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Abstract: Polyurethane/graphene nanocomposites were synthesized using commercial thermoplastic
polyurethane (TPU, Apilon 52DE55), and two types of graphene derivatives: graphene nanoplatelets
(GNP) and reduced graphene oxide (RGO). Fourier Transformation Infrared Spectroscopy Fourier
Transformation Infrared Spectroscopy (FTIR) spectroscopy, TEM, and SEM microscopy and XRD
techniques were used to chemically and structurally characterize GNP and RGO nanofillers.
The properties of the new TPU nanocomposite materials were studied using thermal analysis
techniques (Dynamical Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC),
Thermogravimetric Analysis (TG)) to describe the influence of graphene nanofillers on polyurethane
matrix. Our investigation describes the comparison of two types of graphene derivatives, commercial
one (GNP) and synthesized (RGO) on thermoplastic polyurethanes. These nanofillers provides
opportunities to achieve compatibility with the TPU matrix. The property enhancements are
attributed commonly to high aspect ratio of graphene nanoplatelets and filler–polymer interactions
at the interface. The obtained nanocomposites exhibit higher thermal and mechanical properties due
to the good dispersion of both nanofillers into TPU matrix. It was found that the addition of 2 wt %
of the nanofiller could lead to a significant reinforcement effect on the TPU matrix. Also, with high
content of nanofiller (GNP and RGO), the Payne effect was observed.
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1. Introduction

Since the first scientific on the mechanical exfoliation of graphite into graphene monolayers by
scotch-tape, several interesting studies have been published on graphene [1–3]. Graphene has become
very popular research material during the last few years [2]. This method (scotch-tape approach)
of obtaining graphene is inefficient for large-scale production [4]; therefore, many efforts have been
undertaken to find a better way to get graphene monolayers. Promising large-scale methods of
graphene fabricate are bottom-up methods (especially epitaxially growth on SiC crystal, chemical
vapour deposition (CVD)), top-down methods, such as chemical, electrochemical, plasma-assisted,
and mechanical exfoliation [5]. These methods mainly differ in the quality and efficiency of the
obtained graphenes.

Bottom-up methods allow for the production of wafer graphene, which covers the demand of the
electronic industry. The high quality of graphene monolayer shows the high electrical conductivity
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and transparency of this material. Quality of graphene produced by bottom-up approach shows
well-builded one-layer structure without atomic defects [6]. The method of manufacturing this type
of graphene was developed and patented by Institute of Electronic Materials Technology in Warsaw,
Poland [7], and it is process of implementing at the industry scale. The main applications of these
graphenes are focused to apply in displays, solar cells [8], integrated circuits elements (transistors [9]),
and many other electronic devices.

Top-down approach of obtaining graphene is based on graphite as a raw material. In this way,
graphite is exfoliated as the result of breaking inter-plane π-π interactions of stacked graphene in
graphite crystal. Exfoliation can be carried in a mechanical, chemical, electrochemical, and plasma
assisted way. According to top-down production methods, the obtained graphenes can differ in
chemical and physical properties. The main differences are in crystal defects, various multi-layer
stacked structure, polydispersity of basal plane, and thickness. The monolayer structure of top-down
graphene can be folded and sharp-edged. We can also add function groups by various chemical
modifications. These modifications have a strong effect on the electrical, mechanical, and optical
properties of graphene obtained by top-down ways.

Top-down graphene is promising nanofiller for segmented polyurethane matrix. It can be
introduced to matrix via in-situ polymerization, solvent-methods and during extrusion [10–12],
or injection molding [8]. The addition of graphene allows for meeting the increasing requirements
put in many applications. Besides the improvement of mechanical properties [10–26] and thermal
stability [10,16,27,28], the modification of segmented polyurethanes by graphene can improve shape
memory effect [15,21,24,25,29–31], gas-barrier properties [19], and electrical conductivity [16,18,19,23,32].
Graphene-polyurethane nanocomposites can be used as a selective membrane in filtration [33],
piezoelectric sensors [34,35], actuators [30,36], or self-healing materials [20,37,38].

Elastomeric materials can be successfully modified with many nanofillers [39], especially
clays, CNT [40], or graphene derivatives [41,42]. These different nano-modificators could cause
high improvement in the properties (at low addition, up to 5%) of the polyurethane (PU) matrix
because of the interactions between polyurethane chains and fillers at the nano-scale levels. Also,
specific geometry (one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D)) of these
nanofillers [43] influence on the mechanical [44], thermal [44], or barrier properties [19] of polyurethane
nanocomposites. Simply unmodified nanofillers have limited use, because of the compatibility issues
of the polyurethane chains of hard and soft segments with the nano scale fillers. Therefore, the useful
list of nanofillers include some “defected” form of graphene, modified CNT, and organically modified
clays. The most important improvement of polyurethane matrix was achieved by using OMMT, CNT,
or graphene derivatives, which are widely investigated and presented into Table 1.

Table 1. Comparison of the improvements by the nanofilles on the polyurethane matrices.

Polyurethane
Matrix Nanofiller Content Processing

Method
Tensile

Strength
Thermal
Stability

Important
Improvement

TPU [45] OMMT 1.0 wt % melt Increased 7 to
27 MPa - E′ increased

TPU [46] OMMT 5.0 wt % melt Increased 488 to
908 KPa (RPA) - G′ increased,

5 wt % RPT

TPU [47] OMMT 1.0 wt % in situ Increased 32 to
47 MPa Increased 10 ◦C Tm increased

WBPU [48] A-CNT 1.5 wt % in situ Increased 7 to
9 MPa - 54 to 62 hardness

PU [49] SWNT 2.0 wt % in situ Increased 6 to
9 MPa Not changed Tg decreased

TPU [50] MWCNT 2.0 wt % melt Increased 2 to
3 MPa Increased 13 ◦C Increased

modulus
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Table 1. Cont.

Polyurethane
Matrix Nanofiller Content Processing

Method
Tensile

Strength
Thermal
Stability

Important
Improvement

TPU [19] TRG/iGO 1.6 vol % solution E′ increased - ×10 tensile
stiffness

TPU [51] GNPs 2.7 vol % solution decreased - -

PU [44] f-GNP 1.5 wt % solution Increased 17 to
23 MPa Increased 30 ◦C Enhanced shape

memory

TPU [43] RGO 0.1 wt % solution Increased 8 to
29 MPa Increased 6 ◦C 410% toughness

8% hardness

PU [52] GO 1.0 wt % solution Increased 40% - 280% Young
modulus (3 wt %)

PU [14] GO 4.0 wt % solution Increased 5 to
27 MPa - ×4.8 Young

modulus

PU [32] GNS 2.0 wt % in situ Increased 11 to
36 MPa Increased 40 ◦C 202% storage

modulus

Abbreviations: TPU—thermoplastic polyurethane; OMMT—organically modified montmorillonite; E′—storage
modulus; RPA—rubber process analyzer; G’—dynamic storage modulus; RPT—rheological percolation
threshold; Tm—melting temperature; WBPU—waterborne polyurethane; A-CNT—acid treated carbon nanotube;
SWNT—single-walled carbon nanotube; PU—polyurethane; Tg—glass transition temperature; MWCNT—multiwall
carbon nanotube; TRG—thermally reduced graphene oxide; iGO—isocyanate treated GO; GNPs—graphene
nanoplatelets; f-GNP—functionalized graphene nanoplatelets; GO—graphene oxide; RGO—reduced graphene
oxide; GNS—graphene nano-sheets.

Segmented polyurethanes contain flexible and rigid chains alternately in the polymer back bone.
The precursor of soft flexible segments is polymeric macromolecules with hydroxyl-end groups, while
rigid segments are obtained because of reaction diisocyanate with low-molecular diol or diamine.
Due to the chemical incompatibility between the two types of segments (soft and hard), segmented
polyurethanes are phase separated on a nanoscale. This phenomenon leads to the creation hard
and soft domains, in which hard domains (HS) are rich in rigid segments and soft domains (SS) are
rich in flexible chains. Hard domains are responsible for mechanical strength and hardness, and on
the other hand, soft domains provide elasticity [53]. Furthermore, hard domains act as a physical
cross-linking by the so-called reversible cross-links through hydrogen bonding interactions. Therefore,
these materials are excellent thermoplastic elastomers (TPUs), which allow them to be processed using
thermoplastic machinery such as extrusion and injection molding for techniques. The soft segments
provide elastic properties to behave like a rubber at ambient conditions.

The aim of this study is to explore the influence of graphene-like nano structured carbon fillers,
RGO (reduced graphene oxide), and GNP (graphene nanoplatelets) on the morphology and proprieties
of segmented polyurethane thermoplastic elastomers. The filler dispersion, filler orientation and
filler-filler networking (Payne effect) have been carefully studied and compared. Morphology-property
correlation has been established. Techniques such as high-resolution transmission electron microscopy
(HRTEM), DSC, TGA, XRD, Fourier Transformation Infrared Spectroscopy (FTIR), and UTM have
been employed to characterize the morphology and proprieties of the system. Theoretical models have
been used to fit the experimental data.

2. Experimental Section

2.1. Chemicals and Materials

In the following research graphite flakes, Micro 850 (99% at. C, Asbury Carbons, Asbury, NJ,
USA) was used as a precursor to obtain Graphite Oxide (GO). Also, potassium permanganate
(KMnO4, Stanlab, >99%), hydrogen peroxide (H2O2, 30% aq.), hydrochloric acid (H2SO4, 35–38% aq.),
phosphoric acid (H3PO4, 85%), sulfuric acid (H2SO4, 96%), ethanol (C2H5OH, 96%), and diethyl ether
((C2H5)2O), all from POCh S.A., Poland, were used in GO synthesis. Compressed argon (Ar, >99% mol.)
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was used in thermal reduction of GO to reduced graphene oxide (RGO). Graphene platelets (GNP)
were supplied by ACS Materials (Advanced Chemicals Supplier, Medford, OR, USA). Thermoplastic
polyester urethane (TPU) 52DE55 (Applicazioni Plastische Industriali S.P.A, Mussolente, Italy) was
used as a nanocomposite polymer matrix. N,N-Dimethylmethanamide (DMF) ((HCON(CH3)2, 99%,
POCh S.A., Gliwice, Poland) was used as a solvent in composite preparation.

2.2. Preparation of RGO

Reduced graphene oxide (RGO) was obtained in two-step synthesis. On the first step, graphite
oxide (GO) was obtained using modified Hummer’s method described in the following article [54].
On the second step, GO was thermally reduced to RGO at a temperature of 200 ◦C and normal pressure
for 15 min within argon. The efficiency of reduction was 30%.

2.3. Nanocomposites Preparation

Nanocomposites were prepared by the solvent blending method. TPU was dissolved by adding
it to DMF at temperature of 80 ◦C with continuously stirring, the final concentration of TPU/DMF
solutions was 25% by weight. Next, the proper amounts of nanofillers was added to prepared
solution and was homogenized by high-shear mixer (Omni Macro Homogenizer, 35 mm mixing
head diameter) with 2500 rpm for 30 min. Obtained polymer nanocomposite solutions, with good
quality of dispersion, were poured onto Petri pans and the DMF was fully evaporated at 70 ◦C for
72 h. The obtained nanocomposites were compression molded (under a pressure of 1 ton) to thin
film with 0.7 mm thickness at the temperature of 195 ◦C. Press molded films (Table 2) was used later
for characterization.

Table 2. Samples designation and nanofillers content.

Samples Nanofiller Content/wt %

PURE TPU 0%
0.5 TPU/GNP 0.5%
1.0 TPU/GNP 1.0%
2.0 TPU/GNP 2.0%
0.5 TPU/RGO 0.5%
1.0 TPU/RGO 1.0%
2.0 TPU/RGO 2.0%

3. Characterization

3.1. FTIR

Fourier Transformation Infrared Spectroscopy of polyurethane materials has been carried using
ThermoElectron Corporation (Waltham, MA, USA) Nicolet 8700 Spectrometer in the Attenuated Total
Reflectance (ATR, Gold State II) mode in the range of 500–4000 cm−1. The measurement was carried in
standard conditions (normal pressure and at room temperature).

3.2. XRD

Wide-angle X-ray scattering measurements of nanofillers and polyurethane composites were
performed using a Bragg–Brentano X’PERT PHILIPS diffractometer (Malvern Panalytical B. V., Almelo,
Netherlands), equipped with a Cu Anode X-ray tube and diffracted beam monochromator (40 kV,
30 mA, λ Cu Kα = 0.1542 nm). TPU samples were scanned in 2θ range from 5◦ to 35◦.

3.3. TEM

Microscopy analysis (for nanofiller GNP and RGO) was performed by means of STEM-EDX
technique using Transmission Electron Microscope FEI Europe (Eindhoven, The Netherlands), Tecnai
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F20 X-Twin coupled with EDX Spectrometer (Tecnai, Hillsboro, Oregon, USA) (samples were cut in
cryo-mode using ultramicrotome). HRTEM (for nanocomposite systems) is from JEOL (Tokyo, Japan),
model JEM-2100. The samples were sliced with LEICA EM UC7 Ultra Microtome with cryo-mode
(EM FC7, LEICA, Wiesral, Germany) using glass knife. The thickness of the samples was 150 nm and
the slices were deposited on a 200 mesh Cu Grid.

3.4. TG

Thermogravimetry (TG; (International Organization for Standardization) ISO 11358) of obtained
materials was conducted by Netzsch TG209F3 TG analyzer (NETZSCH, Selb, Germany). Degradation
process has been performed in the temperature range from 35 ◦C to 700 ◦C, nitrogen atmosphere with
gas flow rate 40 mL/min, and heating rate 20 ◦C/min.

3.5. DSC

Differential Scanning Calorimetry (DSC; ISO 11357-1, 11357-3) measurements have been carried
by Netzsch DSC209F1 instrument (NETZSCH, Selb, Germany) in the temperature range from −85 ◦C
to 250 ◦C. The samples weight was about 10 mg, and analysis was conducted in nitrogen atmosphere
with gas flow 40 mL/min. The samples were pre-heated (1st-heating) to eliminate thermal history,
then cooling and 2nd-heating at rate 10 ◦C/min.

3.6. Mechanical Properties (Dynamic and Static Mode)

Dynamical Mechanical Analysis (DMA; (American Society for Testing and Materials) ASTM
D4065, D7028-07) has been carried by TA Instruments DMA Q800 analyzer (DMA, West Kentucky,
PA, USA). Temperature investigation mode has been performed in uniaxial tension mode, in the
temperature range −100–100 ◦C, 1Hz frequency amplitude of deformation 20 µm and heating rate
4 ◦C/min using liquid nitrogen as cooling medium. Strain sweep analysis for Payne effect investigation
has been conducted in three different temperatures (35 ◦C, 55 ◦C, and 75 ◦C), in the same tension mode
and frequency of deformation, but in the amplitude range from 0.25 to 170 µm. The dimensions of thin
samples were 5.0× 5.0× 0.7 mm3. Tensile (in static mode) tests were carried out using universal testing
machine (UTM) Zwick/Roell Z020 (Zwick, Kennesaw, GA, USA). All of the tests were performed
according to ISO 527-1 standard.

4. Results and Discussions

4.1. Characterization of Graphene Nanofillers

Prepared reduced graphene oxide (RGO) nanofiller possess good exfoliated structures (Figure 1a).
Our previous study [55] confirmed that RGO nanofiller consists of about six layers (2 nm height) in a
stacking nanostructures. The other nanofiller–graphene nanoplatelets (GNP) possess many defects,
as observed in the form of holes within the structure (Figure 1b). GNP are seen as thin flakes with
diameters between 2 and 10 nm in agreement with our previous presented study [56]. The X-ray
diffraction analysis was performed on the GNP nanofiller and is characterized by the presence of
diffraction maximum at 2θ = 27◦ (Figure 1c) in agreement with the literature report [57]. For RGO
nanofiller, we have observed the absence of diffraction maximum, which could be correlated with
disordered structure of this material (Figure 1c).
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Figure 1. High resolution Transmission Electron Microscopy (TEM) images of graphene oxide (RGO) 
(a) and graphene nanoplatelets (GNP) (b) monolayers and Wide-angle X-ray scattering (WAXS) 
patterns of RGO and GNP nanofillers (c). 
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4.2.1. FTIR Spectroscopy 
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Figure 1. High resolution Transmission Electron Microscopy (TEM) images of graphene oxide (RGO) (a)
and graphene nanoplatelets (GNP) (b) monolayers and Wide-angle X-ray scattering (WAXS) patterns
of RGO and GNP nanofillers (c).

4.2. Characterization of Nanocomposites

4.2.1. FTIR Spectroscopy

Based on the FTIR spectroscopy, we have the interaction between nanofiller and PU segments
(soft and hard). The spectra of TPU and modified nanocomposite systems (Figure 2) are similar for both
modifications GNP and RGO. The weak absorption peaks, as observed at 3319 cm−1, were assigned
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to stretching vibrations of N–H groups that were present in both types of TPU spectra. The wide
base of the identified peak of NH stretching may be related to the presence of hydrogen bonds in the
TPU and GNP or RGO modified TPU structure. The very strong carbonyl stretching, in the case of
obtained TPUs and nanocomposite systems, appeared at 1726 cm−1. The FTIR analysis confirmed that
the performed synthesis lead to the generation of obtain TPUs [58].
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Figure 2. Fourier Transformation Infrared Spectroscopy (FTIR) spectra’s comparison for pure TPU
(Thermoplastic polyester urethane) and TPU nanocomposites (a) –NH2 band and (b) –C=O band.

4.2.2. Wide Angle X-ray Diffraction (WAXD)

Polyurethane matrix (non-modified material) possess good define, long-range ordering, crystalline
structure. What is more, these materials exhibit a micro-heterophase structure, which is not visible
as diffraction maxima measure using X-ray diffraction. These observations were also confirmed,
based on DSC results (see. Section DSC), where soft domain (SS) crystallization and melting point are
not visible. What is more, hard domain (HS) connections and bigger agglomerations cause visible
diffractogram maximum at 20◦ (Figure 3). It was visible hard segment (HS) orientation with the
addition of nanofiller into polyurethane matrix. Based on XRD diffraction maxima, lower crystalline
phase content is observed at about 20◦. This is connected with a lower area of segment interaction
with increasing nanofiller content. Introduced nanofillers (RGO or GNP) interact with soft and hard
segments to improve the direction of the HS, better separation of these domains and crystallization.
For RGO based nanocomposites is visible better ordered structures in comparison to the GNP one.
Especially at 17–25◦ and 10◦ maxima where TPU/GNP nanocomposites possess lower intensity,
but maxima are still separated. These behaviors could be connected with different size of nanofiller
(higher aspect ratio RGO over GNP), what cause block macromolecules and decrease the rotation and
crystal growing direction of hard domain. Second explanation can be connected with higher tendency
to infect of hard domain by RGO nanofiller and GNP one reviles in soft domains. What is more, in
hard domains, more RGO is observed than for GNP nanocomposite and this present nanofiller influent
on selective improvement. Otherworld’s nanofiller infect crystallinity of hard domains and block
ability to recrystallization. Diffraction curves (Figure 3) show visible maxima of GNP nanofiller what
can be related to difficult exfoliation process.
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Figure 3. Diffraction maxima for nanocomposites (a) polyurethane (PU)-GNP and (b) PU-RGO.

4.2.3. Transmission Electron Microscopy (TEM)

Based on Transmission Electron Microscopy (TEM) analysis, it was confirmed presents of the
nanofiller (RGO or GNP) into polyurethane matrices. This is very important factor to characterize
morphology of the nanofiller (size, dispersion) on the nanocomposite systems. Reduced graphene
oxide (RGO) and graphene nanoplatelets (Figure 4) have layered structure to e.g., montmorillonite
systems [59].
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Figure 4. TEM microphotographs of (a) 1.0 TPU/RGO; (b) 1.0 TPU/RGO; (c) 2.0 TPU/RGO;
(d) 1.0 TPU/GNP; (e) 1.0 TPU/GNP; and, (f) 2.0 TPU/GNP.
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Long, dark lines represent the characteristic geometry of graphene nanofillers, which are dispersed
into PU materials [60]. For TPU/RGO systems, the good dispersion (few layers-thick reduced graphene
oxide sheets) obtained what clearly show in the Figure 4a–c. For TPU/GNP systems (Figure 4d–f) the
larger agglomerates were observed (about 200 nm length) in comparison to the RGO filled systems.
RGO nanofiller possess better compatibility to the polyurethane matrix (what relates to –O– or –OH
group on the surface of the nanofiller), and therefore higher dispersion is observed. Classic polymer
nanocomposite systems (filled with layer structured nanofillers) can possess intercalated or exfoliated
structured [61]. Compare TEM analysis for obtained materials and XRD results (absent of diffraction
maxima; describe in Section 4.2.2), exfoliated nanocomposite morphology was confirmed.

4.2.4. Thermogravimetric Analysis (TG)

Segmented polyurethanes based on microheterophase structure possess different degradation
temperature of hard (HS) and soft (SS) segments. Generally, hard segments degradate at lower
temperatures in comparison to the degradation of soft domains of polyurethane materials. This
characteristic was registered on DTG thermograms: two maximum peaks for maximum degradation
temperatures for HS and SS. At degradation temperature rage, partially mixing (above 120 ◦C) of hard
and soft domains could be possible. What is more, one maximum on DTG curve determines absent of
phase separation of the PU segments.

Based on TG analysis, it was possible to verify phase separation in polyurethane system that
was caused by nanofiller. Graphene based nanofiller can thermally protect the polyurethane matrix,
especially at local regions. It was found for obtained nanocomposites, that high thermal conductivity
of graphene, allows for effective heat transfer, causing a reduction of over-heating of hard segment
domains, what is visible as higher degradation temperature of filled materials. Other possible
mechanism of better thermal stability of the systems is based on lower phase separation of soft
(SS) and hard segments (HS), and higher mobility of soft segments and easy transfer (dissipation) heat
into polyurethane matrix. Addition of nanofiller, which reduce SS and HS mobility influent on phase
separation of these systems.

The degradation temperature for PURE TPU starts at 328 ◦C (Tonset) (Figure 5). Decomposition
temperature (Tonset) shifts to 5–6 ◦C higher values, for RGO based nanocomposites, and 8–10 ◦C
for TPU/GNP systems (Table 3). For obtained systems, the maximum of degradation temperature
(TDTG-HS) shifts to the higher temperatures for modified systems (max. 12 ◦C for 0.5% RGO and
1.0% GNP-TPU filled nanocomposites). The degradation temperature of soft segments (TDTG-SS) for
all of the modified materials is similar to the degradation temperature of the PURE TPU system
(Table 3). It is also visible as an increasing in mass residue with addition of nanofiller to polyurethane
nanocomposites (Table 3).
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Table 3. Thermogravimetric results for TPU (Thermoplastic polyester urethane) and TPU RGO/GNP
nanofiller systems.

Composite Tonset
(◦C)

T95%
(◦C)

T90%
(◦C)

T50%
(◦C)

TDTG-HS
(◦C)

VDTG-HS
(%/Min)

TDTG-SS
(◦C)

VDTG-SS
(%/Min)

Remains
(% Mass)

PURE TPU 328 321 333 387 356 −19.5 411 −15.5 5.5
0.5 TPU/RGO 333 324 339 395 368 −19.9 413 −20.2 6.5
1.0 TPU/RGO 333 328 342 397 366 −22.8 415 −19.7 7.0
2.0 TPU/RGO 334 327 341 399 361 −19.3 416 −18.0 9.4
0.5 TPU/GNP 326 320 333 391 364 −17.7 413 −15.5 7.5
1.0 TPU/GNP 323 319 333 391 368 −18.7 408 −15.5 8.2
2.0 TPU/GNP 328 317 331 386 362 −17.1 404 −15.8 9.0

4.2.5. Differential Scanning Calorimetry (DSC)

For many group of polymers, which possess semicrystalline structure, the incorporation of
nanofiller causes changes in the crystallization degree, size of the crystalline aggregates, and changes
in crystallization rate and in the maximum crystallization temperature (Tm(max)) observed on DSC
thermograms [59]. What is more, GNP nanofiller promotes the crystallization process into polyurethane
matrix what was investigated using other polymer matrices e.g., polyamide 6 [62]. Additionally,
the presence of nanofiller may also affect the rate of crystallization [61]. It was noticed that higher
crystallization temperatures (Tmax ≈ 14–40 ◦C) (Table 4) were registered for nanocomposites containing
GNP and RGO nanofiller. The addition of nanofiller causes different curve character for melting point
peaks. For PURE TPU material is visible peak at 212–216 ◦C connected with melting point of crystalline
reign from hard segments (HS). In the DSC curve, close to the 0 ◦C, it is a visible characteristic step
that is connected with glass transition temperature (Tg). This parameter was calculated and described,
based on DMA study (Section 4.2.6) [Tg ≈ −27 ◦C (for PURE TPU) to −31 ◦C (for 2.0 TPU/GNP)].
For PURE TPU polyurethane matrix, DSC curve indicates that there are no crystalline regions within
the soft domain, while at 216 ◦C there is a maximum corresponding to the melting of crystalline
hard domains (Tm). Thus, the polyurethane matrix is composed of two amorphous regions, which
are arranged in rigid segments consisting of hard domains. Polyurethane matrix possesses soft and
hard segments what was also confirmed using XRD investigation and correlate with DSC results.
The visibility of diffraction maxima’s in XRD studies (Section 4.2.2) indicate that the ordering of
polymer chains is long-range, indicating that the contents of the rigid segments in the matrix are
above 25%-the hard domain (HS), resulting in larger crystalline agglomerates. GNP nanofiller add
into polyurethane matrix influent on heating thermograms (Figure 6), where multi maximum peaks
are visible in the temperature range 190–220 ◦C. Based on melting theory [14,61], the maximum of
the peak at lower temperature relates to smallest crystalline areas and for larger crystalline form the
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temperature is higher. The effect of nanofillers (GNP and RGO) on crystallization of hard domains
(HS) has also been investigated. The influence of particles on the crystallization process is clearly
visible (Figure 7). The DSC curves of the TPU/GNP composites show an increase in the crystallization
temperature (Tc), which is related to the GNP activity as nucleation process in the heterocrystallization
by increasing its temperature. In the TPU/RGO nanocomposites, the crystallization temperatures have
practically remained unchanged, indicating its less influential factor.
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Materials Tm (Max) (◦C) ∆Hm (J/g) Tc (Max) (◦C) ∆Hc (J/g)

PURE TPU 216 11.9 129 −18.2
0.5 TPU/GNP 203; 217 11.9 149 −18.7
1.0 TPU/GNP 189; 203; 219 12.5 157 −18.6
2.0 TPU/GNP 191; 204; 218 12.8 169 −16.3
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4.2.6. Dynamic Mechanical Analysis (DMA) and Mechanical Properties

Dynamic mechanical properties were analyzed for all of the obtained materials. Based on curve
behavior, it was visible high hard segments (HS) content for non-modified material (PURE TPU)
(Figures 8–10). For modified systems (RGO and GNP) with increasing nanofiller content, higher values
of E′ were obtained (Figure 8, Table 5) in a wide range of temperatures.
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Table 5. Dynamic Mechanical Analysis (DMA) results for TPU and TPU RGO/GNP nanofiller systems.

Composites E′−70 (GPa) E′−35 (GPa) E′25 (GPa) Tg (◦C)/E′′ δmax (MPa)

PURE TPU 3.2 2.4 0.3 −27 30.4 ± 1.5
0.5 TPU/GNP 3.9 3.0 0.3 −27 32.7 ± 1.6
1.0 TPU/GNP 3.0 2.3 0.2 −26 36.8 ± 1.8
2.0 TPU/GNP 4.9 3.7 0.5 −31 39.1 ± 2.0
0.5 TPU/RGO 3.5 2.8 0.3 −28 37.1 ± 1.9
1.0 TPU/RGO 4.2 2.9 0.3 −30 39.5 ± 2.0
2.0 TPU/RGO 4.1 3.0 0.3 −29 44.0 ± 2.2

Interesting information can derive from tan δ versus temperature at the Tg region. There is only a
slight change of Tg value of TPU nanocomposite in comparison to the PURE TPU (Figure 9). Tangent δ
peak values slightly decrease (from 0.15 to 0.12), especially for 2 wt % GNP, which can be related to
less damping behavior of GNP filled TPU [63].

Mechanical properties of polyurethane nanocomposite materials, in the static mode, were
presented in the Table 5. With an increasing amount of nanofiller (both RGO and GNP), the tensile
strength of modified materials is higher in comparison to the pure TPU matrix. Addition of 2 wt %
RGO into polyurethane causes, higher values of tensile strength [δmax] about 30% and equal 44%,
for GNP nanofiller and for RGO modification, respectively. RGO nanofiller enhanced mechanical
properties of polyurethane matrix more in comparison to the GNP one. This is due to the presence
of functional group on the surface of the RGO nanofiller, which relates to an increased compatibility
to the matrix. These results correspond to the Santosh Kumar Yadav et al. studies [44]. The authors
also confirmed that the best mechanical properties for polyurethane nanocomposites, containing
functionalized graphene nanoplatelets (f-GNP), are registered for the same amount of the nanofiller in
the matrix.

4.2.7. Payne Effect Analysis

The results of dynamic strain scan analysis have shown that the storage modulus (E′/MPa) of
nanocomposite systems increased with nanofiller (RGO or GNP) loadings (Figure 11, Table 5), and also
show a similar trend for different nanofiller content. The unfilled polyurethane matrix does not display
significant changes in storage modulus with strain amplitude (Figure 11). Introducing nanofiller into
the PU component causes an increase in storage modulus, which is especially visible for samples with
1 wt % and 2 wt % (GNP and RGO), where these amount of nanofiller give higher values of E′ and
visible drop with the strain amplitude (Tables 5–7). For the same temperature investigation study,
the highest value of E′ possessed for nanocomposite system stain 2 wt % of GNP modificator (416 MPa
for 2.0 TPU/GNP, in comparison to the PURE TPU storage modulus equal 87 MPa, Table 7). With an
increasing temperature (35 ◦C, 55 ◦C, 75 ◦C), the storage modulus (E′) possesses is lower for unfilled
and filled materials (for both used nanofillers). It was observed that in all nanocomposite materials,
the amplitude of the Payne effect decreases with an increasing temperature, which is connected with
the weakening of filler-filler interactions [64]. Payne effect is widely characterized as filler dispersion
and filler network in elastomeric polymer matrix [65]. This effect is described as changes of storage
modulus (E′/MPa) filled materials at small strain amplitude, as compared to the non-filled polymeric
materials. Strain amplitude sensitivity is considered as a typical non-viscoelastic response in the
filled materials. The reduction of storage modulus (E′) with strain (ε/%), increasing amplitude is also
characteristic for composite or nanocomposite materials [66]. Payne effect is also connected to the
formation of filler network by filler-filler and filler-matrix interactions [65].
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Table 7. Payne effect comparison based on storage modulus changes.

Composites
35 ◦C 55 ◦C 75 ◦C

E0
(MPa)

E∞

(MPa)
∆E

(MPa)
E0

(MPa)
E∞

(MPa)
∆E

(MPa)
E0

(MPa)
E∞

(MPa)
∆E

(MPa)

PURE TPU 87 87 - 74 74 - 59 59 -
0.5 TPU/GNP 240 197 43 193 154 39 134 106 28
1.0 TPU/GNP 304 228 76 263 194 69 196 144 52
2.0 TPU/GNP 416 314 102 358 241 117 248 181 67
0.5 TPU/RGO 110 98 12 79 69 10 64 55 9
1.0 TPU/RGO 209 179 30 162 136 26 121 106 15
2.0 TPU/RGO 231 193 38 186 150 36 144 119 25

5. Conclusions

Based on this study it was successfully obtained polyurethane nanocomposites containing reduced
graphene oxide (RGO) or graphene nanoplatelets (GNP). The addition of RGO or GNP undoubtedly
influenced investigated properties of the polyurethane matrix.

The authors showed the interaction behavior of the nanofillers with the polyurethane matrix
by using spectroscopic and diffraction investigation. Morphology investigation confirmed good
exfoliation nanoparticles into the polyurethane matrix and shows a better compatibly of RGO
nanofiller to the matrix, in comparison to the GNP (where higher agglomeration of this nanofiller is
observed, Figure 4d). Phase transition investigation gives information about the effect on melting and
crystallization behavior, where GNP nanofiller causes an increased crystallization temperature of the
nanocomposite systems. The storage modulus (E′) of nanocomposites containing TPU/GNP materials
significantly increased in comparison to the non-modified (PURE TPU) material. The modulus and
thermal stability of the TPU/GNP (RGO) nanocomposites at 2 wt % nanofiller loading are higher,
especially above glass transition temperature (Tg), respectively, than those of the PURE TPU material.
It is seen (Table 5; δmax) that the addition of the nanofillers improves the mechanical strength of TPU
matrix. Enhanced mechanical properties were observed when add maximum 2 wt % of nanofiller and
higher tensile strength properties obtain for RGO nanofiller in comparison to the GNP modificator.

Both nanofillers, GNP and RGO, enhanced the mechanical and thermal properties of the TPU
material. Furthermore, it should be highlighted that by using RGO and GNP nanofiller, the Payne effect
is visible for obtained nanocomposite systems. It is demonstrated that different Payne effect behavior is
visible for commercial graphene nanoplatelets (GNP) and synthesized reduced graphene oxide (RGO)
nanofiller. We could observe agglomeration (strong filler/filler interaction) at higher filler loading,
which was evidenced by the high Payne effect. When comparing with results in literature [67] based
on TPU matrix and the same amount of filler, nanocomposites with a good balance between thermal
and mechanical properties were achieved in this study. The authors believe that these industries based
materials could be easily applied in many fields, due to their enhanced properties.
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