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Abstract: Feature extraction is a crucial step for any automatic target recognition process, especially
in the interpretation of synthetic aperture radar (SAR) imagery. In order to obtain distinctive
features, this paper proposes a feature fusion algorithm for SAR target recognition based on a
stacked autoencoder (SAE). The detailed procedure presented in this paper can be summarized
as follows: firstly, 23 baseline features and Three-Patch Local Binary Pattern (TPLBP) features are
extracted. These features can describe the global and local aspects of the image with less redundancy
and more complementarity, providing richer information for feature fusion. Secondly, an effective
feature fusion network is designed. Baseline and TPLBP features are cascaded and fed into a SAE.
Then, with an unsupervised learning algorithm, the SAE is pre-trained by greedy layer-wise training
method. Capable of feature expression, SAE makes the fused features more distinguishable. Finally,
the model is fine-tuned by a softmax classifier and applied to the classification of targets. 10-class
SAR targets based on Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset
got a classification accuracy up to 95.43%, which verifies the effectiveness of the presented algorithm.
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1. Introduction

The development of synthetic aperture radar (SAR) technology has witnessed the explosive
growth of available SAR images. Manual interpretation of numerous SAR images is time-consuming
and almost impractical. This has significantly accelerated the development of automatic target
recognition (ATR) algorithms. Choosing efficient features is important for traditional SAR ATR
techniques and many feature extraction methods have been developed to describe the targets in SAR
images [1–5]. In practical applications, however, it is difficult to fully describe target characteristics to
achieve a high recognition accuracy with a single feature.

Feature-level fusion of SAR images can not only increase the feature information of the images
to perform comprehensive analysis and integration processing, but also can effectively integrate
the advantages of various features to reduce the complexity of training and improve algorithm
adaptability. Currently, the feature fusion algorithms are mainly divided into three categories [6]:
The first category is a method of feature combination, specifically, combining the features in series or
in parallel according to certain weights for obtaining a new feature vector [7]. Feature selection, the
second category which utilizes a variety of preferred methods, selects an optimum feature combination
to obtain a low-dimensional feature showing a better discrimination [8,9]. The third category is
feature transformation, which is a way to convert raw features into new feature representations [10,11].
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However, due to the difficulties in exploring deep information from raw features, the traditional
methods have unsatisfactory performance on redundancy reduction and efficiency improvement.

Recently, feature fusion based on a deep neural networks has performed excellently in various
fields [12–14], which has prompted scholars to conduct research on SAR imagery target recognition
with neural networks [15–17]. However, the remarkable performance of a deep neural network
requires a large number of tagged data as training samples, which is hard to accomplish in SAR target
recognition. In addition, complex SAR images usually require a complicated network structure to fit
them. With the increaing complexity, the training time of the network will significantly increase. Thus,
under the condition of a relatively small amount of sample labels, simplifying the network structure
and enhancing the training efficiency can improve the performance of SAR ATR technology.

Stacked autoencoder (SAE) [18], as a type of unsupervised learning network, converts raw data
into more abstract expressions through a simple non-linear model and fuses features by optimization
algorithms. The feature integration based on SAE can substantially reduce the redundancy and
complement information between the features. With its relatively simple structure, SAE can effectively
adapt to the needs of fast SAR image interpretation and achieve stronger generalization capability
with less training samples. Many scholars have conducted research on this area. Ni et al. [19]
flattened the SAR images into one-dimensional vectors and fed them into SAE after preprocessing
and segmentation, and this method obtained a more competitive result. To fit the complex raw data,
64 × 64 neurons are required in the first layer of the SAE, which leads to a complex SAE structure and
low network training efficiency. In [20], texture features of SAR images extracted with a Gray Level
Co-Occurrence Matrix (GLCM) and Gabor wavelet transform were optimized to a higher-level feature
by SAE. However, due to the great redundancy between texture features, the added information is
relatively small, and accordingly, the effect of the integration is not obvious. Chen et al. [21] combined
the spatial features and spectral information of hyperspectral images with SAE. This achieved a better
performance in classification tasks, but the raw spectral information with high dimensions led to
a relatively complicated network structure. Additionally, by employing a multi-layer autoencoder,
reference [22] extracted contour and shadow features of SAR images and integrated into the synergetic
neural network (SNN) to identify the target, which enhances the classification accuracy to some extent.
It has to be noted that the algorithm requires segmenting the shaded area of targets and this processing
is relatively complex.

The main goals of this work were to obtain distinctive features by fusing features and to improve
the efficiency of recognition by simplifying the network structure of SAE. With an unsupervised
learning algorithm, SAE can not only prevent network from overfitting when the number of labeled
samples is relatively small, but also effectively provide a deep integration of features with its
nonlinear mapping ability. In addition, considering the information redundancy and complementation,
23 baseline features [23] and a local texture feature called Three-Patch Local Binary Pattern (TPLBP) [24]
of SAR images are extracted. The selected features will describe SAR images from local and global
perspectives, and provide complementary information for the SAE network under the condition of
lower feature dimensions. Therefore, the fused features will be more robust and discriminative.

The remainder of this paper is organized as follows: Section 2 displays the framework of the
proposed algorithm. Section 3 describes the details of baseline features and TPLBP features. Section 4
introduces the SAE and the softmax classifier utilized in this paper. Experiments based on MSTAR
database [25] are carried out in Section 5 to evaluate the proposed method and compare its performance
with other algorithms. Section 6 concludes this paper.

2. Proposed Approach

This section introduces the structure of the proposed approach. Similar to most successful and
commonly used feature learning models, the procedure of the feature fusion algorithm proposed in
this paper is divided into a training stage and a testing stage, presented with the flow chart shown in
Figure 1. The proposed algorithm consists of the following steps to learn robust fused features: (1) cut
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the SAR images into the same size and extract features from these images; (2) subtract the mean value
and then apply Zero Component Analysis (ZCA) whitening to pre-process the features; (3) cascade the
features and feed them into the SAE to pre-train the network; (4) train the softmax classifier with the
fused features and fine-tune the model according to the training data labels.
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(1) Feature Extraction

For a SAR ATR system, feature selection plays an important role in the target recognition. In this
paper, features with less redundancy are extracted to simplify the SAE inputs. Firstly, the geometric
parameters of the targets are extracted in order to get the baseline features with 88 dimensions.
Meanwhile the 128-dimensional texture feature vector, which is obtained by connecting the histogram
of TPLBP value in series, combines with the baseline features to form a cascaded feature vector with
216 dimensions. Compared with the deep learning methods which import the whole image into neural
network, the proposed approach decreases the dimension of raw data from 16,384 to 216. This greatly
reduces the number of neurons in the first layer. The details of the features will be introduced in
Section 3.

(2) Normalization and Whitening

In this step, 216-dimensional features are normalized by subtracting the mean value of the feature
space and then apply ZCA whitening [26],which is common in deep learning. The purpose of ZCA
whitening is to reduce the redundancy between features, and to make all input elements have the
same variance. The ZCA whitened data are calculated as XZCAWhite = TX, where T = UP−(1/2)UT and U
and P are the eigenvectors and eigenvalues of the covariance matrix of X: ∑= 1

m ∑m
i=1 (x(i))(x(i))

T
.

(3) Deep Model

After being normalized and whitened, the cascaded vectors are imported into the SAE to train the
first layer with a gradient descent algorithm which is able to optimize the cost function. The hidden
layer provides what it learned as the inputs for the next layer of SAE. Meanwhile, it is necessary to
fix the first layer’s weights of the network when the second layer is training, and all of the following
layers are supposed to be trained in this way.

The features obtained from the SAE can be applied to classification by feeding the output of the
last layer to a classifier. In this paper, a softmax classifier is adopted. According to the distance between
labels and the result of classification, the network weights are fine-tuned with a back-propagation
algorithm. When the training of the network is completed, the classification performance is evaluated
with the extracted feature of test samples. The deep model consists of a SAE and a softmax classifier,
which will be described in Section 4.
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3. Feature Extraction

In this section, 23 kinds of baseline features and local texture features are chosen as the fusion
data. Two types of features will be integrated to supply richer information for the SAE to learn. Fisher
score [27] is utilized to select the baseline features of SAR images. Moreover, comparing the LBP value
of different regions, TPLBP texture features obtain a robust representations of the targets.

3.1. Baseline Features

Baseline features [23] are a collection of geometry parameters about SAR target area. For a pixel in
a complex-valued SAR image, the position of the pixel is represented with (a,b), and it can be expressed
as c(m,n) = i(a,b) + j*q(a,b), where i(a,b) and q(a,b) are the real and imaginary parts of the complex-valued
SAR image, respectively. Then the following equation can be used to describe the power detection of
the pixel’s magnitude:

p(a, b) = [i(a, b)]2 + [q(a, b)]2 (1)

With the method of an adaptive threshold based on entropy, which is proposed by Kapur et al. [28],
a binary image can be obtained. After morphological dilations [29], unconnected region of the image
is removed to extract geometry features of the binary image or the dilated image, which form the
multi-dimensional baseline features.

This paper selects 23 kinds of geometry features that achieve higher score in feature ranking and
obtains an 88-demensional baseline feature vector. The framework of this procedure and the categories
of features are shown in Figure 2 and Table 1, respectively.
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Table 1. The selected baseline features.

Number 1 2 3 4 5

Feature Name NumConRegion Area Centroid BoundingBox MajorLength

Number 6 7 8 9 10

Feature Name MinorLength Eccentricity Orientation ConvexHull ConvexHullNum

Number 11 12 13 14 15

Feature Name ConvexArea FilledArea EulerNumber Extrema EquivDiameter

Number 16 17 18 19 20

Feature Name Solidity Extent Perimeter WeightCentroid MeanIntensity

Number 21 22 23

Feature Name MinIntensity MaxIntensity SubarrayIndex

The details of the features are as follows:

(1) NumConRegion: the number of connected regions in the binary or dilated binary image.
(2) Area: the total number of pixels with value one in the binary or dilated binary image.
(3) Centroid: the center of the mass of the binary or dilated binary image.
(4) BoundingBox: the smallest rectangle containing the mass of the binary or dilated binary image
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(5) MajorLength: the length (in pixels) of the major axis of the ellipse that has the same normalized
second central moments as the mass of the binary or dilated binary image.

(6) MinorLength: the length (in pixels) of the minor axis of the ellipse that has the same normalized
second central moments as the mass of the binary or dilated binary image.

(7) Eccentricity: the eccentricity of the ellipse that has the same second-moments as the mass of the
binary or dilated binary image. The eccentricity is the ratio of the distance between the foci of the
ellipse and its major axis length. The value is between 0 and 1.

(8) Orientation: the angle (in degrees ranging from −90 to 90 degrees) between the x-axis and the
major axis of the ellipse that has the same second-moments as the mass of the binary or dilated
binary image.

(9) ConvexHull: the matrix that specifies the smallest convex polygon that can contain the mass of
the binary or dilated binary image. Each row of the matrix contains the x- and y-coordinates of
one vertex of the polygon. The first row is selected here to construct the feature vector.

(10) ConvexHullNum: the number of the vertices of the smallest convex polygon that can contain the
mass of the binary or dilated binary image.

(11) ConvexArea: the number of the pixels in the convex hull that specifies the smallest convex
polygon that can contain the mass of the binary or dilated binary image.

(12) FilledArea: the number of pixels with value one in the Filled image, which is a binary image
(logical) of the same size as the bounding box of the mass of the binary or dilated binary image,
with all holes filled in.

(13) EulerNumber: the number of objects in the mass of the binary or dilated binary image minus the
number of holes in those objects.

(14) Extrema: the matrix that specifies the extrema points in the mass of the binary or dilated
binary image. Each row of the matrix contains the x- and y-coordinates of one of the points.
The format of the vector is [top-left top-right right-top right-bottom bottom-right bottom-left
left-bottom left-top].

(15) EquivDiameter: the diameter of a circle with the same area as the mass of the binary or dilated
binary image.

(16) Solidity: the proportion of the pixels in the convex hull that are also in the mass of the binary or
dilated binary image.

(17) Extent: the ratio of pixels in the mass of the binary or dilated binary image to pixels in the total
bounding box.

(18) Perimeter: the distance between each adjoining pair of pixels around the border of the mass of
the binary or dilated binary image.

(19) WeightCentroid: the center of the mass of the binary or dilated binary image based on location
and intensity value. This measure is also based on the power-detected SAR chip.

(20) MeanIntensity: the mean of all the intensity values in the mass of the power-detected image as
defined by the binary image or the dilated binary image.

(21) MinIntensity: the value of the pixel with the lowest intensity in the mass of the power-detected
image as defined by the binary image or the dilated binary image.

(22) MaxIntensity: the value of the pixel with the greatest intensity in the mass of the power-detected
image as defined by the binary image or the dilated binary image.

(23) SubarrayIndex: the cell-array containing indices of pixels within the bounding box of the binary
image or the dilated binary image. The first and last elements of each cell are selected here to
construct the features.

Figure 3 shows a portion of the features extracted from BMP2 slices in the MSTAR database. They
are SAR chip after power detection, binary image, dilated image and partial features, respectively.
Meanwhile, the centroid, boundingbox, extreme and center of gravity of target area were marked in
blue, red, green and magenta.



Sensors 2017, 17, 192 6 of 16Sensors 2017, 17, 192 6 of 16 

 

 

Figure 3. Examples of baseline features. (a) A SAR chip processed by energy detection; (b) A binary 
image of SAR; (c) A dilated binary image of SAR. In (b,c), centroid, boundingbox, extreme and center 
of gravity of target area were marked in blue, red, green and magenta. 

3.2. TPLBP Operators 

The echo signals of radar waves vary because of the differences in structure, roughness and 
physical characteristics of a target, while the texture information of SAR targets changes little along 
with the azimuth of the target. Thus, texture features can be used for target identification. Local 
Binary Pattern (LBP) is a simple and effective local texture extraction operator. It can effectively use 
the spatial information and adequately reflect the local spatial correlation of images with gray-scale 
and rotation invariance.  

The traditional LBP operator is described as follows: within a window sized 3 × 3, compare the 
gray value of the center pixel with that of the other adjacent eight pixels. If the gray value of adjacent 
pixels is greater than the central pixel’s, the value of adjacent pixels is marked as 1, otherwise it is 
marked as 0. In this way, the eight pixels in the neighborhood will produce an unsigned 8-bit number 
called LBP value, which reflects the texture information of the region. Limited by the size of the 
neighborhood, LBP operator cannot describe the large-scale texture information, and original LBP 
operator does not have a rotational invariance. In terms of these aspects, it is not suitable to describe 
the target in azimuth sensitive SAR images. 

Wolf et al. [24] improved the LBP operator and proposed the Three-Patch Local Binary Pattern 
(TPLBP). Firstly, for each pixel in the image, considering a w w  patch centered on the pixel, S 
additional patches distributed uniformly in a ring of radius r around it. Utilizing the LBP operator 
mentioned above, the center pixel of each patch can obtain the LBP value. Specifically, as is shown in 
Figure 4, with the parameter set as 8, 3, 2S w    , the LBP value of S patches of a certain pixel is 
produced in an area of the red box which is marked in the SAR image. The values of two patches, 
which are α-patches apart along the circle, are compared with those of the central patch and their 
similarity is calculated further. 

 
Figure 4. The TPLBP code of BMP2 ( 8, 3, 2S w    ). 

Then applying the following equation to each pixel, the TP LBP value can be calculated: 
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3.2. TPLBP Operators

The echo signals of radar waves vary because of the differences in structure, roughness and
physical characteristics of a target, while the texture information of SAR targets changes little along
with the azimuth of the target. Thus, texture features can be used for target identification. Local
Binary Pattern (LBP) is a simple and effective local texture extraction operator. It can effectively use
the spatial information and adequately reflect the local spatial correlation of images with gray-scale
and rotation invariance.

The traditional LBP operator is described as follows: within a window sized 3 × 3, compare
the gray value of the center pixel with that of the other adjacent eight pixels. If the gray value of
adjacent pixels is greater than the central pixel’s, the value of adjacent pixels is marked as 1, otherwise
it is marked as 0. In this way, the eight pixels in the neighborhood will produce an unsigned 8-bit
number called LBP value, which reflects the texture information of the region. Limited by the size of
the neighborhood, LBP operator cannot describe the large-scale texture information, and original LBP
operator does not have a rotational invariance. In terms of these aspects, it is not suitable to describe
the target in azimuth sensitive SAR images.

Wolf et al. [24] improved the LBP operator and proposed the Three-Patch Local Binary Pattern
(TPLBP). Firstly, for each pixel in the image, considering a w × w patch centered on the pixel,
S additional patches distributed uniformly in a ring of radius r around it. Utilizing the LBP operator
mentioned above, the center pixel of each patch can obtain the LBP value. Specifically, as is shown in
Figure 4, with the parameter set as S = 8, w = 3, α = 2, the LBP value of S patches of a certain pixel
is produced in an area of the red box which is marked in the SAR image. The values of two patches,
which are α-patches apart along the circle, are compared with those of the central patch and their
similarity is calculated further.
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Then applying the following equation to each pixel, the TP LBP value can be calculated:

TPLBPr,s,ω,α(p) = ∑
i

f (d(Ci−Cp)− d(Ci+αmods, Cp))2i (2)

where Ci and Ci+αmods are pairs of patches along the ring and Cp is the central patch. The function
d(·, ·) is a certain distance function between two patches and f is defined in Equation (3), where τ is
set to 0.01 [24,30]:

f (x) =

{
1, x ≥ τ

0, x < τ
(3)

After the TPLBP value of every pixel in the image is obtained, the whole image is divided into
non-overlapping rectangular patches of equal size (B× B). After the frequency for TPLBP value of each
rectangular patch is calculated, the histogram vector of each rectangular window will be connected in
series in order to form TPLBP feature vector.

Compared with LBP, the TPLBP operator suppresses the speckle noise more effectively. It contrasts
the LBP value of patches, which describes the relationship between adjacent patches, rather than the
gray value between pixels. In addition, selecting the patches in a circle allows the features to have
rotation invariance. Furthermore, the parameters r enables TPLBP to compare different texture features
of various scale, which overcomes the shortcomings of LBP with limited range and effectively describes
texture features in large-scale SAR images.

4. Deep Model

Our deep model will be trained and validated with labeled samples in the training stage. Then in
the testing stage, it will be fixed to evaluate the performance of network by the testing data. In this
section, a brief introduction of a SAE and a softmax classifier is given.

4.1. Stacked Autoencoder

Autoencoder [18] is usually composed of three layers, as shown in Figure 5a. The encoder, which
consists of an input layer and a hidden layer, converts an input signal x to a. Likewise, the hidden layer
and output layer constitute a decoder in order to transform a to output signal x̂. It can be expressed
as follows:

a = f (Wx + b) (4)

x̂ = g(Ŵa + b̂) (5)

where W and Ŵ are the weight matrixes of encoder and decoder, respectively. Additionally, f (·) and
g(·) are the mapping functions such as sigmod function or tanh function. When x̂ ≈ x, it is considered
that the autoencoder reconstructs the input. For the dataset containing m samples, the cost function is
defined as follows [20]:

J(W, b) = [
1
m

m

∑
i=1

(
1
2
‖x̂i − xi‖2)] +

λ

2

nl−1

∑
l=1

si

∑
i=1

si+1

∑
j=1

(Wji
(l))

2
(6)

where xi, x̂i represent the i-th input and the i-th output of l-th layer, respectively. Wji
(l) indicates the

connection weights of the i-th neurons of layer l with the j-th neurons of layer l + 1 and b represents
the bias term. Furthermore, the first term of Equation (6) is a mean squared error term. The second
part is a regularization term, and it can be seen as a way to compromise between small weights and
minimized cost function. The relative importance of the two elements is determined by the value of λ.

Generally, a sparse restriction is given on the weight of the network, that is, sparse autoencoder,
so as to obtain a better feature representation ability. When aj

(2) expresses the output of a hidden
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neuron from the encoder with a given input x, then equation ρ̂j =
1
m

m
∑

i=1
[aj

(2)(xi)] represents average

activation of hidden unit. The average activation ρ̂j is set to ρ which is called sparsity parameter and
typically has a small value close to 0 [31].

To satisfy the network sparse constraints, an extra penalty term will be added to cost function
so that it penalizes ρ̂j deviating significantly from ρ. Then the overall cost function expressed as
follows [31]:

Jsparse(W, b) = J(W, b) + β
s2

∑
j=1

KL(ρ, ρ̂j) (7)

KL(ρ, ρ̂j) = ρ ln
ρ

ρ̂j
+ (1− ρ) ln

1− ρ

1− ρ̂j
(8)

where KL represents Kullback-Leibler divergence between a Bernoulli random variable with mean ρ

and a Bernoulli random variable with mean ρ̂j. The weight of sparsity penalty term is determined by
β. With backward propagation algorithm, partial derivatives of the cost function can be calculated. In
order to solve the optimal model, gradient descent algorithm is used to update parameters W and b.

A SAE is a neural network consisting of multiple layers of sparse autoencoders in which the
output of each layer is wired to the inputs of the successive layer, as shown in Figure 5b.
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Figure 5. The structure of autoencoder and SAE. (a) A three-layers autoencoder; (b) A SAE composed 
of two autoencoders. 
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use the output of each layer as input for the subsequent layer to complete the pre- training. One of 
the characteristics of this approach is to freeze the parameters of the rest layers of the model while 
training a certain layer. After the pre-training is accomplished, fine-tuning with back propagation [33] 
can be applied to improve the results. 

Instead of random initialization of parameters, with an unsupervised pre-training process, SAE 
initializes the parameters to easily convergent values. This method indicates the contents of the 
hidden layer what to learn. Additionally, the introduction of sparsity prevents network overfitting 
and improves generalization ability of the network. The process of fine-tuning uses global 
supervision so that the network converges to global minimum. Consequently, SAE allows learning 
the deep features of inputs with powerful feature representation capacity. 

Figure 5. The structure of autoencoder and SAE. (a) A three-layers autoencoder; (b) A SAE composed
of two autoencoders.

A good way to obtain optimal parameters for a SAE is to use greedy layer-wise training [32].
W(k,i) represents the weight of the i − th layer in k − th autoencoder. Firstly, parameters
W(1,1), W(1,2), b(1,1), b(1,2) of the first layer can be obtained by training on raw inputs, which transforms
the raw inputs into a vector consisting of activation of the hidden units. Secondly, the second layer is
trained on this vector to obtain parameters W(2,1), W(2,2), b(2,1), b(2,2). Finally, repeat the steps above
and use the output of each layer as input for the subsequent layer to complete the pre- training. One of
the characteristics of this approach is to freeze the parameters of the rest layers of the model while
training a certain layer. After the pre-training is accomplished, fine-tuning with back propagation [33]
can be applied to improve the results.

Instead of random initialization of parameters, with an unsupervised pre-training process, SAE
initializes the parameters to easily convergent values. This method indicates the contents of the
hidden layer what to learn. Additionally, the introduction of sparsity prevents network overfitting and
improves generalization ability of the network. The process of fine-tuning uses global supervision so
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that the network converges to global minimum. Consequently, SAE allows learning the deep features
of inputs with powerful feature representation capacity.

4.2. Softmax Classifier

The softmax classifier is a promoted logistic regression classifier, which can effectively cope with
multiple classification problems. In order to improve the performance, this paper fine-tunes the SAE
with a softmax classifier by calculating the probability represented by reference [34]:

p(yi = j|xi; θ ) =
eθj

T xi

∑k
l=1 eθj

T xi
(9)

where θj is the parameter vector and as usual an iterative optimization algorithm such as gradient
descent will be utilized to minimize the cost function of classifier. After obtaining optimal model
parameters, the samples are classified to the highest probability category.

5. Experiments

To verify the validity of the proposed algorithm, the following experiments were designed. Firstly,
in order to determine the structure of the SAE and achieve the best target recognition performance the
influence of network structure on classification accuracy was investigated by changing the number of
neurons in the hidden layers of the SAE. Subsequently, the distribution of features is visualized, which
contributes to figuring out what the SAE did in the fusion procedure. The comparison of classification
accuracy between raw features and fused features demonstrates the effectiveness of feature fusion.
Compared with other algorithms, the SAR feature fusion algorithm based on SAE is demonstrated to
have better performance on recognition performance and efficiency.

The experiments are conducted on the MSTAR dataset for 10-class targets recognition (armored
personnel carrier: BMP-2, BRDM-2, BTR-60, and BTR-70; tank: T-62, T-72; rocket launcher: 2S1;
air defense unit: ZSU-234; truck: ZIL-131; bulldozer: D7). In order to comprehensively assess the
performance, this paper chooses SAR images of 17◦ and 15◦ aspect as training samples and test samples,
respectively. Details are displayed in Figure 6 and Table 2.
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Table 2. Number of training samples and test samples. 

Targets BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 Total
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Experimental parameters: according to reference [23], the parameters of the TPLBP operator are 
set as 8, 3, 1, 12, 0.01, 64S w r B        in order to extract the 128-dimensional TPLBP feature. 
Then it is combined with 88-dimensional baseline features in series. After importing the feature 
vectors into a SAE, the softmax classifier is employed for target recognition. 
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T72-132; (d) BRDM2; (e) BTR60; (f) T62; (g) ZSU234; (h) 2S1; (i) D7; (j) ZIL131.

Table 2. Number of training samples and test samples.

Targets BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 Total

17◦ 233 233 232 256 299 298 299 299 299 299 2747
15◦ 196 196 196 195 274 274 274 273 274 274 2426
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Experimental parameters: according to reference [23], the parameters of the TPLBP operator are
set as S = 8, w = 3, α = 1, r = 12, τ = 0.01, B = 64 in order to extract the 128-dimensional TPLBP
feature. Then it is combined with 88-dimensional baseline features in series. After importing the
feature vectors into a SAE, the softmax classifier is employed for target recognition.

5.1. The Influence of the SAE Network Structure on Performance

In the training stage it is easy for a neural network to get trapped into “overfitting” and
“underfitting” problems. With a certain scale of training data, the probability of overfitting will
rise with the increase of the neurons. Thus, it would be advisable to keep the number of layers as less
as possible on the premise of accuracy. Therefore, a SAE with two hidden layers for feature fusion is
adopted to explore the effect of neurons number on generalization capacity.

In order to correctly configure the SAE network, 20% of the training samples (17◦) were randomly
selected as the validation set, and the remaining were used as the training set. The training set is used
to adjust the parameters of SAE network, and the best model is selected according to the accuracy on
the validation set. Finally, the performance of the model is tested on the testing set (15◦).

Geng et al. [20] pointed out that in order to prevent the network from overfitting or underfitting,
the number of hidden layer neurons should not be too small nor too large. Thus, in this paper, L1 and
L2 represent the neural number of the first hidden layer and the second hidden layer, respectively,
where L1 ⊂ [100, 700] and L2 ⊂ [100, 700]. Weight decay parameter λ controls the relative importance
of the mean squared error term and weight decay of cost function as mentioned earlier. In this paper, a
small λ ranging from e−6 to e−3 is adopted, so that the mean squared error term accounts for more
proportion of cost function than weight decay. Furthermore, sparsity parameter is usually a small
value approximating to 0, leading to better generalization ability in the network. Parameter β controls
the weight of sparsity penalty factor, and the parameters are set as follows ρ = 0.1, β = 3, λ = 5e−4.

Next, under the condition of the same parameters and inputs, the classification accuracy on
validation set with changed number of neurons is recorded. To ensure the precision of the results, the
experiment was executed five times under each group of parameters, and the mean value on each case
was calculated. The comparison results are shown in Figure 7.

Sensors 2017, 17, 192 10 of 16 

 

5.1. The Influence of the SAE Network Structure on Performance 

In the training stage it is easy for a neural network to get trapped into “overfitting” and 
“underfitting” problems. With a certain scale of training data, the probability of overfitting will rise 
with the increase of the neurons. Thus, it would be advisable to keep the number of layers as less as 
possible on the premise of accuracy. Therefore, a SAE with two hidden layers for feature fusion is 
adopted to explore the effect of neurons number on generalization capacity. 

In order to correctly configure the SAE network, 20% of the training samples (17°) were 
randomly selected as the validation set, and the remaining were used as the training set. The training 
set is used to adjust the parameters of SAE network, and the best model is selected according to the 
accuracy on the validation set. Finally, the performance of the model is tested on the testing set (15°). 

Geng et al. [20] pointed out that in order to prevent the network from overfitting or underfitting, 
the number of hidden layer neurons should not be too small nor too large. Thus, in this paper, 1L  
and 2L  represent the neural number of the first hidden layer and the second hidden layer, 
respectively, where 1 [100, 700]L   and 2 [100, 700]L  .Weight decay parameter  controls the 
relative importance of the mean squared error term and weight decay of cost function as mentioned 
earlier. In this paper, a small  ranging from 6e  to 3e  is adopted, so that the mean squared error 
term accounts for more proportion of cost function than weight decay. Furthermore, sparsity 
parameter is usually a small value approximating to 0, leading to better generalization ability in the 
network. Parameter   controls the weight of sparsity penalty factor, and the parameters are set as 
follows 4 0.1,    3,    5e      . 

Next, under the condition of the same parameters and inputs, the classification accuracy on 
validation set with changed number of neurons is recorded. To ensure the precision of the results, 
the experiment was executed five times under each group of parameters, and the mean value on each 
case was calculated. The comparison results are shown in Figure 7.  

 
Figure 7. The effect of changed neuron’s numbers on classification accuracy.  

Figure 7 shows that the number of neurons in each layer has a significant impact on network 
performance. When 2L  is fixed, the classification accuracy varied along with the change of 1L . Best 
performance was achieved while the value of 1L  approximates to 600. Similarly, the value of 2L  
is supposed to be set to 200 for higher accuracy with a fixed value of 1L . Given 1 2600, 200L L  , 
the network obtained the highest recognition accuracy on validation set, amounting to 96.36%. 
Therefore 1 2600, 200L L   is considered the best SAE configuration and it is tested with the testing 
set independently, obtaining a classification accuracy of 95.43%.  

As can be seen from the figure, the accuracy is relatively higher when 1L  is larger than 2L . It 
is possible that the input data can be precisely fitted when the number of neurons in the first hidden 
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Figure 7 shows that the number of neurons in each layer has a significant impact on network
performance. When L2 is fixed, the classification accuracy varied along with the change of L1. Best
performance was achieved while the value of L1 approximates to 600. Similarly, the value of L2 is
supposed to be set to 200 for higher accuracy with a fixed value of L1. Given L1 = 600, L2 = 200, the
network obtained the highest recognition accuracy on validation set, amounting to 96.36%. Therefore
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L1 = 600, L2 = 200 is considered the best SAE configuration and it is tested with the testing set
independently, obtaining a classification accuracy of 95.43%.

As can be seen from the figure, the accuracy is relatively higher when L1 is larger than L2. It is
possible that the input data can be precisely fitted when the number of neurons in the first hidden
layer is larger than the second one’s, which decreases the reconstruction error in the first hidden layer.
Conversely, if the number of neurons in the first hidden layer is relatively small, the reconstruction
error of the input data will accumulate in the network, degrading the network performance. However,
with limited samples, the classification accuracy will not increase unlimitedly since the parameters of
network model will grow rapidly with the increase of hidden neurons. This leads to more freedom of
network parameters and probably causes over-fitting.

5.2. The Comparison of Different Features

In this experiment, 88-dimensional baseline features and 128-dimensional TPLBP features were
extracted from SAR images at 17◦ in MSTAR collection, and then they were compared with the fusion
features. Utilizing t-distributed stochastic neighbor embedding proposed in reference [35], the cascaded
features and fusion features were visualized so as to obtain the distribution in a two-dimensional
space. The results are shown in Figure 8.
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features; (b) The distribution of the fused features in the same feature space.

As shown in Figure 8, in two-dimensional space, the distribution of cascaded features obviously
presents interclass overlap and intraclass dispersion. However, the fusion features of 10-class targets
are separated independently. Therefore, in the process of feature fusion, SAE learns more useful
information from the input data and fuses the features effectively by changing the spatial distribution
of input data.

Next, baseline features and TPLBP features are provided as training data for SAE, respectively,
and their recognition performance is compared with fused features, in which SAE network has two
hidden layers. The structure and parameters of network are adjusted to achieve the best outcomes.
The results are recorded in Table 3.
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Table 3. The classification accuracy of raw features and fused features.

Categories BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234 Classification
Accuracy (%)

Baseline 72.96 78.57 89.80 81.54 99.64 86.13 95.62 96.70 98.54 97.08 90.81
TPLBP 61.73 77.04 85.20 78.97 92.34 97.81 98.54 97.43 98.54 88.32 89.19
Fused 88.27 90.81 90.31 90.26 98.18 97.08 98.54 98.17 99.27 97.08 95.43

Table 3 shows that the classification accuracies of baseline features and TPLBP features are 90.81%
and 89.19%, respectively. The classification accuracy of fusion features is up to 95.43%, increasing by
almost 5%. Additionally, the baseline features have a relatively lower classification performance on the
BRDM2, while the TPLBP features show better discrimination in this category. After the feature fusion,
the classification accuracy of BRDM2 is up to 97.08%. The same situation occurs to ZSU234. It is shown
that the proposed method integrates the complementary information in the raw features, thus making
up the shortage of a single kind of features. It is found that the recognition rate of BMP2, BTR60 and
BTR70 is relatively low. Correspondingly, the distribution of those targets is near in the feature space.
The reason is that all of the three categories belong to armored personnel carriers. And they have some
similarities on shapes and structural characteristics, which increases the difficulty in distinguishing.
In addition, Figure 9a shows that the fused features have a similarity trend with baseline features
and TPLBP features in classification accuracy. This indicates that the selection of raw features has a
direct impact on the fusion results. Moreover, the higher accuracy on the most of categories of fused
features reveals that SAE is able to extract more distinguishable features from the raw features. After
representation conversion with SAE, fused features is more robust and distinctive.
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of baseline features, TPLBP features and fused features on 10-class targets; (b) Comparison of the
classification accuracy of different method including SVM, SRC, CNN, SAE and the proposed method.

In order to verify the advantages of the fused features on recognition, this paper employs Support
Vector Machines (SVM) for classification with the baseline features, TPLBP features, cascaded features
and fused features, respectively. Similar to the proposed method, the training set (17◦) mentioned
in Table 2 are applied to training the SVM, and the optimal parameters are obtained by 5-fold
cross-validation. After the model was determined, its performance is evaluated on the testing set (15◦).
As is shown in Table 4, the classification accuracy of fused features is higher than other features, which
demonstrates that the proposed method effectively integrates the information of features to improve
the discrimination of features.
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Table 4. The classification accuracy of different features.

Features Baseline TPLBP Cascaded Fused

Classification accuracy (%) 85.70 83.80 91.01 93.61

5.3. Comparisons with Other Methods

Table 5 shows the classification accuracy of different algorithms. In reference [36], two typical
classification approaches, Sparse Representation-based Classification (SRC) and SVM, were applied for
10-class targets recognition on MSTAR dataset, obtaining the classification accuracy 86.73% and 89.76%,
respectively. Reference [37] proposed a convolutional neural network (CNN) to extract features from
128 × 128 SAR images to train a softmax classifier, in which the classification accuracy with the same
experiment settings was up to 92.3%, which it is lower than the accuracy achieved by the proposed
algorithm. A comparison of classification accuracy of 10-class targets was plotted in Figure 9b, which
shows that the proposed algorithm has better classification accuracy than the other algorithms’ in six
target categories. Although the other four categories are slightly lower than with the other algorithms,
the classification accuracy is still acceptable.

Table 5. The classification accuracy of different algorithms.

Algorithms SVM [36] SRC [36] CNN [37] SAE Proposed Method

Classification accuracy (%) 86.73 89.76 92.30 93.61 95.43

To display the advantages of the feature fusion algorithm on time complexity and classification
accuracy, after pre-processing with ZCA whitening, the 128 × 128 SAR images were flattened
into one-dimensional vectors and were directly fed into a SAE comprised of two hidden layers.
The classification accuracy obtained from the SAE is 93.61%, which is lower than the proposed
algorithm. Table 6 shows the 10-class targets confusion matrices of the SAE trained on images
and the proposed method. Compared with the SAE trained on images, the proposed method achieved
the same accuracy on BPM2 and T72 and higher accuracy on the rest of categories except for BTR70.
As is shown on Table 3, the baseline features and TPLBP features both have a relative low accuracy
classification on BTR70. Therefore, they provide less discriminative information for SAE to fuse, which
leads to a poor performance of proposed method.

Table 6. The 10-class targets confusion matrices of two methods.

SAE trained
on-images

BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234

BMP2 88.3 2.1 0.5 0.5 6.1 0.5 1.0 1.0 0.0 0.0
BTR70 0.5 92.9 0.0 0.5 5.6 0.0 0.0 0.0 0.5 0.0

T72 0.5 0.5 90.3 1.0 3.7 0.0 0.5 2.0 1.0 0.5
BTR60 1.5 4.2 0.5 87.7 5.1 0.0 0.5 0.5 0.0 0.0

2S1 0.0 1.8 0.4 0.0 90.5 1.8 0.4 0.7 4.4 0.0
BRDM2 1.0 0.4 0.4 0.4 0.0 96.7 0.7 0.0 0.0 0.4

D7 0.0 0.0 0.0 0.4 0.0 0.7 98.5 0.4 0.0 0.0
T62 0.0 0.4 0.4 0.4 0.4 0.7 0.7 90.5 0.4 6.1

ZIL131 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 99.2 0.0
ZSU234 0.0 0.0 0.0 0.0 0.0 0.0 1.8 1.1 0.4 96.7

The proposed
method

BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234

BMP2 88.3 1.5 4.1 4.6 0.0 1.0 0.0 0.0 0.0 0.5
BTR70 1.0 90.8 0.5 7.2 0.0 0.5 0.0 0.0 0.0 0.0

T72 7.7 0.5 90.3 1.5 0.0 0.0 0.0 0.0 0.0 0.0
BTR60 1.0 5.1 0.5 90.3 0.5 2.6 0.0 0.0 0.0 0.0

2S1 0.0 0.0 0.0 0.0 98.2 0.0 0.3 1.5 0.0 0.0
BRDM2 2.1 0.4 0.0 0.4 0.0 97.1 0.0 0.0 0.0 0.0

D7 0.0 0.0 0.0 0.0 0.0 0.0 98.5 0.4 0.7 0.4
T62 0.0 0.0 0.0 0.0 0.0 0.0 0.7 98.2 1.1 0.0

ZIL131 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 99.2 0.0
ZSU234 0.0 0.0 0.0 0.0 0.4 0.0 1.8 0.7 0.0 97.1
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As shown in Table 7, the training time and testing time of the two algorithms mentioned above
were compared. Experiments are implemented with Matlab R2014a on a computer equipped with a
3.4 GHz CPU and 64 G RAM memory. The proposed method is almost 12 times faster than SAE in
training time and 72.5 times faster in testing time. Consequently, feature fusion based on SAE can
effectively reduce the number of neurons, simplify the network structure and improve the efficiency of
algorithms with limited training samples.

Table 7. Training time and testing time of different methods.

Consumed Time Training Time (s) Testing Time (s)

SAE trained on images 4254.53 3.19
Proposed method 340.69 0.044

6. Conclusions

In this paper, we have proposed a feature fusion method based on SAE for SAR automatic target
recognition. Baseline features and TPLBP features are fused in a well-designed SAE and further
fed to a softmax classifier for recognition. Experiments are conducted to explore the influence of
configuration of the SAE used in feature fusion, and a 95.43% classification accuracy is obtained.
Utilizing feature visualization, it reveals that the SAE changes the spatial distribution of raw features
during the process of feature fusion, which increases the inter-class distance and reduce the intra-class
distance. Additionally, the comparison of classification accuracy among different features shows that
the baseline features and TPLBP features have good complementarity and the fused features have
better discrimination. Compared with other algorithms, the proposed method simplifies the network
structure and improves the recognition accuracy and time efficiency. Since the selection of features
has a great impact on target recognition, in order to choose the features with more fusion value and
further enhance the performance of recognition, we will conduct further studies on the selection of an
appropriate feature selection algorithm and the relationships between different features.
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