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Abstract
Most mutations are deleterious and require energetically costly repairs. Therefore, it seems

that any minimization of mutation rate is beneficial. On the other hand, mutations generate

genetic diversity indispensable for evolution and adaptation of organisms to changing envi-

ronmental conditions. Thus, it is expected that a spontaneous mutational pressure should

be an optimal compromise between these two extremes. In order to study the optimization

of the pressure, we compared mutational transition probability matrices from bacterial

genomes with artificial matrices fulfilling the same general features as the real ones, e.g.,

the stationary distribution and the speed of convergence to the stationarity. The artificial

matrices were optimized on real protein-coding sequences based on Evolutionary Strate-

gies approach to minimize or maximize the probability of non-synonymous substitutions

and costs of amino acid replacements depending on their physicochemical properties. The

results show that the empirical matrices have a tendency to minimize the effects of muta-

tions rather than maximize their costs on the amino acid level. They were also similar to the

optimized artificial matrices in the nucleotide substitution pattern, especially the high transi-

tions/transversions ratio. We observed no substantial differences between the effects of

mutational matrices on protein-coding sequences in genomes under study in respect of dif-

ferently replicated DNA strands, mutational cost types and properties of the referenced arti-

ficial matrices. The findings indicate that the empirical mutational matrices are rather

adapted to minimize mutational costs in the studied organisms in comparison to other matri-

ces with similar mathematical constraints.

Introduction
Mutations occurring in DNA sequences are an inherent component of biological evolution.
They, together with recombinations, generate a genetic variation which is subsequently sub-
jected to selection. The most frequent mutations are substitutions, i.e., single nucleotide
changes, which may be spontaneous, induced by radiation or chemicals, or introduced during
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the replication and repair of DNA. One of the most evident effects of mutations that arise dur-
ing replication is DNA asymmetry. It manifests itself in different nucleotide and codon compo-
sitions of the diversely replicated DNA strands, called leading and lagging. This effect comes
from various synthesis mechanisms of the DNA strands [1, 2], and is observed in most bacte-
rial genomes, [3–11]. It has also significant consequences on various divergence rates of the
genes located on the differently replicated DNA strands [12–17] as well as stability of their
positions [18–20] and distribution on chromosomes [21, 22].

In practice, however, it is very hard to detect the effect of spontaneous mutations because
many of them are eliminated by selection, especially those that happen in protein-coding
sequences. Deleterious changes, such as nonsense mutations, which generate premature stop
codons can lead to truncation of protein sequences. The harmfulness of other mutations, called
missense, which change one coded amino acid to another depend on the differences in physi-
cochemical properties of the substituted amino acids. The more these amino acids differ, e.g.,
in size, charge or hydrophobicity, the more harmful their replacement. Since many amino
acids are encoded by two, three, four or six different codons, called synonymous, there are
some mutations, called silent or synonymous, that do not change encoded amino acids and,
consequently, protein composition and structure.

Mutations occurring in biological DNA sequences are the result of coevolution between
mutational pressure and selection constraints around the genetic code [23–25], and can be
optimized to some extent during evolution; see for review: [26, 27]. On the one hand, we
should expect a tendency “for selection” to decrease the mutation rate because most mutations
are deleterious and generate energetically costly repairing [28, 29]. On the other hand, muta-
tions are responsible for genetic diversity, which is necessary for the adaptation of organisms to
changing environments on the evolutionary scale. Therefore, an elevated level of mutation rate
should be also expected in these cases [30–32]. This trade-off between the necessity to preserve
accurate genetic information and requirements for adaptational flexibility indicates that some
optimal mutation pressure can evolve [27, 33, 34]; however, this may depend on fitness land-
scape [35] and population structure [36].

The selection can operate to refine DNA replication and repair [37–43], which can influence
the global mutation rate in organisms. An improvement of fidelity of DNA polymerases in
DNA synthesis as well as effectiveness of their proofreading properties and post-replicative
DNAmismatch repair mechanisms would decrease the general mutation rate. Otherwise, the
rate would increase. The pattern of nucleotide substitution, i.e. relative rates of change from
one type of nucleotide to another, can be also subjected to the optimization. For example, tran-
sitions, i.e., substitutions for the same chemical type of nucleotides, purine for purine or pyrim-
idine for pyrimidine, often cause fewer changes in coded amino acids or their properties than
transversions, i.e., substitutions for different type of nucleotides, purine for pyrimidine and vice
versa. Therefore, we can expect that a higher transitions/transversions ratio will be favored in
mutational pressures.

The problem of optimization related to mutations has been studied in the context of the
genetic code origin and its evolution [24, 25, 44–47]. It was postulated that many more assign-
ments of codons to amino acids existed at the dawn of life on Earth; however, they were lost
because they did not effectively minimize harmful effects of mutations on protein-coding
sequences and translation errors. Optimization of codon usage has also been analyzed in terms
of the reduction of deleterious mutational effects [46, 48, 49].

Since a significant fraction, usually more than 90% of bacterial genomes constitute protein-
coding sequences [50], it is worthwhile to study the optimization of mutation pressure in
respect to proteins. In this approach, we studied whether empirical mutational pressures
expressed by transition probability matrices for particular bacterial genomes are better
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optimized to protein-coding sequences than other such types of matrices characterized by the
same stationary distribution and the convergence speed to the stationarity. The optimization
was considered according to probability of non-synonymous substitutions and different costs
of amino acid substitutions occurring in products of protein-coding sequences.

Materials and Methods

Mutational transition probability matrices
We tested empirical mutational pressures described by transition probability matrices which
were detected in six bacterial genomes by [15, 51, 52]. It is important in our studies to the
matrices reflect neutral mutations in the absence of selection. To achieve that as much as possi-
ble, the authors in the inferring these matrices made a big effort to eliminate the potential influ-
ence of selection. The matrix for Borrelia burgdorferi was obtained by comparison of gene
sequences with their potential pseudogenes found in intergenic regions [51], whereas matrices
for Escherichia coli, Chlamydia muridarum, Chlamydia trachomatis, Rickettsia, Staphylococcus
aureus and Streptococcus pyogenes genomes were inferred from comparison of synonymous
sites in orthologous genes from closely related species or strains [15, 52]. However, there is a
subset of highly expressed genes in which also synonymous substitutions are subjected to selec-
tion because of some preferences in codon usage, which is positively correlated with tRNA con-
tent in cells and the rate of translation [53–58]. Therefore, the authors removed the top 10%
genes with most biased codon usage, expected to be the most highly expressed, to obtain the
sites subjected to neutral substitutions. In our studies, we considered matrices for differently
replicated DNA strand, leading and lagging separately, because they are subjected to various
mutational patterns.

The matrices determine a unique homogeneous Markov chain, which characterizes the pro-
cess of nucleotide substitutions and converges to the stationary distribution (Table 1). We used
basic concepts of linear algebra and theory of Markov processes to investigate the properties of
empirical matrices and define a class of artificial transition probability matricesM with similar
properties. The artificial matrices were used as a reference to the empirical ones. The mathe-
matical properties of the matrices are related to the stationary distribution and spectral decom-
position of transition probability matrix [59–61].

It is well known from linear algebra and theory of Markov processes that every finite posi-
tive transition probability matrix P has a unique spectral decomposition

P ¼ ALA�1; ð1Þ

where: A and A-1 are matrices whose rows/columns consist of right/left eigenvectors, respec-
tively; Λ is a diagonal matrix with eigenvalues on its diagonal. The eigenvalues of the matrices
are the solution of the characteristic equation. Therefore, there are four eigenvalues and four
right/left eigenvectors for the matrix P. In general, some of the eigenvalues could be complex,
not real numbers. The stationary distribution of the Markov process π is the left eigenvector
(i.e., πP = π) and corresponds to the maximum of eigenvalues, which is always equal to 1 in the
case of transition probability matrix. The second largest eigenvalue is responsible for the speed
of convergence of Markov process to the stationary distribution, generated by P, which is a
direct consequence of the Perron-Frobenius theorem [59–61]) Using these properties, we took
into account the classM of transition probability matrices P = (pij), i, j 2 {A,T,G,C}, where pij
denotes the probability of substitution from a nucleotide i to a nucleotide j, and A, T, G, C are
nucleotides: adenine, thymine, guanine and cytosine, respectively. Each matrix P 2M is
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expressed by an equation:

P ¼ ALATP; ð2Þ
where A is a real valued orthogonal matrix. Λ is a diagonal matrix with fixed the first and the
second eigenvalue.P is a diagonal matrix with the empirical stationary distribution π = {πA,
πT, πG, πC} on its diagonal. A-1 = ATP, which means that A is orthogonal in terms of stationary
distribution. The Eq (2) is the special case of the Eq (1) and a general representation of the
probability matrix P for a time-reversible Markov process [60]. Thanks to the Eq (2) it is very
convenient to easily generate at random a sample of matrices from the classM, which is crucial
from the computational point of view. Moreover, it is generally accepted in phylogenetic stud-
ies [62, 63] that the time reversible matrix is a very good description of the real substitution
process and it is not necessary to apply more general unrestricted models with larger number
of parameters, which could cause over-parameterization.

To search a wide class of possible alternatives to the empirical matrices in the class of time
reversible Markov processes we applied the same stationary distribution and the same restric-
tions on some eigenvalues. We assumed that the second eigenvalues of artificial matrices are
the same as in empirical matrices, which corresponds to the same time scale for stochastic pro-
cesses generated by these matrices. In other words, it means that their stationary distributions
converge with the same speed. In the representation (2), the third and the fourth eigenvalues
are real variables. We tested three constraints on these eigenvalues to check a possible influence
of these assumptions on obtained results: (i) all generated matrices had a constant probability

of nucleotide substitutions under the stationary state (i.e.,
X

i2fA;T;G;Cg
pið1� piiÞ ¼ const:) as a

corresponding empirical matrix (constant assumption), (ii) all generated matrices had the
same eigenvalues as a corresponding empirical matrix (equal assumption), (iii) all generated
matrices had the same sum of their eigenvalues as a corresponding empirical matrix (trace
assumption).

Fitness function
We considered several fitness functions F to investigate the influence of mutational matrices
found for particular bacterial genomes on protein-coding sequences lying on the leading and
lagging DNA strands in the corresponding genome (S1 Table). Sequences of these genes were
downloaded from the GenBank database [64] and a decision about the location of these genes
on the DNA strands was deduced according to the DNA asymmetry calculated in the Oriloc
software [65]. Sequences from closely related genomes for which one mutational matrix was
deduced were considered as one set.

Table 1. Nucleotide stationary distribution of leading and lagging strandmatrices for studied genomes.

Genome Leading strand Lagging strand

A T G C A T G C

Borrelia burgdorferi 0.32 0.49 0.14 0.06 0.49 0.32 0.06 0.14

Chlamydia muridarum 0.24 0.25 0.28 0.22 0.22 0.23 0.29 0.26

Chlamydia trachomatis 0.23 0.21 0.29 0.26 0.25 0.25 0.25 0.24

Escherichia coli 0.25 0.33 0.25 0.18 0.27 0.31 0.21 0.22

Rickettsia species 0.30 0.31 0.21 0.19 0.33 0.27 0.24 0.16

Staphylococcus aureus 0.41 0.39 0.12 0.08 0.35 0.45 0.09 0.11

Streptococcus pyogenes 0.33 0.42 0.12 0.13 0.30 0.40 0.09 0.20

doi:10.1371/journal.pone.0130411.t001
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In the functions F, we took into account the probability of non-synonymous substitutions
and the mean value of amino acid substitution cost with and without nonsense mutations.
Therefore, the optimizing matrices were tested on sites different from those used in inferring
the empirical mutational matrices, which were derived from synonymous sites. The probability
of non-synonymous substitutions was calculated based on the empirical codon frequency and
the probability of change of one codon to another, coding different amino acids. The probabil-
ity of the codon change was realized by a single nucleotide mutation based on the appropriate
nucleotide substitution matrix. In the calculation of the mean value of the amino acid substitu-
tion costs, we additionally multiplied the probability of the codon change by a value reflecting
differences between the amino acids. These differences were based on several amino acid scor-
ing matrices and indices describing various physicochemical and biochemical properties of
amino acids: chemical distance [66], hydropathy index [67], amino acid pair distance [68],
EMPAR matrix [69] and polar requirement matrix [70]. All the matrices and indices were
downloaded from the AAindex database [71]. The matrices and indices include only knowl-
edge about properties of amino acids without any influence of underlying nucleotide muta-
tions. When substitutions of stop codon were considered, we assumed their cost as the highest
value of all amino acid substitution costs in the given measure.

To assess the optimality of empirical mutational matrix and easily compare the results for
different genomes, we normalized the obtained values of fitness function according to the for-
mula:

Fnorm ¼ ðFemp � FminÞ=ðFmax � FminÞ; ð3Þ

where: Femp is the value of fitness function for the empirical matrix, Fmin is the smallest and
Fmax the largest value of fitness function found for the artificial matrices under given condi-
tions. Clearly, Fnorm = 0 indicates that the empirical matrix minimizes costs of mutation just as
the best artificial matrix, whereas Fnorm = 1 means that the empirical matrix maximizes the
effect of mutations just as the best generated matrix.

Searching for the extreme values of fitness function
To find the maximum or minimum value of a given function F for artificial mutational matri-
ces, we used the Evolutionary Strategies (ES) approach [72, 73]. This technique is an adequate
tool in the finding solution of optimization problems, where the search space is not exactly
defined and the solution is hard to find analytically. Similarly to the classical ES procedure, we
started with the population of 100 random candidate solutions, i.e., transition probability
matrices and carried out simulations according to the ES principles. The matrices at the initiali-
zation stage were computed according to the Eq (2). Three eigenvectors, which constitute
matrix A, were selected at random and orthogonalized according to the Gramm-Schmidt
orthogonalization procedure. The third and the fourth eigenvalue, which are necessary to well
define the matrix Λ were selected at random based on one of three assumptions (see above).
Unfortunately, this method does not guarantee to obtain always a probability transition matrix
because negative elements can appear. Therefore, we had to repeat this procedure up to the
valid probability matrix was generated.

At each generation step, we applied a mutation and selection procedure. The process of
mutation introduction was realized by a modification of a matrix (an individual), which was
done by a random shift of eigenvectors and/or two eigenvalues according to the normal distri-
bution N(0,σ). The scale parameter σ = 0.3 was tuned in initial simulation tests to obtain a
quick convergence to the optimal solution. We run the Gramm-Schmidt orthogonalization
procedure so many times to obtain a probability transition matrix.
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In the selection stage, the half of the worst candidate solutions (according to their F values)
were deleted and replaced by survived individuals. Simulations were run over 10,000 steps. The
length of the simulations proved sufficient because all important parameters stabilized till this
time (S1 Fig). Finally, the best matrices under a given criterion were extracted from the
population.

In S1 Fig, we presented a typical simulation run, which was described by the average, mini-
mum and maximum value of the fitness function F, calculated from the population of 100 indi-
viduals in every generation. It is clear that all considered statistics increased sharply about the
500th simulation steps and then remained stable until the end of the simulation despite small
fluctuations of the minimum. To check the stability of the algorithm, we compared simulations
with the same parameters but under different random seeds (S2 Fig). These simulations con-
verged to the same value of fitness function.

Comparisons of empirical and optimized matrices by Principal Component Analysis (PCA)
and Kruskal-Wallis test were carried out in Statistica (StatSoft Inc. 2011, version 10, www.
statsoft.com). In PCA, we assumed a covariance matrix in the calculation of principal
components.

Results
The aim of our study was to test to what extent spontaneous mutational pressures described by
transition probability matrices are optimized according to harmful effects on protein-coding
sequences. We considered six mutational matrices inferred from various bacterial genomes (S1
Table). Their effects were measured by probability of non-synonymous substitutions and costs
of amino acid substitutions with and without nonsense mutations. The amino acid costs were
described by different matrices and indices, which characterized various physicochemical and
biochemical properties of amino acids. As a reference set to the empirical mutational matrices,
we used optimized matrices that were initially randomly generated. For their generation, we
applied spectral representation of time reversible Markov processes, which fulfilled the
assumed conditions. Our model allowed us to control several parameters of the Markov pro-
cess such as the speed of convergence to the stationary distribution and probability of substitu-
tions in the stationary state. The generated matrices had the same stationary distribution as
well as the first and the second eigenvalues as the empirical matrices. However, the third and
the fourth eigenvalue were chosen according to three additional claims. The constant assump-
tion meant that all generated matrices had the constant probability of nucleotide substitutions
under stationarity as a corresponding empirical matrix. The equal assumption indicated that
all generated matrices had all the same eigenvalues as the empirical matrix. Finally, the trace
assumption meant that all generated matrices had the sum of their eigenvalues as the empirical
matrix. Using the modified Evolutionary Strategy approach, we searched the space of randomly
generated matrices to find the best optimized matrices, i.e., maximizing or minimizing harmful
effects on protein-coding sequences expressed by a fitness function. Finally, the empirical
mutational matrices were compared with the solutions found.

General comparison of empirical and optimized matrices
In the example shown in Fig 1, we presented values of a given fitness function F for three types
of assumptions on eigenvalues. It is visible that the value for empirical leading strand matrix
from Borrelia burgdorferi is located closer to the smallest fitness function than to the largest
value. It indicates that the empirical matrix is to some extent optimized to minimize the proba-
bility of non-synonymous substitution. To easily compare results between different genomes,
measures of mutation effect and assumptions for the third and fourth eigenvalues, we
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normalized the value of fitness function comparing empirical matrix value with values for opti-
mized matrices (Eq 3). Briefly, the normalized fitness function (Fnorm) approaching 0 indicates
that the empirical matrix has a tendency to minimize costs of mutations, whereas Fnorm
approaching 1 means that this matrix maximizes the effect of mutation on protein-coding
sequences. Sample results for selected conditions were shown in Tables 2 and 3.

Fig 2 presents a distribution of Fnorm values for all 231 combinations of genomes, different
measures of mutational effect on protein-coding genes and three assumptions on eigenvalues
of the generated matrices for two DNA strand separately. For all these combinations, the

Fig 1. Fitness function for three assumptions on eigenvalues. Comparison of the fitness function
(measured by the probability of non-synonymous substitutions) for the B. burgdorferimutational matrix from
the leading strand (grey dot) with the largest (upper whiskers) and the smallest (lower whiskers) values found
for artificial matrices considering three types of assumptions on eigenvalues.

doi:10.1371/journal.pone.0130411.g001

Table 2. The normalized fitness function for non-synonymous substitutions.

Genome Assumption on eigenvalues

constant equal trace

Borrelia burgdorferi 0.190 0.238 0.215

Chlamydia muridarum 0.170 -0.004 0.161

Chlamydia trachomatis 0.161 0.042 0.155

Escherichia coli 0.128 -0.010 0.124

Rickettsia species 0.249 0.131 0.254

Staphylococcus aureus 0.270 0.206 0.287

Streptococcus pyogenes 0.238 0.163 0.284

The normalized fitness function was measured by the probability of non-synonymous substitutions for

leading strand matrices from seven genomes and three types of assumptions on eigenvalues.

doi:10.1371/journal.pone.0130411.t002
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empirical mutational matrices were closer (Fnorm was lower than 0.5) to the artificial matrices
minimizing costs of mutations than to the matrices maximizing them. The leading strand
matrices were slightly better optimized (the mean Fnorm: 0.202, the range: -0.010 to 0.487) than
the lagging strand matrices (the mean Fnorm: 0.212, the range: -0.006 to 0.471). The empirical
leading strand matrices showed Fnorm < 0.25 in more than 73% of tested conditions, whereas
the lagging strand matrices in more than 67% of conditions. It indicates slightly better minimi-
zation of the leading strand matrices. The largest Fnorm value (0.487) was for the Chlamydia

Table 3. The normalized fitness function for costs of amino acid substitutions.

Genome Assumption on eigenvalues

constant equal trace

AA AA+Stp AA AA+Stp AA AA+Stp

Borrelia burgdorferi 0.266 0.209 0.015 0.010 0.144 0.121

Chlamydia muridarum 0.182 0.193 0.246 0.265 0.221 0.221

Chlamydia trachomatis 0.216 0.231 0.320 0.360 0.217 0.234

Escherichia coli 0.125 0.165 0.074 0.147 0.058 0.145

Rickettsia species 0.225 0.218 0.176 0.171 0.198 0.201

Staphylococcus aureus 0.245 0.279 0.019 0.017 0.142 0.109

Streptococcus pyogenes 0.289 0.210 -0.001 0.048 0.115 0.114

The normalized fitness function measured by the mean cost of amino acid substitutions without (AA) and with (AA+Stp) stop codons using polar

requirement for the leading strand matrices from seven genomes and three types of assumptions on eigenvalues.

doi:10.1371/journal.pone.0130411.t003

Fig 2. Distribution of normalized fitness function for empirical matrices. The distribution of normalized
fitness function Fnorm for all 231 combinations of genomes, assuming different measures of mutational effect
on protein-coding genes and three assumptions on eigenvalues of generated matrices for two differently
replicated DNA strands.

doi:10.1371/journal.pone.0130411.g002
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trachomatis leading strand matrix compared with the best artificial matrices optimized accord-
ing to the equal assumption on eigenvalues and the costs of amino acids substitutions consider-
ing their hydrophobic properties. What is more, in four cases, the applied algorithm found no
better artificial matrix than the empirical one, which performed slightly better than the best
artificial matrix (Fnorm obtained negative values from -0.001 to -0.01). Such empirical matrices
were the leading strand matrix for Streptococccus pyogenes tested according to the costs of
amino acids substitutions under polar requirement, as well as the lagging strand matrix for C.
trachomatis and the leading strand matrices for C.muridarum and Escherichia coli tested
according to the probability of non-synonymous substitution. All these instances fulfilled the
equal assumption on eigenvalues, i.e., the most restrictive one, which can explain the close sim-
ilarity between the empirical and found optimized matrices.

To check if in these four cases the algorithm got stuck in a local minimum and was unable
to find better solution, we carried out 100 additional simulations with different seeds. However,
none of them produced matrices that were better optimized than the empirical ones. Moreover,
the algorithm always converged almost to the same solution. The percentage difference
between extreme values of fitness function of these solutions was extremely small, from 0.002%
(for S. pyogenes) to 0.026% (for E. coli). We also checked if initial matrices were, in fact, ran-
domly generated and represented a wide range of starting points for the algorithm to search a
vast space of potential solutions. In fact, the range of their fitness function was from 46 (for E.
coli) to 1326 (for S. pyogenes) times larger than the found solutions (Fig 3). In Fig 4, we also
visualized the matrices by Principal Component Analysis (PCA), which showed that the initial
matrices represented a wide spectrum of starting points, whereas the minimizing matrices were
restricted to a very small region. Interestingly, the empirical matrix was placed in the middle of
the solutions found.

We observed a small difference in the value of normalized fitness function Fnorm between
genomes. Considering three types of assumptions on eigenvalues, E. colimatrices from two
DNA strands were on average better optimized according to the probability of non-synony-
mous substitutions (0.06) than Chlamydiamatrices (0.11) and other genomes (0.21 – 0.28).
However, considering costs of amino acids substitutions, Chlamydiamatrices were on average
slightly worse (0.27 and 0.28 for C.muridarum and C. trachomatis, respectively) than other
genomes (0.17 – 0.19). Nevertheless, these results indicate that there are no significant differ-
ences between optimization of matrices coming from different genomes and tested on different
fitness functions.

A small difference in Fnorm was found considering assumptions on the third and fourth
eigenvalues of the generated matrices. For the probability of non-synonymous substitutions
and the equal assumption, Fnorm was nearly on average two times smaller (0.13) than for con-
stant (0.20) and trace assumptions (0.23) for all considered matrices. For different costs of
amino acid substitutions, the normalized fitness function was on average larger for the constant
assumption (0.26) than for the trace and the equal assumptions (0.18 for these two cases).
Small values for the equal assumption can result from the most restrictive conditions on
eigenvalues.

Considering different measures of mutation effects on protein-coding sequences, we found
that the empirical matrices were generally the best optimized according to EMPAR matrix [69]
(Fnorm = 0.16), next to polar requirement [70] (0.17) and non-synonymous substitutions
(0.18). A slightly higher value of Fnorm = 0.24 was obtained for chemical distance [66], hydrop-
athy index [67] and amino acid pair distance by [68]. We did not find a significant difference
between Fnorm calculated for amino acid costs with or without nonsense mutations, with the
exception of the equal assumption (0.20 vs 0.17, respectively).
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Properties of empirical and optimized matrices
One of parameters that was used to describe spontaneous mutational pressure is transitions to
transversions ratio. The expected ratio should be 1:2, if all nucleotide substitutions happen
with the same probability. However, transitions are usually observed several times more often
in real sequences than transversions [74]. The observed bias results from higher rate of chemi-
cal changes between structurally similar nucleotides and more probable transition substitutions
introduced during DNA replication. In addition to that, transitions are less harmful than trans-
versions in terms of changing coded amino acids or their properties and, therefore, more often
accepted. Thus, we should observe that matrices minimizing costs of amino acid and non-syn-
onymous substitutions are characterized by the high transitions/transversions ratio compared
to maximizing matrices. Actually, the ratio for the minimizing matrices was on average about
nine to ten times larger than for maximizing ones and did not differ significantly between
matrices for two DNA strands (Table 4). Interestingly, the average ratio for empirical matrices
was even bigger than that for the minimizing matrices. Although the distribution of the ratio
for the minimizing matrices was quite wide, almost 72% of the values for the leading strand
matrix were larger than one and, likewise, 80% of the values for the lagging strand matrix were
also greater than one (Fig 5). In contrast to that, none of the maximizing matrices exceeded
this value and all but one were smaller than 0.5. The empirical matrices well corresponded to
the distribution of the minimizing matrices.

Examples of optimized matrices in comparison to corresponding empirical matrix were pre-
sented in S2 Table. To easily visualize matrices according to all possible 12 nucleotide

Fig 3. Distribution of fitness function for artificial matrices for S. pyogenes. The distribution of fitness function F for 100 artificial starting matrices (with
equal assumption) at the beginning of simulation and after minimization (1000 steps) according to the costs of amino acids substitutions under polar
requirement. The value for the empirical leading strand substitution matrix from S. pyogenes (0.923161) was indicated by the arrow.

doi:10.1371/journal.pone.0130411.g003
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Fig 4. PCA of S. pyogenes empirical matrix and artificial matrices. (A) The Principal Component Analysis
of artificial starting matrices (with equal assumption) at the beginning of simulation and after the minimization
according to the costs of amino acids substitutions under polar requirement. The empirical leading strand
substitution matrix from S. pyogeneswas indicated by the open circle. (B) The enlarged part of A focused on
the region occupied by the minimizing and empirical matrices.

doi:10.1371/journal.pone.0130411.g004
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substitutions (corresponding to elements of these matrices), we carried out Principal Compo-
nent Analysis to reduce the number of dimensions from 12 matrix elements to two main vari-
ables (Fig 6). Maximizing and minimizing matrices were clearly separated into two non-
overlapping groups by the first component, which indicates that they differ in their elements.
All empirical matrices were placed among the set of minimizing matrices, which indicates a
similar pattern (rate) of nucleotide substitutions described by the empirical and the optimized
matrices. There was also no difference in the distribution of matrices in respect to differently

Table 4. The ratio of transitions to transversions for different types of matrices.

Empirical matrices Minimizing matrices Maximizing matrices

leading lagging leading lagging leading lagging

Mean 1.88 1.80 1.38 1.49 0.15 0.14

Minimum 1.11 1.11 0.39 0.38 0.00 0.00

Maximum 2.18 2.14 2.99 2.75 0.53 0.46

The transitions/transversions ratio was calculated for seven empirical matrices and, in the case of optimizing matrices, for all 231 combinations of

genomes, assuming different measures of mutational effect on protein-coding genes and three assumptions on eigenvalues.

doi:10.1371/journal.pone.0130411.t004

Fig 5. Transitions/transversions distribution. The distribution of transitions to transversions ratio for empirical matrices as well as matrices maximizing
and minimizing costs of amino acid and non-synonymous substitutions. Data for two differently replicated DNA strands (leading and lagging) were
considered, separately.

doi:10.1371/journal.pone.0130411.g005
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replicated DNA strands. The largest correlation with the first (most discriminative) component
showed transversions: A!T (-0.73), T!A (-0.72), G!T (-0.69) and T!G (-0.59), as well as
transitions A!G (0.75) and G!A (0.80). The opposite signs at the correlation coefficients are
connected with a different influence of these variables on the first component and the separa-
tion of sets.

The transversions A!T and T!A had statistically significantly (Kruskal-Wallis test, p-
value< 0.001) smaller rates in the analyzed empirical and minimizing matrices than in the
maximizing matrices, whereas the transitions A!G, G!A, T!C and C!T were significantly
larger in the first-mentioned matrices than in the latter (p-value< 0.0032) (Fig 7). It is worth
emphasizing that we did not find significant differences between the empirical and minimizing
matrices for any of these substitutions. Transitions T!G and G!T also showed smaller values
for the empirical and minimizing matrices than the maximizing ones. Differences between the
minimizing and the maximizing matrices for these two substitutions and between the empirical
and maximizing matrix for the lagging strand in the case of G!T were statistically significant
(p-value = 0.043). The other substitutions did not show significant differences between the

Fig 6. PCA of empirical and optimized artificial matrices. The Principal Component Analysis of the empirical substitution matrices as well as 231 matrices
maximizing and minimizing costs of amino acids and non-synonymous substitutions. Data for two differently replicated DNA strands (leading and lagging)
were considered, separately.

doi:10.1371/journal.pone.0130411.g006
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matrices in almost all cases, although the empirical matrices were characterized by the smallest
rate of transversions G!C and C!G.

Three most frequent substitutions of the minimizing leading and lagging strand matrices
were the same but differed in proportions. These were transitions: C!T, G!A and A!G,
with percentages 34%, 33% and 18% for the leading strand and 26%, 52% and 11% for the lag-
ging strand (S3 Table). The same substitutions dominated also in four, one and three of seven
empirical matrices from the leading strand, respectively. For the lagging strand matrices, C!T
and G!A dominated in two and four cases, respectively. In contrast to that, these three substi-
tutions were selected as the rarest substitution in 53% (for the leading strand) and 61% (for the
lagging strand) of maximizing matrices. In turn, three the least frequent substitutions were
T!G (32%), A!C (20%) and G!C (14%) in the minimizing leading strand matrices, whereas
in the minimizing lagging strand matrices, T!G (39%), C!G (17%) and A!T (11%). The
T!G and A!C transversions had also the smallest rate in two empirical leading strand matri-
ces and G!C substitution in five of them. In the case of the empirical lagging strand matrices,
four had C!G and three G!C as the rarest substitution but none T!G or A!T. However,
three the least frequent substitutions in 66% of the minimizing leading strand matrices were
selected as the most dominant mutation in only 13% of maximizing matrices (A!C in none of
them). The proportions for the lagging strand matrices are 57% and 37%, respectively. The lack
of the full correspondence between the rarest substitutions in the minimizing matrices and the
most common substitutions in the maximizing ones, as could be expected, may result from the
same restrictions imposed on the generated matrices, e.g., stationary distribution and the same
speed of convergence to the distributions.

Discussion
The minimization of harmful effects of mutations can be achieved by a decrease in the global
mutation rate by evolution of high-fidelity polymerases, which select and incorporate nucleo-
tides into newly synthesized DNA strands [38, 39, 75]. The other adaptations can be more
effective mechanisms of mutation correction: exonucleolytic proofreading [43] and post-repli-
cative DNA mismatch repair [40, 41], which excise and replace incorrectly inserted bases. Here
we focused on more sophisticated aspects of this optimization, namely on the pattern of nucle-
otide substitutions, i.e., relative rates between changes of particular nucleotides. Such optimiza-
tion can be connected with changes in the quantity of nucleotides in the cellular dNTP pools
[76, 77] as well as preferences of polymerases and correction mechanism to particular nucleo-
tides [78–84], which may favor introduction of one nucleotide over another to DNA.

The nucleotide substitution patterns are usually described by transition probability matri-
ces. To assess the optimization of the empirical mutational matrices, we compared them with
the reference set of optimized artificial matrices. In contrast to the method used by Błażej et al.
[23], in which the class of General Time Reversible matrices with six parameters was consid-
ered as the reference set, here we analyzed a more convenient class of transition probability
matrices. In both cases, the generated matrices had the stationary distribution (the left eigen-
vector corresponding to the first eigenvalue) as the empirical matrix. However, in this
approach we also assumed the second eigenvalue (corresponding to the speed of convergence
to the stationarity) as in the empirical matrices, while the third and fourth eigenvalues could

Fig 7. Box-plots of nucleotide substitutions’ rates for empirical and optimized artificial matrices. The thick horizontal lines indicate median, the
colored boxes show quartile range and the whiskers determine the range without outliers. Data for two differently replicated DNA strands (leading and
lagging) were considered, separately.

doi:10.1371/journal.pone.0130411.g007
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vary. Thus, the empirical mutational matrices were compared with other matrices in their class
with similar mathematical properties.

The obtained results indicate that spontaneous mutational pressures in bacterial genomes,
described by transition probability matrices, are optimized to minimize rather than maximize
the frequency of non-synonymous substitutions and costs of amino acid replacements accord-
ing to their different physicochemical and biochemical properties. In all 231 analyzed cases, the
influence of mutational pressure on protein-coding sequences in comparison to the best opti-
mized artificial matrices, measured by the normalized fitness function, never exceeded 0.5 (in
this scale, 0 indicates that the empirical matrix minimizes costs of mutations as the best artifi-
cial matrix, whereas 1 means that this matrix maximizes costs of amino acid substitutions as
the best artificial matrix). Interestingly, in four cases the empirical matrix minimized the influ-
ence of mutation on protein-coding sequences slightly better than any optimized matrices. We
thoroughly tested if the applied algorithm got stuck in a local minimum during searches of the
best solution. However, 100 simulations with different seeds always converged to the same or
very similar solution.

It is interesting that empirical nucleotide mutation matrices showed a similar trend in the
minimization of harmful substitutions, despite generating different stationary distributions
and testing on different protein-coding sequences. This trend did not depend, or depended
very weakly, on the analyzed genomes, effects of mutations on protein-coding sequences and
assumptions on eigenvalues of artificial optimized matrices, to which the empirical ones were
compared. It indicates that various mutational pressures are similarly optimized to minimize
costs of mutations in different biological systems. We also did not find significant differences
between matrices from two differently replicated DNA strands (leading and lagging), although
the leading strand matrices were slightly better minimized than matrices from the lagging
strand. It may be related with the preferred location of genes that are essential for cell function-
ing (e.g., coding for ribosomal proteins) in the leading strand [21, 22]. The genes for ribosomal
proteins maintain conserved positions on bacterial chromosomes with the phylogenetic dis-
tance of compared genomes [18]. Moreover, it was observed a higher frequency of gene trans-
locations from the lagging to the leading strand rather than in the opposite direction [19] and
smaller rate of substitutions’ accumulation in the leading than lagging strand genes [12–15].

Both the empirical matrices and matrices minimizing mutational effects on protein-coding
sequences demonstrated the excess of transitions over transversions as it would be expected
because the latter have more harmful impact on proteins. Although the leading and lagging
strand matrices for the same genome are characterized by different nucleotide stationary distri-
butions (Table 1), they also showed similar patterns of nucleotide substitutions with the large
rate of transitions A!G, G!A, T!C and C!T as the minimizing matrices. It indicates that
the minimization of mutational costs is realized by the same relative rates.

Although most mutations are deleterious (especially those replacing amino acids with dif-
ferent properties), we should not expect the perfect minimization of mutational effects by
empirical matrices. The mutational pressure can approach two extremes, the minimization and
maximization [26, 27]. The pressure is minimized to decrease the number of harmful muta-
tions and cost of DNA repair. On the other hand, the pressure can be maximized to increase a
genetic variation and the number of profitable substitutions driven by positive selection, which
are necessary in changing environmental conditions and strong competition between organ-
isms. The mutations balance between these two extremes and obtain some optimal values spe-
cific for a given biological system (genome) [23]. In agreement with that, the analyzed
empirical mutational matrices, when compared with the optimized matrices, locate between
these two extremes showing, however, closer similarity to matrices that minimize costs of
mutations.
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