMMA
can improve its mechanical stiffness, wear resistance, and fracture resistance, and it can
reduce its roughness. The C. Albicans yeast colonization percentage of PMMA with 1%
and 3% TiO2-NPs decreased by 22% and 26%, respectively, after 48 h compared with
PMMA without TiO2-NPs [109,110]. Fully edentulous patients with 3D-printed dentures
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showed significantly increased satisfaction in aesthetic, masticatory efficiency, and comfort,
which maintained their improved characteristics after use for 18 months [111]. The weak
mechanical strength and toughness of glass ionomer cement (GIC) are the main problems
for permanent repair. The incorporation of TiO2-NPs into GIC increased the particle size
distribution and occupied the blank area between GIC particles to inhibit the propagation
of cracks, thus enhancing the strength of the material [112]. The mechanical properties [113]
and antibacterial properties [114] of the material were upgraded without affecting the
bonding with enamel and dentin [115,116].

6. Assistance in the Diagnosis and Treatment of Oral Tumors

Oral cancer is a common malignant tumor of the head and neck, which is ranked as the
sixth most common cancer in the whole body. Thus, simple, rapid, and accurate diagnostic
tools are important for clinical diagnosis and treatment of tumors. Raman spectroscopy has
been successfully used to detect tumor diseases in different parts of the body [117]. Nano-
TiO2 has attracted extensive attention in the development of surface-enhanced Raman
scattering (SERS) substrates because of its easy growth and controllable nanostructure
array [118]. Girish et al. constructed a catheter device with an SERS substrate consisting of
foliated nano-TiO2 modified using AgNPs. The SERS, composed of closely stacked adjacent
foliated TiO2 nanostructures and AgNPs, helped to form more “Raman” hot spots and
could rapidly detect, classify, and grade normal, precancerous, and malignant tissues with
high sensitivity and a high accuracy of 97.84%. The average detection time for each patient
was only 25–30 min, which helped to improve the application effect of Raman spectroscopy
in oral cancer detection [119].

At the early stage of malignant progression, circulating tumor cells (CTCs) can break
away from original or metastatic tumors and then invade a distal site in different tissues of
the body, which is the main route of cancer metastasis. Therefore, tumor progression can
be determined by detecting CTCs, but CTCs are difficult to accurately detect and isolate
as a result of their phenotypic heterogeneity and rarity [120]. Due to the fact of their large
specific surface area, nanomaterials can enhance cell adhesion and, therefore, enhance the
capture affinity and sensitivity of CTCs [121]. Nano-TiO2 has great potential in efficiently
and sensitively capturing CTCs [122]. The capture and release efficiencies of CTCs using a
platform made of nano-TiO2 were 92.9% and 89.9%, respectively, which was helpful for
further diagnosis and treatment of tumors (the process of nano-TiO2 modification and the
capture and release of CTCs are shown in Figure 5) [123]. These studies show the potential
of nano-TiO2 applications in the diagnosis of oral tumors.

In addition to its diagnostic application for oral cancer, nano-TiO2 can cause cytotoxi-
city and oxidative stress of cancer cells and can stimulate the production of ROS for cell
killing; therefore, it has good anticancer activity [52]. TiO2-NPs biologically modified by
herbs show good anti-KB oral cancer cell performance and are also less toxic to normal
cells [124,125]. In recent years, photodynamic therapy (PDT) based on photosensitizers that
are activated to produce ROS after being irradiated with a specific wavelength of light to
inhibit cancer cells has aroused great interest among scholars. However, due to the limited
penetration depth of visible light, traditional PDT is limited to the treatment of superficial
and flat lesions [126]. As a potential photosensitizer, TiO2-NPs exhibit excellent UV-light
induced cytotoxicity [127]. Upconversion nanoparticles (UCNs) have been embedded into
TiO2 matrix to improve the photocatalytic effect of TiO2, showing great potential for im-
proving the penetration depth limit of conventional PDT and for expanding the application
of PDT to thick and solid advanced or recurrent head and neck cancers [128]. Currently,
the use of nano-TiO2 in the diagnosis and treatment of cancer has involved a number of cell
and mouse experiments [129]; for example, a therapeutic diagnostic platform consisting
of TiO2-NPs doubled the survival rate of mice with multiple myeloma (MM), a malignant
plasma cell disease of bone marrow origin [130]. In the future, more attention should be
given to in vivo and clinical trials, and targeted research on oral cancer should be carried
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out, striving for applications of this nanomaterial for oral cancer clinical treatment as soon
as possible.
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7. Prospective Applications and Challenges of Nano-TiO2 in Dentistry

Nano-TiO2 has stable physicochemical properties, is inexpensive and easy to obtain,
and has good biocompatibility; therefore, it is a research material that is considered to be
significant in stomatology. The excellent antibacterial activity and biological activity of
nano-TiO2 provide a novel method for implant surface modification and tissue engineering.
Its higher drug loading capacity and slower drug release kinetics make it a good carrier
for oral drug delivery. Its strong antibacterial and mechanical properties make it a useful
additive for dental materials. Moreover, its larger specific surface area can assist in the
diagnosis of oral diseases.

Nevertheless, most studies on nano-TiO2 are currently performed in vitro, and more
information regarding the clinical outcomes of toxicity and biocompatibility is needed
for careful evaluation before it is applied to clinical practice. At present, humans are
mainly exposed to nano-TiO2 through oral, inhalation, and skin contact; the oral route
is the main type of exposure. In mouse experiments, after intragastric administration,
TiO2-NPs were absorbed by the gastrointestinal tract [131] and accumulated in the spleen
and liver [132,133]. TiO2-NPs have been shown to damage multiple organs of mice (intes-
tine [134], liver [135], spleen [136], kidney [137], etc.) by inducing cell injury and changing
the expression of inflammatory cytokines [138–141]. In addition, TiO2-NPs have been
reported to penetrate the placental barrier to induce developmental toxicity [142] and
the blood–brain barrier (BBB) to induce neurotoxicity [22]. NPs deposited in the brain
may induce oxidative stress imbalance, resulting in DNA damage and neurodegeneration,
causing mice to exhibit significant behavioral deficits [143]. Intranasally administered
TiO2-NPs have been reported to accumulate in multiple organs (i.e., liver, spleen, kid-
ney, brain, stomach, and heart) via pulmonary transport. High doses of TiO2-NPs have
been shown to cause or exacerbate some respiratory diseases [144,145], whereas long-term
and low-concentration exposure (continuous exposure of A549 alveolar epithelial cells to
1–50 µg/mL TiO2-NPs over 2 months) to TiO2-NPs did not affect the cell viability of A549,
but accumulation of TiO2-NPs in the cells resulted in DNA damage, reduced cell prolifera-
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tion rates, and caused an allergic response to methane methylsulfonate (MMS) [146]. After
skin exposure, TiO2-NPs were detectable in the stratum corneum layer of the epidermis
and follicular epithelium but neither in the viable skin tissue nor in the internal organs (i.e.,
brain, liver, spleen, and kidney) [147]. There is no evidence of carcinogenicity, mutagenicity,
or reproductive toxicity after skin exposure to nano-TiO2 [148].

Due to the lack of reliable biosafety models, further studies on the biosafety of nano-
TiO2 are needed in the future. How to correctly and rationally use nano-TiO2 is a challenge
for researchers. Nevertheless, if we fully consider and prudently use nano-TiO2 in the
treatment of oral diseases, we believe it could significantly improve the therapeutic effect.

8. Conclusions

Nano-TiO2 has low production costs, good physicochemical properties, and stable
properties. Due to the fact of its photocatalytic sterilization and biocompatibility, it has great
potential for the treatment of oral diseases. However, research on its application in oral
disease treatment is still at the stage of cell and bacterial experiments in vitro and animal
experiments in vivo, and currently there are no convincing clinical experimental results.
There is still a long way to go before this nanomaterial can be applied in real-time clinical
practice, and more investigative experiments are needed. In the future, while continuing
to explore potential applications of nano-TiO2 in stomatology, researchers also need to
further explore methods to reduce its toxicity and to improve its mechanical stability and
antibacterial effect. In addition, appropriate biological models need to be established as
soon as possible for clinical research on the use of nano-TiO2 to improve the oral health of
the population.
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