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Abstract

We propose a method to obtain phase portraits for stochastic systems. Starting from the

Fokker-Planck equation, we separate the dynamics into a convective and a diffusive part.

We show that stable and unstable fixed points of the convective field correspond to maxima

and minima of the stationary probability distribution if the probability current vanishes at

these points. Stochastic phase portraits, which are vector plots of the convective field, there-

fore indicate the extrema of the stationary distribution and can be used to identify stochastic

bifurcations that change the number and stability of these extrema. We show that limit

cycles in stochastic phase portraits can indicate ridges of the probability distribution, and we

identify a novel type of stochastic bifurcation, where the probability maximum moves to the

edge of the system through a gap between the two nullclines of the convective field.

1 Introduction

Networks of interacting species play an important role in many disciplines like for example

chemistry, ecology, or systems biology [1]. A powerful modeling approach for such networks

are ODE (ordinary differential equation) models, which are often written in the form of a

dynamical system,

d~x
dt
¼~f ð~xÞ : ð1Þ

The function ~f ð~xÞ is called the deterministic drift and has the mathematical structure of a vec-

tor field [2].

In particular in one- and two-dimensional systems, the general dynamical behavior can be

directly deduced from vector plots of ~f ð~xÞ [3]. Based on these, the qualitatively different types

of trajectories and the invariant manifolds (fixed points, limit cycles) can be graphically repre-

sented in the form of so-called phase portraits [4].

When control parameters, such as reaction rates, are changed, dynamical systems can

undergo bifurcations, during which fixed points or limit cycles are destroyed or generated, or

they change their stability. For instance, when the rate of predation in a predator-prey system

is decreased, eventually a point will be reached where the predator can no longer find enough

food and becomes extinct. Local bifurcations can be calculated from~f ð~xÞ by determining the
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fixed points and their stability in dependence of the parameters. Global bifurcations, which

destroy or generate limit cycles of a finite size, are much more difficult to deduce from~f ð~xÞ. In

order to obtain a general first overview over the different types of bifurcations that occur in the

system, it is useful to plot phase portraits for different values of the control parameters and to

compare them to each other.

The above deterministic and continuous description is an idealization that is often too sim-

ple [5–7]. ODE models are based on mean reaction rates and are a good approximation when

concentrations are large and systems are well mixed. They have been applied successfully to

many different biological and chemical networks [8–10]. However, species concentrations

cannot be treated as continuous quantities when numbers become small, as there are no half

molecules, proteins, or animals. In this case, one should use a discrete state space. Further-

more, the randomness of reactions can lead to considerable deviations from the deterministic

dynamics [11–13]. For instance, it can lead to accidental extinctions of species, to the appear-

ance of quasi-cycles in predator-prey models [14], or to switching between two types of behav-

ior, as in the foraging efforts of ant colonies [15]. Additionally, the same deterministic

equation can arise from different microscopic models, either by using a reaction that produces

one molecule often, or a reaction that produces several molecules at once, but less often. Such

a bursty reaction occurs for example during translation in protein synthesis [13, 16, 17]. Differ-

ent burst sizes lead to a different intrinsic noise of the system: Not only is the variance of the

noise distribution proportional to the burst size, but the noise becomes asymmetric when only

production but not the destruction of molecules is bursty. Such an asymmetry can shift the

mean of the stationary distribution with respect to the value expected from the ODE model.

[5, 18]

In order to assess the relevance of stochasticity, it is useful to express the variables in terms

of the system size or reactor volume N, which is a measure for the total number of reactants in

the system. It is well known that the fluctuations in a stochastic system scale only with
ffiffiffiffi
N
p

,

whereas the mean values scale with N. This means that the signal-to-noise ratio decreases with

N. In the limit N!1, the ODE description is recovered. [5]

There exist several modeling techniques for such stochastic systems, which describe the sys-

tem on different levels of resolution. The most important of these techniques is the Master

equation, which models the time evolution of the numbers of the different molecules as a Mar-

kov process with a discrete state space and continuous time [6]. As the time evolution depends

only on the present state and not on the past, memory effects are ignored. Furthermore, a well-

mixed system is assumed since no spatial effects are considered. Despite its simplicity, the

Master equation cannot usually be solved analytically. For that reason, various approximations

are used, which simplify the calculations but at the same time preserve important features of

the stochastic description.

One of these approximations is the Fokker-Planck equation, which is obtained from the

Master equation by keeping the lowest-order terms of the so-called Kramers-Moyal expansion

[19]. This expansion uses a coarse-grained, continuous state space and is essentially a Taylor

expansion to second order in the changes of these continuous state variables. The Fokker-

Planck equation becomes more accurate when more molecules are in the system. It works

however still astonishingly well for systems with only a few tenths of molecules, even when

ODE descriptions are already very bad [20]. The Fokker-Planck equation will also be the start-

ing point for our investigation. A competing approach is the system-size expansion [5], which

uses the inverse system size as an expansion parameter. It is often considered to be more sys-

tematic than the Fokker-Planck equation, but nevertheless frequently leads to results which

are worse, at least when carried out only to the first two terms [20].
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Besides those generic approaches, a vast amount of more specific techniques have been

developed, which allow for all kinds of analyses of stochastic systems, such as effective deter-

ministic descriptions [21], most probable dynamics [22, 23], stability analysis [24], mean

switching times of multistable systems [6], stochastic resonant cycles [14], or piecewise deter-

ministic Markov processes [17, 25].

So far, these techniques were rarely used to investigate the effect of stochasticity on the

bifurcations of reaction networks. When the number of molecules is large and the dynamics

resemble that of the deterministic ODE system, attractors of the dynamical system give rise to

sharp maxima of the stationary probability density of the stochastic system. For this reason,

bifurcations of stochastic systems are often understood as qualitative changes in the topology

of the maxima and ridges of the stationary distribution. Those maxima can merge or split,

such that a multistable distribution becomes monostable or vice versa. This class of bifurca-

tions is called phenomenological bifurcations, or p-bifurcations [26]. We have investigated a

stochastic bifurcation of this type in an analysis [27] of the Schloegl model [28] where we

showed that burst noise shifts the parameter values of the saddle-node bifurcation. Burst noise

can thus lead to bistability in a parameter region where the deterministic model or the model

with conventional noise is monostable, and vice versa. Similar effects were found in other

types of systems, such as in noisy bistable fractional-order systems [29], or for the Duffing-

Van der Pol oscillator [30, 31].

Besides p-bifurcations, Arnold [26] defines dynamical bifurcations (d-bifurcations).

Dynamical bifurcations correspond to a separation of dynamics into state space regions

between which no transitions are possible. This definition is chosen in analogy to bifurcations

in ODE systems. For this reason, several subsequent publications [32, 33] concentrate mainly

on d-bifurcations. However, these bifurcations can occur only under the condition that the

intrinsic noise of the system vanishes at the boundary between the different dynamical regions.

This cannot happen for the kind of chemical reaction networks that we are interested in.

Therefore, we focus on p-bifurcations, which are very common in stochastic reaction net-

works. Since the stationary distribution of the probability density contains no information

about the dynamics of the system, our study will not be confined to the calculation of station-

ary densities. Instead, we want to suggest a stochastic analogue of phase portraits, which con-

vey a better understanding of the dynamics of the system and give an immediate insight into

the possible bifurcations. Such a stochastic phase portrait has been used earlier by H. Qian at

al. [34] in an investigation of a chemical oscillator with intrinsic noise in order to demonstrate

the transition from a steady state to an oscillating state. Our work formalizes and generalizes

this approach.

A related idea is pursued in [22], where the “most probable” trajectories are calculated,

starting from an initial delta distribution. In contrast, our method gives information on the

probability flows everywhere in state space starting from a constant distribution and is there-

fore not limited to unimodal distributions. This is, of course, crucial to the investigation of sto-

chastic bifurcations. We will discuss the connection between these two formalisms further in

the final section.

This article is structured as follows: Section 1 summarizes the methods that will be used,

introduces stochastic phase portraits and shows that extrema of the stationary probability dis-

tribution coincide with fixed points of the convective field when the probability current

vanishes.

The second part of the paper gives several examples for the application of these phase por-

traits, demonstrating the power of the method. Thus, the bifurcation diagram of a model for

foraging ant colonies [15] will be analyzed without need to solve the Fokker-Planck equation,
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and the relation between limit cycles of the convective field and ridges of the probability distri-

bution will be explored using the Rosenzweig-MacArthur predator-prey model.

As part of this investigation, we will encounter a special type of bifurcation that can only

emerge in stochastic systems and has no deterministic counterpart. Finally, we will summarize

and discuss our results in section 3.

Materials and methods

1.1 Chemical reaction networks

We consider reaction networks for species Xi that undergo a set of reactions

s11X1 þ s21X2 þ . . .þ sk1Xk � !
m1

r11X1 þ . . .þ rk1Xk

..

.

s1mX1 þ s2mX2 þ . . .þ skmXk � !
mm

r1mX1 þ . . .þ rkmXk

ð2Þ

with so-called stoichiometric constants σij and ρij and reaction rates μj.
To compactify the notation, one defines [5] the stoichiometric matrix

Sij ¼ rij � sij ð3Þ

and the propensity vector

njð~nÞ ¼ mj

Yk

z¼1

N � szj
nz!

ðnz � szjÞ!
; ð4Þ

which equals the reaction rate μj per molecule(s) times the probability of the involved mole-

cules to meet. In this notation ni is the molecule number of species Xi and N is the system size

or reactor volume, which can be interpreted as an inverse measure of the intrinsic noise of the

system.

With these definitions, the set of reactions (2) can be written in form of the so-called (chem-

ical) master equation,

dpð~n; tÞ
dt

¼ N
Xm

j¼1

Yk

i¼1

E� Siji � 1

 !

njð~nÞpð~n; tÞ ð5Þ

with the step operator Ei, which is defined via

Ea

i f ðn1; n2; :::; ni; :::; nkÞ ¼ f ðn1; n2; :::; ni þ a; :::; nkÞ ð6Þ

for an arbitrary function f and an integer α.

1.2 The multidimensional Fokker-Planck equation

The master equation yields a time-continuous, discrete-state Markov model of the system. As

mentioned above, the analysis of the dynamics becomes simpler when using a continuous

state space. Therefore we introduce the species concentrations xi = ni/N and base our analysis
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on the multidimensional Fokker-Planck equation (FPE) [6]

@pð~x; tÞ
@t

¼ �
X

i

@

@xi
½fið~xÞpð~x; tÞ�

þ
1

2N

X

ij

@
2

@xi@xj
½Dijð~xÞpð~x; tÞ� :

ð7Þ

Here, we have introduced the deterministic drift

~f ð~xÞ ¼ S � nð~x � NÞ ð8Þ

and the diffusion matrix

Dð~xÞ ¼ S � diagðnÞ � ST : ð9Þ

From the definition of (positive) definiteness hx, A � xi> 0, it follows that D is positive

definite.

The drift term alone determines the ODE description of the system, which becomes exact

in the limit of infinitely many molecules,

_~x ¼~f ð~xÞ : ð10Þ

The FPE has the form of a continuity equation,
@p
@t ¼ �

~r �~j with the probability current

ji ¼ fið~xÞ �
1

2N

X

k

@Dik

@xk

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aið~xÞ

pð~x; tÞ �
1

2N

X

k

Dik
@p
@xk

:
ð11Þ

Defining

~að~xÞ ¼~f ð~xÞ �
1

2N

X

ik

@Dik

@xk
~�i ð12Þ

with~� i ¼~xi=jxij being the unity vector in direction xi, the current can be written as

~j ¼~að~xÞpð~x; tÞ �
1

2N
D � ~rpð~x; tÞ : ð13Þ

The first term~a ið~xÞpð~x; tÞ is usually called the convection term, the second one the diffu-

sion term [35]. To avoid confusion with the drift~f and diffusion D terms in the FPE, we will

refer to these two contributions to the probability current as the convective and diffusive

current.

The expression for the convective current~jc ¼ p~a has the same form as that for the electric

current,~j ¼ s~E, and we therefore call~a the convective field. This field depends only on~f and

D, but not on the probability density pð~x; tÞ. Its effect is to pump probability towards the pre-

ferred states of the system, just like an electric field pushes positive charges towards its sinks.

In absence of the diffusive current, the convective current would converge to the attractors of

the vector field~a, producing a stationary probability distribution that is a (properly scaled)

delta distribution on the attractors. The diffusive current, on the other hand, is directed toward

decreasing p and thus tends to flatten steep slopes, ironing out sharp initial peaks and giving

rise to a finite width of the stationary distribution. When a constant probability density is
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chosen as initial distribution, the diffusive current vanishes, and the convective field gives the

direction of the current during the first infinitesimal time interval.

The stationary distribution is given by the condition
@pð~x ;tÞ
@t ¼ 0, which means ~r �~j ¼ 0. In a

one-dimensional closed system, where~j must vanish at the boundaries, this means that~j ¼ 0

in the stationary state. The convective and diffusive currents cancel each other. This means

that the stationary state of a one-dimensional closed system satisfies detailed balance. Fig 1

illustrates the effect of the two fields on a narrow initial distribution for a one-dimensional sys-

tem. The initial peak moves towards the stationary solution and becomes broader until in the

stationary state the two currents cancel each other.

In more than one dimension, stationary solutions without detailed balance (~j 6¼ 0) are also

possible, as the condition ~r �~j ¼ 0 can be satisfied with nonzero currents. Such states are

often called non-equilibrium steady states. The condition ~r �~j ¼ 0 implies for these states

that~j ¼ ~r � ~A with a vector field ~Að~xÞ, i.e.,~j is solenoidal.

1.3 Favorable and unfavorable states

We define favorable states as maxima of the stationary probability density at which the proba-

bility current~j vanishes. At these maxima, we have
@p
@xk
¼ 0 8k in (13). The condition~j ¼ 0

applied to (13) then gives~a ¼ 0. This means that favorable states are always fixed points of~a.

However the opposite needs not to be true, which we will discuss later.

This definition of favorable states is a generalization of the condition

aðxÞ ¼ f ðxÞ �
1

2
D0ðxÞ ¼ 0 ; ð14Þ

which gives the maxima and minima of the FPE in one-dimensional systems [7].

The calculation of the favorable states can be done without explicitly solving the FPE. In

fact, this calculation is mathematically almost identical to the calculation of the fixed points in

Fig 1. Illustration of the two contributions to the current in (13). The sharp initial distribution p0 (solid orange line)

is driven by the convective current αp(x0) towards the stationary stable state p1 (dashed blue line), whereas the

diffusive current � D @p
@x broadens the peak.

https://doi.org/10.1371/journal.pone.0196126.g001
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the deterministic description, which are obtained from~f ð~xÞ ¼ 0. The only difference is that~f
is replaced with~a in the stochastic description.

In analogy to unstable fixed points of deterministic systems, we also consider minima of the

stationary distribution p1ð~xÞ at which the probability current vanishes. These are also fixed

points of~a, and we call them unfavorable states of the system.

Favorable and unfavorable states are associated with a different stability of the fixed point

of~a: Setting (13) equal to zero and differentiating with respect to a component xm, we obtain

@ai

@xm
pþ ai

@p
@xm
¼

1

2N

X

k

@Dik

@xm

@p
@xk
þ Dik

@
2p

@xk@xm

� �

: ð15Þ

Using
@p
@xi
¼ 0 gives

@ai

@xm
p ¼

1

2N

X

k

Dik
@

2p
@xk@xm

: ð16Þ

This can be rewritten as a matrix equation

h ¼ 2Np D� 1 � Js ð17Þ

with ðJsÞik ¼
@ai
@xk

and hik ¼
@2p
@xixk

. Since D is positive definite, its inverse is also positive definite.

The multiplication with a positive definite matrix does not change the definiteness of a matrix.

This means that the Hesse matrix h is positive definite when Js is positive definite, and negative

definite when Js is negative definite. It follows that favorable (unfavorable) states are stable

(unstable) fixed points of~a. The classification of these states can therefore be done with the

same type of calculation as in the deterministic model, only with~f being replaced with~a.

There are also maxima~x� of the stationary probability density at which ~rp1ð~x�Þ ¼ 0 but

~jð~x�Þ 6¼ 0. These points are not fixed points of~a. An example is given in Fig 2. If the determin-

istic system has a stable limit cycle with an unstable spiral in the center, the stochastic system

can be expected to have an unfavorable state sitting in a crater surrounded by a ridge. Typi-

cally, the current along this ridge will not be constant, being faster at saddle points and slower

at local maxima of the stationary probability density. These maxima cannot be classified as

favorable states of the system, as trajectories are not attracted to them but pass through them.

They are rather slow transient states.
The reverse situation, that~að~x0Þ ¼ 0 but that ~x0 is no extremum of p1 can also be imag-

ined. The current density at such a point must be different from zero. Although we never

encountered such a “false positive” in the models we investigated, we could so far not show

under which conditions they may occur or whether they can be ruled out completely. We will

therefore always compare the calculated fixed points of~a with simulation results of the sto-

chastic system, to verify that such a fixed point indeed corresponds to a favorable state of the

system.

The authors of [34] discuss this question also, and they argue (in Appendix III) that the

three conditions ~rp ¼ 0,~a ¼ 0, and~j ¼ 0 coincide. While this might be correct in some spe-

cial cases, they do not give necessary and sufficient conditions that are generally valid. As men-

tioned above, slow transient states are a counterexample where ~rp ¼ 0, but~a and~j are

different from 0.
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1.4 Stochastic phase portraits

We will explore further below the usefulness of what we want to call stochastic phase portraits

(SPPs), which show the qualitatively different types of trajectories defined by the vector field

~að~xÞ. This means that we consider the dynamical system

d~x
dt
¼~að~xÞ ; ð18Þ

for which we draw (conventional) phase portraits. As shown above, the stable fixed points of

(18) coincide with the favorable states of the underlying stochastic system when the probability

current vanishes at these points. Furthermore, we will use the trajectories calculated by solving

(18) numerically as an indicator of the probability flow in the system. This will be especially

useful to determine the occurrence and position of stochastic limit cycles.

As these trajectories include only the convection flow of the probability current and are

completely ignorant of the initial conditions of the stochastic system, they can, however, pro-

vide no information about the time evolution of a stochastic system with a specific initial dis-

tribution. In particular, one must not confuse these trajectories with sample paths of the

stochastic system, nor with the evolution of its mean or of its maximum. The latter was investi-

gated in a study of the most probable dynamics in [22].

2 Results

2.1 Example: Foraging colony

In [15] the authors propose a model for the emergence of bistability in the foraging behavior

of an ant colony, which we want to use as a first application of the SPPs. The model introduces

two ant “species” X1 and X2 that feed on two different food sources. There are two types of

“reactions”. The first one

X1 þ X2 � !
r

2X1

X1 þ X2 � !
r

2X2

ð19Þ

Fig 2. Schematic view of the convective field~að~xÞ and stationary probability distribution for a system with a non-

uniform limit cycle. Regions on the limit cycle with fast dynamics (implied by more and darker arrows in (a) lead to

saddle points in the probability distribution (red dots in (b)). Regions with slower dynamics (brighter and fewer arrows

in (a)) lead to the formation of probability maxima (green dots in (b)). These types of maxima are slow transient states.

https://doi.org/10.1371/journal.pone.0196126.g002
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corresponds to the recruiting of an ant of one species by the other species, so that it changes its

feeding source. The other type of reaction

X1!
� X2

X2!
� X1

ð20Þ

is the spontaneous switching of food source by an ant.

The authors in [15] find that the system exhibits either bistable behavior, where most ants

visit the same food source and switch unregularly and within a short time to the other source

or a monostable behavior where both food sources are frequented by approximately half the

ants. Whether mono- or bistable behavior occurs depends on the quantity

NC ¼
r
�
; ð21Þ

with NC� N implying bistability and NC� N monostability. In particular, monostable behav-

ior is the only type of behavior found in the deterministic limit of very large colony sizes N.

Since the total number of ants is constant, the number of ants of species 2 is given by

n2 = N − n1. This is equivalent to the condition for the species concentrations x1 + x2 = 1. As a

result of this conservation law, the FPE of this system can be reduced to one-dimension. The

authors solved it analytically in the stationary case, which leads to the probability distributions

shown in Fig 3.

Instead of solving the FPE explicitly, we will calculate the favorable states directly using (12)

and show the SPP of the system. Even though the model is effectively one-dimensional, we will

always use both variables, x1 and x2.

Drift and diffusion are given by

~f ðx1; x2Þ ¼
�ðx2 � x1Þ

� �ðx2 � x1Þ

 !

ð22Þ

and

D ¼
2rx1x2 þ � � 2rx1x2 � �

� 2rx1x2 � � 2rx1x2 þ �

 !

: ð23Þ

This leads to a convection flow of

~aðx1; x2Þ ¼

� �
r
N

� �
ðx2 � x1Þ

� � �
r
N

� �
ðx2 � x1Þ

0

B
B
@

1

C
C
A : ð24Þ

The roots of (24) are x1 = x2 = 1/2. This means that we only expect one extremum of the sta-

tionary probability distribution, which lies at the same position as the deterministic fixed point

that can be calculated from (22). However, this does not mean that the stochastic behavior of

the system is similar to the deterministic one: The Jacobian of the deterministic system (22) is

Jdet ¼
� � �

� � �

 !

ð25Þ
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with eigenvalues λ 2 {0, −2�}. The deterministic attractor of the system is therefore a stable

fixed point line at x1 = x2 = 1/2.

The stochastic Jacobian, which is based on~a, reads though

Js ¼
� � � r

N

� �
� � r

N

� �

� � r
N

� �
� � � r

N

� �

0

@

1

A ; ð26Þ

with eigenvalues λ 2 {0, −2(� − r/N)}. The stochastic fixed point at x1 = x2 = 1/2 is only stable

for r/N< �. Otherwise, the fixed point is a minimum, and the maxima of the probability distri-

bution are located at the boundary. This is exactly the same result as obtained from the full

solution of the FPE in (21). The fact that favorable states (or maxima of the probability distri-

bution) can also emerge at the boundary of the state space, even though the deterministic drift

at this points is not zero, can be interpreted as a special feature of stochastic systems which

cannot occur in a deterministic description. We will discuss this in more detail in our second

example.

Fig 3. Solutions of the stationary FPE for the foraging colony model for different parameter values. We used N = 1000 and NC/N = 0.75 (blue, solid); NC/N = 1 (red,

dashed); NC/N = 1.5 (purple, dotted). Depending on the parameters, the system exhibits either a bistable or a monostable behavior.

https://doi.org/10.1371/journal.pone.0196126.g003
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Of course, our findings so far provide no new insights into the ant model compared to the

original investigation in [15]. We want to note though that our results can be obtained without

the need to solve any differential equation and by following a formalism that is very similar to

the deterministic analysis of the model.

Based on (24) and the stability of the fixed point from (26), we are now able to draw the

SPP for the ant model, which is depicted in Fig 4.

2.2 Example: Rosenzweig-MacArthur model

2.2.1 General properties. Next, we focus on a truly two-dimensional model that can show

limit cycles in the deterministic version. This is the so-called Rosenzweig-MacArthur model

for predator-prey interactions [9]. It is usually given in terms of ODEs, but it can be also repre-

sented by the following set of reactions:

X � !
b

2X prey birth

X þ X � !
d X prey competition

X þ Y � !
d

1þAx
2Y predator � prey interaction

X þ Y � !
b� d

1þAx Y predator � prey interaction with loss

Y � !
c

; predator death

; � !
q

X prey immigration

; � !
q

Y predator immigration

ð27Þ

The immigration reactions are only introduced to prevent spontaneous extinctions (the so-

called Keizer’s paradox [36]) and can be neglected for the deterministic analysis. Drift vector

Fig 4. SPPs for the ant model for different parameter values. For r/N< � (left) we obtain a stable fixed point line just

as in the deterministic system. For r/N> � however, the fixed point line becomes unstable, and the points of maximum

probability are at the boundary of the state space. Due to the conserved total number of ants, the dynamic of both

systems is constrained to a line with x1 + x2 = 1, which is implied by the dashed blue line in the left figure.

https://doi.org/10.1371/journal.pone.0196126.g004
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and diffusion matrix for this system are easy to calculate and read

~f ¼
q � R � b

d þ x b � d x � 1

N

� �� �

qþ R � cy

0

@

1

A ð28Þ

and

D ¼
qþ R � b

d þ x x � 1

N

� �
dþ xb � R

� R qþ Rþ cy

0

@

1

A

with the abbreviation R ¼ dxy
1þAx.

Depending on the effective parameters κ = Ac/d and � ¼ dc
bd, the deterministic system corre-

sponding to (28) can either exhibit stable populations of both predator and prey, a limit cycle

where the populations of both species oscillate, or the extinction of the predator [37, 38]. A

phase diagram showing the parameter dependency of these regimes is depicted in Fig 5, along

with the (deterministic) phase portraits for two sets of parameter values in Figs 6 and 7.

Fig 5. Stability diagram of the rescaled Rosenzweig-MacArthur model.

https://doi.org/10.1371/journal.pone.0196126.g005
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2.2.2 The effect of stochasticity when the deterministic system has a stable fixed

point. Fig 8 shows SPPs for different system sizes N with reaction rates chosen such that the

deterministic system has a stable fixed point. In order to assess the significance of the SPPs, we

also performed Gillespie simulations of the corresponding reaction system using the free soft-

ware tool Dizzy Gillespie [39]. The time series data from these simulations was used to generate

density histograms, which correspond to the respective stationary probability distributions.

These are shown as yellow clouds overlayed over the SPPs.

For the large system size N = 1000, the SPP shown in Fig 8(a) agrees with the deterministic

phase portrait in Fig 6. Fluctuations around the maximum value, which are obtained from the

stochastic simulation, are rather small. For the smaller system size of N = 80, we obtain a simi-

lar SPP, however, the probability distribution obtained from the stochastic simulation is

broadened due to the increasing noise. The maximum of the probability distribution coincides

well with the stable fixed point of the SPP. For N = 50, the SPP remains unchanged, but the sto-

chastic data become qualitatively different: While there is only one density maximum at

approximately (3, 0.7) for N = 80, there emerges a second maximum at the boundary of the

phase space at approximately (4, 0) for N = 50. We can interpret this emergence of a second

maximum as a stochastic bifurcation, which we will discuss in more detail in the next

Fig 6. (Deterministic) phase portrait for the Rosenzweig-MacArthur model. Blue arrows indicate the drift ~f ð~xÞ. The black lines are the nullclines where

one component of ~f vanishes. Parameters are A = 2/3; d = 0.65; c = 0.65; b = 1; q = 0.01; δ = 0.2; β = 0.8. The fixed point (green dot) is a stable spiral. The

red line shows a sample trajectory.

https://doi.org/10.1371/journal.pone.0196126.g006
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subsection. For N = 35, the boundary maximum becomes more important, while the central

maximum is almost gone. At N = 10, a second bifurcation has occurred, which is directly visi-

ble in the SPP: As the two nullclines cease to intersect, the central maximum vanishes and all

probability becomes concentrated close to the boundary maximum at x = 4.

The SPP for N = 10 provides also a very clear understanding of how the maximum at the

boundary emerges: As no fixed point is left inside the phase space the probability follows the

convective field until a boundary (in this case the x-axis) is reached. From this position, the

probability flow can’t follow the convective field anymore since negative values must retain

probability zero. Therefore, the probability flow slides along the x-axis until the x-component

of the convective field equals zero. Naturally, this happens at the position where the x-nullcline

intersects the x-axis. The boundary maxima emerge therefore always at the intersection points

of a nullcline with its corresponding axis.

2.2.3 Nullcline gap bifurcation. With this understanding of the boundary maxima, we

reconsider the bifurcation that leads to their formation, which occurs for our system between

N = 80 and N = 50. Comparing the SPPs for those two system sizes (Fig 8(b) and 8(c)), one

sees that the two predator nullclines at the bottom exchange their direction. This is also illus-

trated in the exaggerated scheme in Fig 9. The dashed lines indicate the y-nullclines. As their

Fig 7. Parameters from Fig 6 are changed to δ = 0.1; β = 0.9. The system exhibits now an unstable spiral (red dot) enclosed by a limit cycle, to which the

shown red sample trajectory converges.

https://doi.org/10.1371/journal.pone.0196126.g007
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Fig 8. SPPs of the Rosenzweig-McArthur model for the case that the deterministic system has a stable fixed point,

for different system sizes. Parameters are chosen as in Fig 6. The yellow color shade constitutes a density histogram of

a stochastic simulation of the same model. The data were generated by one very long simulation run. The other colors

are the same as in Figs 6 and 7.

https://doi.org/10.1371/journal.pone.0196126.g008

Fig 9. Schematic SPPs illustrating the nullcline gap bifurcation. The nullclines (black, dashed) determine the

positions in state space where the arrows of the convective field are completely horizontal (orange arrows). Thereby

they divide the state space into two distinct regions where all those arrows point either upwards (yellow region) or

downwards (red region). Depending on the region in which the gap occurs probability can either escape through the

gap and reach the boundary of the state space (N� NC, Fig (b)) or is caught inside (N� NC, Fig (a)) so that no

boundary maxima can emerge.

https://doi.org/10.1371/journal.pone.0196126.g009
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behavior close to the x-axis changes qualitatively, the direction of the convective flow also

changes: When the convection vectors in the gap point upwards (Fig 9a), the probability

moves away from the x-axis and cannot produce a boundary maximum. When the vectors

point downwards (Fig 9b), the probability flow in the gap region moves towards the axis, and a

boundary maximum will emerge.

Since the formation of a boundary maximum is directly coupled to the change of the null-

cline gap, we call this type of bifurcation a nullcline gap bifurcation.

2.2.4 The effect of stochasticity when the deterministic system has a limit cycle. Fig 10

shows SPPs for the parameter set that yields a limit cycle in the deterministic model.

Again, there is a good agreement between the SPP shown in Fig 10(a) and the deterministic

phase portrait shown in Fig 7. The stationary probability obtained from the stochastic simula-

tion is concentrated at the location of the limit cycle of the SPP. A closer look reveals though

that some states have a much higher probability than others (indicated by a darker yellow col-

oring). These are the slow transient states discussed in section 3, where p1 has maxima with

non-vanishing probability current.

For N = 80, the probability distribution again becomes broader. Around N = 65 the Null-

cline Gap bifurcation occurs, leading to a boundary maximum at x� 9 for the smaller system

size of N = 50.

3 Discussion

We have presented a method to obtain phase portraits for stochastic systems (SPPs) as vector

plots of the convective field obtained from the Fokker-Planck equation (FPE). This field can be

obtained directly from the drift and diffusion terms without the need to solve the FPE. We

showed that stable (unstable) fixed points of the convective field correspond to maxima

Fig 10. SPPs of the Rosenzweig-McArthur model for the case that the deterministic system has a stable fixed

point, for different system sizes. Parameters are chosen as in Fig 7. The colors are the same as in the previous figures.

The yellow shade indicates again the stationary probability distribution obtained from a stochastic simulation.

https://doi.org/10.1371/journal.pone.0196126.g010
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(minima) of the stationary probability distribution if the probability flow vanishes at this

point. This means that for a one-dimensional system the SPPs always reproduce correctly the

maxima and minima of the stationary probability distribution (as obtained from the Fokker-

Planck equation). We demonstrated this using a model of foraging ants [15], for which the

SPP shows the change of stability of the symmetric fixed point as the system size is changed.

Earlier, an explicit solution of the FPE was required in order to derive this result.

Furthermore, we considered a predator-prey model [9], for which the stationary probability

flow does not vanish. We could also verify that the SPPs yield an accurate description of the

stochastic dynamics of the system, which were obtained from Gillespie simulations. In particu-

lar, we found that boundary maxima of the stationary probability distribution can also be pre-

dicted from the SPPs. The emergence of these boundary maxima happens as a special type of

bifurcation which can only appear in stochastic systems, and which we called nullcline-gap

bifurcation.

These successes of SPPs suggest that they are for many systems a good indicator of where

the probability concentrates in the stationary state. However, we were so far not able to deter-

mine whether a fixed point of the convective field~a always leads to an extremum in the sta-

tionary probability distribution for multidimensional systems. So far, we did not yet find a

counterexample. Similarly, it is unclear whether limit cycles in the SPPs correspond always to

a non-equilibrium steady-state with~j 6¼ 0 of the underlying stochastic system. Furthermore,

although our example showed a higher concentration of the probability density along the limit

cycle, we could not prove that limit cycles in the SPP are always associated with a crater-shaped

stationary probability distribution, and if so, whether the ridge of this crater will always coin-

cide with the course of a limit cycle in the SPP. In any case, as the SPPs are based on the Fok-

ker-Planck equation and not on the Master equation, the agreement of the SPPs with the

results of stochastic simulations cannot be better than that of the stationary distribution result-

ing from Fokker-Planck equation with the true stationary distribution. This indicates a general

limitation of our method: While the Fokker-Planck equation is able to predict many features

of stochastic systems –like for example noise-induced bistability [15, 27]– very accurately

when molecule numbers are not too small, the FPE breaks down for other systems. This hap-

pens in particular when stochastic effects are directly induced by the discreteness of the

involved particle numbers [40]. Clearly it would be useless to apply the methods outlined in

this paper to such systems. See also [20, 41] for an overview of the limitations of the Fokker-

Planck equation.

The results obtained so far suggest further directions of study. In particular, it would be

helpful if one could extract information about the relative height of the maxima of the station-

ary probability distribution from the SPPs. We have seen examples where the SPP suggests a

maximum at the boundary and one inside the state space, while in reality the boundary maxi-

mum was so high that it was almost impossible to notice the small maximum inside the state

space. The size of the maxima might be correlated with the relative sizes of the basins of attrac-

tion or with the density of the probability flow of the convective field. Similarly, the SPPs give

so far no indication of the widths of the respective maxima of the system. We suspect that

progress in this direction can be obtained by exploiting the properties of the diffusion matrix.

Finally, we address the question how our method relates to the work of Cheng et. al. [22],

where the most probable trajectories of a stochastic system are investigated. The authors start

from a sharp initial probability distribution and calculate analytically the time evolution of the

maximum. However, this calculation is based on the premise that the probability distribution

shows exactly one maximum at all times t. In contrast, our approach has no such restrictions

and describes the stationary maxima and minima also precisely. But our approach does not
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describe transient dynamics, except for the initial dynamics that occur when starting with a

flat initial probability distribution. The two approaches are thus complementary to each other.

Together, they provide an analytical means to investigate the extrema of multistable Fokker-

Planck equations, which are otherwise only solvable by numerical methods.
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