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ABSTRACT: Implicit solvation is a mean force approach to model solvent forces acting on a solute molecule. It is frequently
used in molecular simulations to reduce the computational cost of solvent treatment. In the first instance, the free energy of
solvation and the associated solvent−solute forces can be approximated by a function of the solvent-accessible surface area
(SASA) of the solute and differentiated by an atom−specific solvation parameter σi

SASA. A procedure for the determination of
values for the σi

SASA parameters through matching of explicit and implicit solvation forces is proposed. Using the results of
Molecular Dynamics simulations of 188 topologically diverse protein structures in water and in implicit solvent, values for the
σi
SASA parameters for atom types i of the standard amino acids in the GROMOS force field have been determined. A simplified
representation based on groups of atom types σg

SASA was obtained via partitioning of the atom−type σi
SASA distributions by

dynamic programming. Three groups of atom types with well separated parameter ranges were obtained, and their performance
in implicit versus explicit simulations was assessed. The solvent forces are available at http://mathbio.nimr.mrc.ac.uk/wiki/
Solvent_Forces.

■ INTRODUCTION
Proteins have evolved to function within the water−rich
environment of the cell. Adaptation to the particular solvation
properties of water, such as strong electrostatic shielding,
hydrogen−bond donor/acceptor saturation, and entropic effects,
led to the known segregation of predominantly hydrophobic
residues in the core and polar/charged amino acid residues on
the protein surface. The distribution of residue types on the
protein surface determines its interaction with the surrounding
bulk solvent and with other solute molecules.1 These interactions
define to a large extent the conformational equilibria and
biological function of a protein. The range of accessible
conformations under physiological conditions is the result of a
delicate balance between competing forces: (i) highly anisotropic
intraprotein interactions and (ii) approximately isotropic bulk−
solvent interactions. It is therefore not surprising that the
presence of water has become an integral part of protein folds by
stabilizing secondary structure elements and their association.2−4

Biomolecular simulations account for the presence of water in
the native environment either explicitly, by inclusion of water
molecules, or implicitly, by approximating the mean force
exerted by the water on the biomolecule. The latter is
considerably faster to compute, because the implicit solvent
does not contribute any degrees of freedom to the simulation,
although it comes at the expense of a neglect of specific features
such as water dipole orientation and hydrogen bond fluctuations
at the surface of the solute. The extent to which a solvent model
(explicit or implicit) can realistically reproduce the dominant
physical forces in dynamic protein structures is therefore crucial

to its success in describing conformational equilibria. Implicit
solvation may be the best (or sole) choice for systems with a large
number of degrees of freedom, for systems whose reference
experiment spans a time scale inaccessible to current state-of-the-
art explicit solvent Molecular Dynamics (MD) and also for
enhanced sampling simulations, where conformational changes
induced in the solute would lead to clashes with explicit water
molecules.5,6

Because of their computational efficiency, implicit solvent
models have been used in a large variety of computational
studies, e.g. folding simulations,7 energy scoring of protein
structures,8 structure prediction and design,9,10 and membrane
simulations.11,12 Each model relies on approximations of the
mean force contribution of the solvent to the overall energy of
the solute molecule.
The starting point of most models is the use of a first-shell

approximation of the solvent effect, i.e. the assumption that the
force on a solute atom exerted by the solvent is on average
proportional to the solvent-accessible surface area (SASA) of the
solute atom. This simple approximation can be complemented
by long-range electrostatic solvent contributions based on the
approximation that the bulk solvent behaves as a dielectric
continuum, leading to Poisson−Boltzmann (PB) or Generalized
Born (GB) energy terms to describe the electrostatic interactions
between the solvent and the partial charges of the solute.13Mixed
models with GB/SASA terms are now widely used14−17 and are
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successful in predicting binding free energies. Comparisons of
the performance of different implicit solvent models18−22

revealed the lack of an accurate implicit treatment of nonpolar
solvation in most models.23 Complementing the surface term
with a volume term improves the description of long-range
solute−solvent interactions24 and nonpolar contributions.25,26

In the past we have presented an efficient implicit solvent
model for use in MD simulations based on a fast analytical
approximation to the SASA.27 The energy of solvation in this and
other SASA-based models is expressed simply as Vsol = ΣiσiAi,
where Ai denotes the SASA of atom i and σi

SASA an atom-specific
solvation energy per surface area parameter, which is empirical in
nature. The analytical formula used in the model for the fast
evaluation of SASA is based on nearest-neighbor distances and
was published by Hasel et al.28 This model was incorporated into
the GROMOS simulation package29,30 and appropriate atomic
σi
SASA parameter values compatible with the GROMOS force field
parameter set 43A1 for biomolecular solutes were proposed.27

The same model with a virtually identical parametrization was
later used in conjunction with the CHARMM force field,31

showing the validity of the solvation parameters independent of
the solute force field employed.
Here we describe the derivation of values for the σi

SASA

parameters for the atom types of the GROMOS force field
43A1 via force matching within the framework of large-scale
explicit solventMD simulations, where the time-averaged explicit
forces on each solute atom type exerted by the explicit solvent
molecules are transformed into an implicit mean solvation force
and used to derive solvation parameters. The forces on the
protein atoms due to the explicit water molecules averaged over
the trajectories have been made available on our Web server to
encourage further development of the implicit solvation model
and the refinement of parameters in protein force fields other
than the GROMOS one.

■ METHODS
A Mean Plus Stochastic Force Representation of the

Solvent. If the solvent degrees of freedom are not explicitly
simulated, one may approximate the force fi

solv exerted by the
solvent on atom i of the solute by a mean force fi

mean, which can be
derived from a potential energy term, a potential of mean force
Vmean(rN)

= − ∂
∂

V
f r

r
r

( )
( )
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mean N

mean N
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which represents the averaged effect of the omitted solvent
degrees of freedom on the solute. A solute configuration is
represented by rN ≡ (r1,r2,...,rN), the Cartesian coordinates of all
N solute atoms. A higher-order approximation of the force fi

solv

exerted by the solvent on the solute is obtained by considering
not only its mean effect but also its fluctuations in time and its
frictional effect32
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The stochastic force is denoted by fi
stoch, and the frictional force is

proportional to the solute atom velocity vi with proportionality
factor miγi, in which γi is the atomic friction coefficient and mi is
the mass of solute atom i. A stochastic force introduces energy
into the system and a frictional force removes energy from it. The
condition of zero energy loss on average will relate the two forces.
If the stochastic force fi

stoch obeys a Gaussian probability
distribution with zero mean, if it is not correlated with prior

velocities or forces, and if the friction coefficient is independent
of time, this condition reads

γ⟨ ⟩ = m k Tf( ) 6i
stoch

i i B ref
2

(3)

where a (time) average is denoted by ⟨···⟩, kB is Boltzmann’s
constant, and Tref is the reference temperature of the system.
Combination of eq 2 with Newton’s equation of motion leads to
the stochastic Langevin equation of motion
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in which fi
int represents the intrasolute forces exerted by the atoms

of the solute on solute atom i. Numerical integration of such a
stochastic equation of motion is called stochastic dynamics (SD)
simulation.33 More sophisticated forms of SD than eqs 3 and 4
can be obtained by incorporating temporal and spatial
correlations in the description of the stochastic force fi

stoch.
fi
int(rN) are calculated from the solute configuration rN using the
GROMOS biomolecular force field. The mean force fi

mean(rN)
due to the solvent is obtained from its energetic contribution to
solvation of a solute molecule, which is here treated as
approximately proportional to the molecular SASA, given by
the sum of the atomic SASA contributions Ai

∑ σ=
=
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N

i
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The derivative of eq 5 with respect to ri yields the implicit solvent
force fi

impl on atom i
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The implicit solvent force is proportional to the atomic SASA
change ∂Ai that is associated with a change ∂ri. An analytical
formula for the SASA computation has been described
elsewhere;27,28 it is recapitulated here for completeness of the
methodological procedure. The SASA of atom i is given by the
analytical formula
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where the parameter Si denotes the surface of the isolated atom i,
and the terms pi, pij, and bij are geometric parameters that
describe the reduction of SASA depending on the atom type i and
the neighbor atom types j and rij = |ri−rj|. The derivative (∂Ai)/
(∂ri) as required for eq 6 is given in the Appendices of Hasel et
al.28 and Allison et al.24 Geometric parameters are reported in
Hasel et al.,28 and specific pi values for the GROMOS29 atom
types are reported in Fraternali and van Gunsteren.27

The stochastic force fi
stoch (t) and the atomic friction coefficient

γi will only be sizable for solute atoms at the surface. Therefore,
they are taken dependent on the number of neighbor atoms32

γ γ ω=t t( ) ( )i solv i (8)

with

ω = −t N t N( ) max(0, 1 ( )/ )i
nb nbref

(9)

where Ni
nb(t) denotes the number of non-hydrogen neighbor

atoms of the solute within 0.3 nm radius, andNnbrefwas defined as
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an upper limit of 6 neighbor solute atoms at which solvent forces
on solute atom i are assumed to vanish.
A Procedure To Determine the Implicit Solvation

Parameters σi
SASA. Previously,27 the parameters σi

SASA of the
model were derived by a calibration of the radius of gyration, and
the hydrophobic and hydrophilic SASA obtained in MD
simulations with the implicit solvent model against these
quantities obtained in MD simulations with explicit water
molecules, for three proteins of different sizes. Here we propose
an alternative procedure in which the σi

SASA are determined such
that the implicit solvation forces fi

impl on the solute atoms imatch
as closely as possible the corresponding average forces ⟨fi

expl⟩ that
are exerted on the solute atoms i by the solvent molecules in an
explicit solvent MD simulation.
This matching of fi

impl to ⟨fi
expl⟩ is not straightforward though.

1 For a given solute configuration rN, the direction of fi
impl is

determined by eq 6, i.e. it is roughly perpendicular to the
SASAAi in the neighborhood of atom i, while the direction
of ⟨fi

expl⟩ is determined by an average of the configurations
of many explicit solvent molecules (Figure 1), which

means that fi
impl cannot faithfully represent ⟨fi

expl⟩. In order
to minimize noise in the calibration data set we omit those
atoms for which the projection of ⟨fi

expl⟩ onto fi
impl is smaller

than its component orthogonal to fi
impl.

2 The forces fi
impl (rN) and ⟨fi

expl⟩ are straightforwardly
matched only when the solute configuration rN is the same
for all the solvent configurations over which the average in
⟨fi

expl⟩ is carried out. Therefore, we keep the solute
configuration rN fixed in the MD simulations that were
used to obtain the average forces due to the explicit solvent
molecules.

3 The ⟨fi
expl⟩ are obtained from MD simulations of proteins

in explicit solvent in which the solute force field is
compatible with the solvent one, in the present case the
GROMOS force field29,34 43A1, which is compatible with
the simple-point charge (SPC) water model.35 When
omitting the solvent degrees of freedom in an implicit
solvent simulation, their dielectric screening effect should
somehow be retained. In the GROMOS 43B1 solute force
field for in vacuo simulations, this is achieved by adapting

the partial charges of groups of atoms that bear a total
charge of±1e, such as in Asp, Glu, Arg, and Lys side chains,
such that their net charge becomes zero, while their
hydrogen-bonding capacity is retained.29

Determination of the σi
SASA Parameter Values. The

implicit solvation force fi
impl on each atom i should match the

strength of the average explicit force ⟨fi
expl⟩ exerted by the

surrounding solvent along the direction of fi
impl

| | = ̂ ·f f fi
impl

i
impl

i
expl

(10)

where the hat ∧ indicates a vector of unit length, the ensemble
average ⟨⟩ is over the MD configurations from a simulation in
explicit solvent, and the index i denotes a particular atom in a
given molecule. This projection is illustrated in Figure 1. Solving
eq 6 and eq 10 for σi

SASA yields
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which means that the σi
SASA parameter values can be obtained

from MD simulations: (i) the SASA derivative ∂Ai/∂ri from an
implicit solvation simulation and (ii) the mean solvation force
⟨fi

expl⟩ from an explicit solvation simulation, under the constraint
that the protein conformation is identical in both MD
simulations.
The angle between fi

impl and ⟨fi
expl⟩ is given by

θ =
− ·

·
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∂
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∂

f

f
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i
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A
i
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r

r

i

i

i
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Selection of the Reference Protein Set. The protein set
for the parametrization of σi

SASA should contain a range of
different folds to reflect the variation of protein structures. To
this end a topological alphabet was devised to capture in simple
terms the structural composition of protein folds, in loose
analogy to the methods of Martin36 and Kamat and Lesk.37 The
protein topology was described as the sequence of pairs of
secondary structure elements (supersecondary structures), i.e.
β−β, β−α, α−β, or α−α. To increase the resolution of the
alphabet, the angle between the secondary structure elements
was included as a geometric parameter, and three angle ranges
0−60°, 60−120°, and 120−180° were combined with the four
topological states to yield 12 states of the alphabet (Table S1 in
the Supporting Information). Using this alphabet, we translated a
selected set of 2559 well-resolved protein domains of the SCOP
ASTRAL40 database38 to topological strings by assigning a
topological alphabet character to each supersecondary structure.
The concatenated characters form a topological string that
characterizes basic features of the protein fold.
The selected SCOP set was reduced to less than 10% of its size

by applying the MinSet method,39 so as to derive a database
subset that was amenable to MD simulations but maximally
informative in terms of topological composition. Within the
framework of a genetic algorithm, random domain subsets were
created, their topological strings concatenated and assessed in
terms of the overall string entropy, where the entropic score takes
the original database composition into account. The subset with
the highest entropy was chosen. Among all the created random
subsets, this subset was the most informative with respect to the

Figure 1. Force matching. Projection of the explicit solvent force fi
expl on

a solute atom onto the unit vector of the implicit solvent force fî
impl

direction yields the implicit solvent force fi
impl. The implicit force

direction is determined by the derivative −∂Ai/∂ri.
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topological composition, which does not exclude the presence of
topologically similar proteins. The final list of 188 protein
domains is given in Supporting Information Table S2.
Simulations. MD simulations were performed using the

GROMOS biomolecular simulation software.29,30 The employed
force fields were GROMOS 43A1 for simulations in explicit
solvent (water) and GROMOS 43B1 for implicit solvent. The
integration time step was set to 2 fs. The temperature was set to
298 K and controlled by weak coupling to a temperature bath40

with a coupling constant τT = 0.1 ps. Simulations in explicit water
were kept at a pressure of 0.061020 kJ mol−1 nm−3 (1 atm) with a
coupling time of τP = 0.5 ps and an isothermal compressibility of
5.575 × 10−4 (kJ mol−1 nm−3)−1.
Bond lengths were constrained by the SHAKE algorithm.41

Both simulation types (i.e., in explicit and implicit solvent) were
run for 2.5× 105 steps (500 ps), and configurations were saved at
intervals of 500 steps (1 ps). Explicit solvent forces and SASAs
were saved with each configuration. Since water equilibration
around solutes occurs on the time scale of 10−20 ps, explicit
solvent simulations of 500 ps are sufficiently long to sample
representative force distributions.
Simulations in Explicit Solvent (Water). Initial protein

structures (taken from the PDB database) were energy
minimized using 100 steps of steepest descent. Energy
minimized protein conformations were solvated in a periodic
water box of either rectangular or truncated-octahedral shape,
whichever was smaller and therefore matched the overall protein
shape better. The dimensions of all periodic boxes were larger
than twice the nonbonded cutoff radius of 1.4 nm (the shortest
box axis length was 5.7 nm), and the distance between solute and
box was set to 0.75 nm (rectangular box) or 0.85 nm (octahedral
box). Systems were electrostatically neutralized by replacing
water molecules with sodium or chloride ions to compensate the
net charge of the protein at neutral pH value. The neutralized
systems were energy minimized using 100 steps of steepest
descent, while the solutes (protein domains) were harmonically
positionally restrained using a force constant of 2.5 × 104 kJ
mol−1 nm−2. The systems were run for 2.5 × 105 steps of MD
while keeping the solute positionally constrained. Twin-range
cutoff radii of 0.8/1.4 nm were used to compute nonbonded
interactions. The nonbonded pair list was updated every time
step for pairs within 0.8 nm and every fifth time step for the range
0.8−1.4 nm. Long-range electrostatic interactions were approxi-
mated by a reaction-field force, using a dielectric constant of 54.
Simulations in Implicit Solvent. The GROMOS 43B1

force field is derived from the 43A1 force field by neutralizing the
±1e charges of charged side chains (Arg, Lys, Asp, Glu) and the
charged termini of the polypeptide backbone and by reducing
their repulsive van der Waals parameters.29 Accordingly, the
dielectric constant was set to 1.0 and the electrostatic cutoff to
100 nm. The POPS parametrization of Fraternali and Cavallo42

was used for the implicit solvation. POPS parameters were
derived specifically for proteins and DNA/RNA molecules using
the SASA model given in eq 7 (see below). Initial protein
conformations were energy minimized using 500 steps of
steepest descent in the presence of the implicit solvent force
field term. The system was run for 2.5 × 105 steps of stochastic
dynamics using γsolv = 91 ps−1, and ωi(t) was updated every 100
steps during the simulation.
Trajectory Analysis and Force Matching. Values for the

atomic σi
SASA parameters were derived using eq 11. Explicit

solvent forces on each atom along the trajectory were averaged
over 10 configurations (10 ps), yielding 50 averaged σi

SASA

parameters per atom per 500 ps trajectory. Area derivatives
(∂Ai)/(∂ri) were calculated for the solute configuration of the
explicit water simulation, which guarantees that the implicit and
explicit forces are referring to identical atom positions. For atoms
with covalently bound polar hydrogen atom(s) (e.g., the OH
group), the explicit force on the hydrogen atom(s) was added to
that on the main atom, because the hydrogen atoms are not
considered in the calculation of the SASA. The resulting force
represents the cumulative solvent force on the atom group.
Several subsets of atoms were created to select atoms for fitting
the parameters of the SASA model: (i) ⟨ALL⟩, all atoms; (ii)
⟨SA⟩, atoms with Ai within the range of 0.2−0.5 nm2 ; (iii) ⟨SA&
θ⟩, with the additional criterion that the implicit-explicit solvent
force angle θ lies between 0−45° (hydrophilic) or 135−180°
(hydrophobic); (iv) ⟨SA & θ+⟩, as before, but exclusively only
one of the two angle ranges, i.e. either hydrophilic or
hydrophobic. The angle range 0−45° corresponds to ‘outward’
and ‘hydrophilic’, and accordingly, the 135−180° range
corresponds to ‘inward’ or ‘hydrophobic’.
Data analysis was performed using the R-project software (R

Development Core Team43). Maximum-likelihood fitting was
performed with the function ‘fitdistr’ of the ‘MASS’44 package.
Subsamples of observed force distributions were obtained with
the ‘sample’ function; subsamples of theoretical distributions
were generated using the ‘rlnorm’ function.
Resampling was undertaken to transform a source distribution

into the form of a target distribution, specifically the ⟨SA & θ+⟩
distribution into the form of the ⟨SA⟩ distribution. This was
achieved by resampling points from the source distribution (⟨SA
& θ+⟩) with a suitable probability to reconstruct the density of
the target distribution (⟨SA⟩). The probability densities of each
data point of ⟨SA & θ+⟩ to be found (i) in the ⟨SA⟩ distribution
and (ii) in the ⟨SA & θ+⟩ distribution were computed using the
‘dlnorm’ function. The ratio of these probabilities (per data
point) was used as a probability vector to resample the source
distribution (⟨SA & θ+⟩), which generated the data points of the
resampled distribution with a density matching that of the target
⟨SA⟩ distribution.

Partitioning of the Range of σi
SASA Values into Groups

via Dynamic Programming. Atom grouping according to the
distribution of σi

SASA parameters of all atom types is a partitioning
problem: considering the entire range of σi

SASA values divided into
n bins, one seeks to find the best partition of the bins into k
groups, which is equivalent to finding the best locations for k−1
dividers. An optimal partitioning for a given number of bins n can
be found via dynamic programming45 as sketched below.
The first requirement is the definition of a score by which the

obtained partition is judged. We used the Mutual Information
between two sets of variables: (i) the GROMOS atom types
(here ‘1’, ‘2’, ..., ‘16’) and (ii) the atom groups that are to be
defined (for example ‘charged’, ‘polar’, and ‘hydrophobic’). The
Mutual Information is generally defined as46

∑ ∑=
ε ε

I X Y p x y
p x y

p x p y
( ; ) ( , )log

( , )
( ) ( )x X y Y (13)

X denotes the set of atom types and x a single atom type, while Y
denotes the set of atom groups and y a single atom group. Since
each σi

SASA value is assigned to an atom type, depending on the
partitioning to an atom group, the probability p(x,y) is the
relative frequency of observing the combination x and y for the
given σi

SASA values, while p(x) and p(y) are the marginal
probabilities of these variables.
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In the partitioning process, by placing a new divider, the σi
SASA

range is separated into a left and a right part. Assuming that the
left part already contains dividers (partitions), the score for
placing the new divider is the sum of the Mutual Information of
the partitions on the left side (including that of the already
existing partitions) and the right side. Systematic variation of the
divider position yields the one with the maximal Mutual
Information. This procedure is iterated until the positions of
all k−1 dividers are found.
Without knowing a priori the best number of groups k, a safe

procedure is to run the partitioning for a range of k-values, here 2
to 20, and to evaluate the results of all runs. The other free
parameter is the width of the bins. A width of 1 kJ mol−1 nm−2

was chosen here. To compare the Mutual Information between
the partitionings resulting from different k-values (and therefore
from a different number of free parameters), the Mutual
Information of each partitioning was normalized by the Joint
Entropy, which is defined as46

∑ ∑= −
ε ε

H X Y p x y p x y( , ) ( , )log ( , )
x X y Y (14)

The Joint Entropy is the maximal Mutual Information that could
be theoretically achieved given the number of discrete states in
the variables X and Y. The ratio Inorm = I/H is therefore a measure
of the actual versus the maximal information gain.
Error Estimation by Bootstrapping. The statistical basis

for the estimation of the σi
SASA parameters in the previous section

is solid with about 103−104 data points per parameter. However,
some σi

SASA parameter distributions are skewed, and it is
instructive to evaluate the variability of the distribution measures

(median σi
SASA, interquartile range iqr(σi

SASA)) with respect to
variation of the input data. This was performed here by
bootstrapping, i.e. computation of distribution measures on
artificial subsamples of the input data. The ‘boot’ package47 of the
R-project (R Development Core Team43) was used to compute
the median and iqr value on 1000 subsamples of the input data of
each atom type and atom group. Sampling was performed with
replacement. The median and iqr values obtained from the
bootstrap procedure were indistinguishable from the ones
reported in the σi

SASA result tables, confirming the robustness of
the obtained parameters from variation of the input data;
therefore, only standard deviations of the bootstrap values are
reported (this refers to Table 1, Table 2, and Supplementary
Table S4).

■ RESULTS

The parametrization of σi
SASA by force matching is based on a

projection of the explicit solvent force onto the implicit force
direction (Figure 1 and eq 11). To obtain meaningful solvation
parameter estimates, the direction of the explicit force and the
implicit force should not be too different and the size of the
explicit force should not be very small. Moreover, the solvent-
accessible area Ai of an atom should not be very small. These

Table 1. Solvation Parameters σ⟨SA & θ+⟩
SASA for Each GROMOS Atom Typea

atom type solvation parameter

id. type description σ⟨SA & θ+⟩
SASA (iqr) (kJ mol−1 nm−2) sdbs n(σ⟨SA & θ+⟩

SASA ) resampled σr⟨SA & θ+⟩
SASA (iqr) (kJ mol−1 nm−2)

1 O carbonyl oxygen (CO) −7.2 (5.1) 0.04 11246 [1184750] −7.5 (4.0)
2 OM carboxyl oxygen (CO−) −21.7 (14.4) 0.1 17346 [316400] −21.7 (16.6)
3 OA hydroxyl oxygen (OH) −7.0 (5.0) 0.1 5942 [156050] −7.1 (4.9)
5 N peptide nitrogen (NH) − (−) − [1105150] − (−)
6 NT terminal nitrogen (NH2) −4.0 (3.0) 0.05 3803 [89000] −3.8 (3.4)
7 NL terminal nitrogen (NH3

+) −26.1 (22.5) 0.1 20384 [79450] −26.0 (21.6)
8 NR aromatic nitrogen (−N) −4.5 (4.5) 0.1 1589 [64150] −4.4 (4.3)
9 NZ Arg amino nitrogen (NH2

+) −13.3 (12.9) 0.2 1908 [111500] −13.5 (13.4)
10 NE Arg imino nitrogen (NH) − (−) − [55750] − (−)
11 C bare carbon (C) − (−) − [1360950] − (−)
12 CH1 methine carbon (CH) 3.8 (3.0) 0.03 11347 [1473500] 4.0 (3.1)
13 CH2 methylene carbon (CH2) 5.0 (4.3) 0.02 55292 [1408200] 4.3 (3.2)
14 CH3 methyl carbon (CH3) 3.3 (2.9) 0.01 57976 [664450] 3.7 (3.2)
16 CR1 aromatic carbon (−CH) 4.5 (4.5) 0.04 10793 [644900] 5.1 (5.6)

aAtom types 4 (water oxygen) and 15 (CH4) were not included in this parametrization. Atom types with unassigned data (−) were under-
represented in the data subset because of their small SASA values. Numbers in square brackets show the total number of atoms (per atom type) in

the reference proteins. The ‘resampled’ columns show the σr⟨SA & θ+⟩
SASA parameters derived from the resampled force distribution (see text). σ⟨SA & θ+⟩

SASA ,
median value; (iqr), interquartile range; sdbs, standard deviation of the property in 1000 bootstrap (with replacement) samples; n(σ⟨SA & θ+⟩

SASA ), number
of data points.

Table 2. Solvation Parameters σg
SASA of the Three Atom Groups Derived by Partitioning via Dynamic Programming, As Shown in

Figure 7a

group atom solvation parameter

id. description id. type σg
SASA (iqr) (kJ mol−1 nm−2) sdbs n(σg

SASA)

1 charged 2, 7, 9 OM, NL, NZ −23.3 (19.0) 0.1 38325 [507350]
2 polar 1, 3, 6, 8 O, OA, NT, NR −7.3 (5.9) 0.05 20090 [1493950]
3 hydrophobic 12, 13, 14, 16 CH1, CH2, CH3, CR1 4.1 (3.6) 0.01 143152 [4191050]

aσg
SASA, median value; (iqr): interquartile range; sdbs, standard deviation of the property in 1000 bootstrap (with replacement) samples; n: number of

data points. See Table 1 for a description of the atom types.
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conditions are not always met as the data analysis presented
below reveals.
Atoms having small SASAs or near-orthogonal projection

angles behave like ‘noise’when deriving σi
SASA values because they

hardly contribute to the implicit force vector. Therefore, we
select data that match the characteristics of the SASAmodel to be
included in the calibration set of atoms, i.e. atoms showing a
partial exposure to solvent and explicit solvent forces roughly
aligned with the direction of the implicit solvation force. Starting
from the set of all data ⟨ALL⟩, three data subsets with increasing
degree of selectivity were created and tested for the
determination of σi

SASA: ⟨SA⟩ (selection on area range 0.2−0.5
nm2), ⟨SA & θ⟩ (selection on area range 0.2−0.5 nm2 and two
angle ranges 0−45° (hydrophilic) and 135−180° (hydro-
phobic)), and ⟨SA & θ+⟩ (selection on area range 0.2−0.5
nm2 and on angle range 0−45° (hydrophilic) or 135−180°
(hydrophobic)). The subset short names will be given in the
following as subscripts to indicate the underlying data set. The
final parametrization was performed with the ⟨SA & θ+⟩ subset.
Distribution of SASA for Different Atom Types. Before

embarking on the examination of solvent forces, it is instructive
to view the distribution of SASA per atom type (Figure S1).
Charged atoms (NH3

+ (a), CO− (b)) show a median exposure of
0.2−0.3 nm2, while polar atoms (OH (c), CO (d)) are less
exposed, but usually more than the hydrophobic carbon atoms
(CH2 (e), −CH (f)). The low exposure of the carbonyl
oxygen CO is caused by its presence in the peptide backbone.
More exposed CO atoms are located in the amido groups of
the Asn and Gln side chains (data not shown).
Distribution of the Force on the Solute Atoms Due to

the Solvent. The explicit water force density distributions
depend on the SASA and polarity of the respective atom type
(Figure 2). This and the following plots show typical atoms of the
set of GROMOS atom types, with two examples of each charged,
polar, and hydrophobic atom types. The color coding illustrates
the data subsets: gray denotes the entire data set (<ALL>),
orange the selection of atoms within the SASA range 0.2−0.5
nm2 (⟨SA⟩), and blue the additional selection of force angle in
the ranges 0−45° or 135−180° (⟨SA & θ+⟩), where the angle is
measured between the direction of the implicit force and the
direction of the explicit force.
It is apparent that most atoms are excluded from the selected

parametrization sets because of their small SASA. The insets
show the finally selected data set ⟨SA & θ+⟩ scaled to 104 data
points. The shape of all force density distributions is log−normal,
as demonstrated by quantile−quantile (Q−Q) plots of a data
sample over a random sample from a theoretical log−normal
density function with identical mean and sd values as the fitted
data (Supplementary Figure S6 − Figure S8). The forces on
charged atoms show a median at about 200−300 kJ mol−1 nm−1;
those on polar atoms are about half as strong, and most
hydrophobic atoms experience forces of about 10 kJ mol−1 nm−1.
The distributions of angles between the explicit and implicit

force are shown in Figure 3. Small angles (close to 0°) indicate
hydrophilicity, because the solvent force points in the direction
of the area derivative of the implicit force, which points generally
toward the solvent, and large angles (close to 180°) are
accordingly associated with hydrophobicity. This is clearly
visible for the most hydrophilic NH3

+ (a) and the most
hydrophobic CH2 (e) atom types.
The blue distributions of ⟨SA & θ+⟩ reflect the angle

restrictions required in order to fit a SASA-based implicit
solvation model to explicit forces.

Distribution of σi
SASA Values. The distributions of values of

the σi
SASA parameters derived from the explicit forces in the area

range 0.2−0.5 nm2 (⟨SA⟩) is reasonably constant as a function of
the SASA (Figure 4). This is reassuring, because σi

SASA is assumed
to be a constant, independent of the SASA. However, one can
observe an increased scatter of σi

SASA toward low SASA values, as
mentioned above. This scatter can be understood from eq 11: as
the atom is near complete burial or exposure, small fluctuations
in its position lead to large fluctuations in the area derivatives and
the derived σi

SASA values.
σ⟨SA& θ+⟩

SASA Parameters fromData Selected To Be Relevant
to the SASA Model. The distributions of σ⟨SA & θ+⟩

SASA parameters
(denoting σi

SASA parameters derived from the ⟨SA & θ+⟩ subset)
are illustrated in Figure 5. Charged atoms show a larger spread of
the σ⟨SA & θ+⟩

SASA distribution than polar and hydrophobic atoms.
The derived σ⟨SA & θ+⟩

SASA values are given in Table 1. The median
and interquartile range (iqr) were chosen instead of mean and

Figure 2. Distribution of the size of the explicit solvent (water) forces
fi
expl for selected GROMOS atom types and for different data sets. The
gray distributions show the forces on ⟨ALL⟩ atoms. The overlaid colored
distributions show subsets: the ⟨SA⟩ forces in orange, the ⟨SA & θ+⟩
forces in blue. Insets show the ⟨SA & θ+⟩ data in a uniform scale of 104

data points for a quantitative comparison of the atom type frequency.
The selected atom types are the same as in Figure S1.
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standard deviation (sd) because of the asymmetry of the σ⟨SA& θ+⟩
SASA

distributions (assuming normality, the conversion between iqr
and sd is sd = iqr/1.349). Despite the relatively large iqr values,
the σ⟨SA& θ+⟩

SASA estimates are robust as shown by the small bootstrap
‘sd’ values, which is due to the sound statistical basis of the data. A
graphical illustration of the σ⟨SA & θ+⟩

SASA value distributions is
provided by the box plots in Figure 6.
Resampling According to the ⟨SA⟩ Distribution. The

intention of the determination of the σi
SASA parameters via eq 11

is a direct transformation of observed solvent forces into a mean
force. The selection of forces relevant to the SASA model by
requiring a minimum size and projection on the area derivative
direction biases the original force distribution. To provide a
quantitative estimate of this bias, the distributions of the raw and
selected data were approximated with a maximum-likelihood fit
using a ‘log−normal’ density function. We find that the original
forces and all subsets closely follow log−normal distributions as
shown by the Q−Q-plots in Supplementary Figure S6 − Figure
S8, albeit with different mean and spread (Supplementary Table
S3).

The σ⟨SA & θ+⟩
SASA values in the ‘solvation parameter’ columns of

Table 1 were derived from the ⟨SA & θ+⟩ subset of explicit water
forces of minimal size and with implicit force direction, and it is
not clear at this point how this selection on projection angle
influences the force distribution and the derived parameters. To
reconstruct the ⟨SA⟩ force distribution without compromising
the selection on projection angle, the ⟨SA & θ+⟩ distribution was
resampled with a probability vector that generated the mean and
spread of the ⟨SA⟩ distribution (see Supplementary Figure S9
and Methods).
The ‘resampled’ values in the right columns of Table 1 were

computed from this distribution. The results are very similar for
most atom types, the largest deviations being 0.7 (CH2) and 0.6
(CR1). In comparison to the iqr ranges, these deviations are
small enough to justify the selection on projection angle as
originally performed.

Atom Grouping via Dynamic Programming Partition-
ing. The similarity of the σ⟨SA & θ+⟩

SASA parameters between several
atom types suggests a simplified parametrization by partitioning
the atom types into atom groups. A good partition should
preserve a maximal amount of the information contained in the
input data (i.e., the pairing of atom types and σ⟨SA&θ+⟩

SASA values) at a

Figure 3. Distribution of the angle θi between the explicit and implicit
force vectors for selected GROMOS atom types. The atom type
selection, data subsets, and color scheme are the same as in Figure 2.

Figure 4. Distribution of the subset σ⟨SA⟩
SASA values as function of the

atomic SASA value Ai for selected GROMOS atom types.
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lower number of parameters (i.e., groups of atom types instead of
atom types). In Figure 6, one can easily discern the difference
between atom types that are charged (OM, NL, and NZ), polar

(O, OA, NT, and NR), or hydrophobic (CH1, CH2, CH3, and
CR1), and intuitively one might choose to combine these into
groups. A more systematic and quantitative approach is provided
by information theory. An estimate of the fraction of preserved
information can be obtained from the ratio of the Mutual
Information I(type; group) and the Joint Entropy H(type,
group).48 The Mutual Information increases with the number of
groups up to a maximum, at which the two variables (type,
group) are equivalent with respect to the attributed σi

SASA values.
The Joint Entropy is the maximally achievable Mutual
Information, and it is dependent on the number of groups.
Therefore it can be used as a normalization term to compare the
Mutual Information between partitions based on different group
numbers k. In Supplementary Figure S10, the normalizedMutual
Information Inorm = I/H is plotted over the number k of groups
for partitioning into σ⟨SA&θ+⟩

SASA value bins of width 1 kJ mol−1nm−2.
The corresponding entropy values are given in Supplementary
Table S5. The curve shows a maximum at which the gain of
information is highest in comparison to the theoretically
achievable information. Details of the partitioning algorithm
and the associated information measures are given in the
Methods section.
The results show a maximal Inorm for three groups in

accordance with the intuitive grouping described above (Figure
7). Table 2 contains the statistics for the resulting σg

SASA values
given to this grouping for force angles 0−45°, and box plots of
the distributions are shown in Figure 8.

The hydrophilicity decreases from group 1 to 3, and the spread
of the σg

SASA values is comparable to that for the atom types in
Table 2. Overall, the σg

SASA values of the groups are well separated.
Performance of the Implicit Solvation Model. The

performance of the new implicit solvent parametrization
described above was evaluated on a test set of six proteins24

that were not included in the parametrization set. The size of the
test proteins ranges from 20 to 189 residues. Simulations of 10 ns
length were performed in implicit solvent using the old
(Supplementary Table S6) and new (Table 1) parametrization.
Reference values were taken from simulations in explicit solvent
as described by Allison et al.24 A comparative summary of
relevant protein properties is given in Table 3. Themost sensitive

Figure 5. Distribution of the subset σ⟨SA & θ+⟩
SASA values as a function of the

atomic SASA value Ai for selected GROMOS atom types.

Figure 6. Box plots of the σ⟨SA& θ+⟩
SASA value distributions of the atom types.

Distribution features are characterized by symbols; box: 50%, whiskers:
99%, circles: outliers.

Figure 7.Distribution of σ⟨SA& θ+⟩
SASA parameters of GROMOS atom types,

color coded with blue for oxygen atoms, yellow-red for nitrogen atoms,
and gray for carbon atoms. The data set contains 5000 sampled (with
replacement) data of the σ⟨SA & θ+⟩

SASA distribution of each atom type. This
data set served as input for the partitioning into atom groups. The two
dashed vertical lines show the optimal partitioning obtained via dynamic
programming.
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and important parameters for the current work are the SASA
values. The difference between the parametrizations is
discernible in Figure 9. The hydrophilic SASA of the new
parametrization (medium-blue solid) is closer to the reference
values (dark-blue solid) than the old parametrization (light-blue
dashed). The old parametrization leads to an overexposure of
hydrophilic atoms. The average deviation from the reference
values improved from 19.3% error to 8.5% error. The
hydrophobic SASA is nearly unchanged, which is expected
from the small difference between the old and new σg

SASA values.
The new parametrization underestimates the hydrophobic SASA

of ubq, lys, and talin by about 7%. This difference could become
smaller with the addition of a volume term that represents
solute−solvent interactions for mostly buried atoms.24

A comparison of local structural properties along the
simulations in implicit solvent and in water is shown in Figure
10 for two exemplary test molecules. The data of the remaining
four test molecules are shown in the Supporting Information
(Figure S11). Local conformations are represented by a
structural fragment alphabet (M32K25). This alphabet was
derived to describe local conformational states in protein
dynamics, and it provides a more comprehensive set of loop
and turn states than the conventional secondary structure
tools.49,50 The implicit solvent reproduces the structural
properties of the water simulations. Proteins with low conforma-
tional fluctuations (Figure 10a,b) show virtually the same profile
of structural states. Proteins containing regions with significant

Figure 8. Box plots of the σg
SASA value distributions of groups of atom

types derived by dynamic programming partitioning. Symbols are as in
Figure 6.

Table 3. Comparison between 10 ns Simulations in Explicit
Solvent (expl), Implicit Solvent Using the New
Parametrization Derived Here (impl.n), and Implicit Solvent
Using the Old Parametrization (impl.o)a

protein
SASAtotal
(nm2)

SASAphob
(nm2)

SASAphil
(nm2)

Rgyr
(nm)

rmsd
(nm)

rmsf
(nm)

trpexpl 14.37 8.56 5.81 0.75* 0.34* 0.17*
trpimpl.n 16.97 10.09 6.88 0.73 0.23 0.12
trpimpl.o 18.24 10.52 7.73 0.77 0.31 0.12
drkexpl 42.55 21.95 20.61 1.11* 0.31* 0.13*
drkimpl.n 42.25 22.67 19.58 1.06 0.27 0.11
drkimpl.o 45.88 23.14 22.74 1.07 0.23 0.08
ubqexpl 53.27 29.96 23.31 1.21* 0.26* 0.12*
ubqimpl.n 51.00 27.63 23.37 1.15 0.38 0.17
ubqimpl.o 55.90 29.26 26.64 1.19 0.28 0.12
if3cexpl 61.64 35.67 25.97 1.34* 0.18* 0.11*
if3cimpl.n 64.47 34.34 30.14 1.28 0.27 0.11
if3cimpl.o 67.87 35.53 32.34 1.30 0.29 0.15
lysexpl 68.00 37.18 30.82 1.41* 0.23* 0.15*
lysimpl.n 68.96 35.50 33.46 1.35 0.29 0.12
lysimpl.o 77.93 38.73 39.20 1.40 0.33 0.12
talinexpl 115.24 67.45 47.80 1.92* 0.48* 0.19*
talinimpl.n 107.53 61.08 46.44 1.90 0.39 0.14
talinimpl.o 115.04 63.77 51.27 1.91 0.38 0.12

aThe test proteins (PDB code) are trp (1l2y), drk (2a36), ubq (1ubq),
if3c (1tig), lys (1aki), and talin (2jsw). Values marked with an asterisk
and trajectories underlying the expl SASA values were taken from
Allison et al.24 Rgyr: radius of gyration; rmsd: root mean square
deviation from the X-ray or NMR model structure; rmsf: root mean
square fluctuation.

Figure 9. Comparison between the SASA values of six test proteins
(abbreviation (PDB code) below figure) obtained under different
simulation conditions: explicit water (solid lines, dark colors), implicit
solvent using the parametrization derived here (solid lines, medium
colors), and implicit solvent using the previous parametrization (dashed
lines, light colors). The color code is blue for hydrophilic SASA, red for
hydrophobic SASA, and black for total SASA. Conformations were
plotted every 25 ps.
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conformational fluctuations (Figure 10c,d) show slight shifts in

the conformational profiles between implicit and explicit

solvation, probably as a result of the approximations in the

implicit solvation model. However, the range of fluctuations is

similar, and the sampled conformations are closely related.

Scope and Limitation of the Parametrization.The SASA
model and its parametrization described here is based on several
assumptions that have been mentioned throughout the text.
Here we summarize these assumptions and discuss their
implications for the scope and limitation of the parametrization.
From a theoretical point of view, the force matching formula eq

Figure 10. Local structural properties of the test proteins if3c (a,b) and talin (c,d) in implicit solvent (a,c) and water (b,d). Coloring scheme of
conformational states: red, helical (including α-helix); blue: extended (including β-strand); green-yellow: turns and loops. Conformations were plotted
every 25 ps.
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11 is applicable to all recorded data pairs ∂Ai/∂ri and ⟨fi
expl⟩ and

the determined σi
SASA parameters would represent all cumulative

solvent forces on atom i. In practice, forces on atoms with less
than 0.2 nm2 SASA are very noisy, and therefore they were
excluded. Using all remaining explicit forces leads to unphysical
σi
SASA parameters, as shown in the last column of Table 4 for θ =
180°. At this angle, polar atom types 1, 3, and 8 appear to be
barely hydrophilic; parameters of atom types 6 and 9 become
incorrectly hydrophobic. Therefore, as described inMethods, the
parametrization in Table 1 was performed using a data subset of
the explicit forces that matches the SASA model. In this subset,
explicit forces point in the same direction as the implicit forces.
This selection on the force angle introduces a bias on the
resulting σi

SASA parameters as shown in Table 4 for the angle range
15−90° in 15° increments. As expected, σi

SASA values decrease
toward larger angles, but from 15−60° the variation lies within
the iqr range. The σi

SASA values of the angle range 75−90° become
progressively similar to the unphysical values of the last column
(180°). We chose the σi

SASA values resulting from θ = 45° as the
preferred parametrization, because they represent a reasonable
middle course between including all data and selecting data that
match best the framework of the SASA model.
A feature of the SASAmodel is the independence of σi

SASA from
the atomic SASA value (eq 6). However, charged atoms (Figure
4a,b) show a positive correlation betweeen σi

SASA and SASA
values. This correlation became apparent in this study through
the use of explicit solvent forces on individual atom types. Since
this study is based on the eq 6, this correlation is necessarily
neglected, and the range of σi

SASA values is represented by an
averaged σi

SASA value. This approximation could be remedied by
an additional term that complements the SASA derivative of eq 6
with a term that is proportional to the atomic SASA. Exploration
of such an extended SASA model will be performed in future
studies.

■ DISCUSSION
A method for the determination of the parameters of an implicit
solvation model has been proposed. It is based on a particular
form of force matching: the mean solvation force on an atom in
explicit solvent is projected onto the direction of the implicit
force, as given by the derivative of the solvent-accessible surface

area term of the solute potential energy function. This allows for
the extraction of the solvation parameters σi

SASA of the implicit
solvation model directly from the observed solvation forces in
MD simulations using explicit solvation for a set of proteins in
their native structure.
In the original description of the implicit SASA model,27 the

implicit solvation parameters σi
SASA were estimated by comparing

the preservation of characteristic geometric properties of
proteins between MD simulations with explicit and implicit
solvation. The resulting values for σi

SASA were−25 kJ mol−1 nm−2

for hydrophilic atoms and 5 kJ mol−1 nm−2 for hydrophobic
atoms (see Supplementary Table S6). Here we used MD
simulations of 188 protein domains with diverse topology and
applied a force matching formula to derive the σi

SASA parameter
values directly from the simulations of the rigid proteins in
implicit and explicit water. Analysis of the solvent forces revealed
that only a fraction of the explicit solvent forces are suitable for
the parametrization of the SASA model: those that act on atoms
having a surface exposure over 0.2 nm2 and that are roughly
aligned with the implicit force. Therefore it was imperative to
start from a large data set to arrive at a final data set of sufficient
statistical weight. While the selection based on a sizable exposed
area can be viewed as an intrinsic part of a SASA-based model, it
is less obvious how selection based on a small angle between
explicit and implicit forces modifies the explicit solvent force
distribution. We showed that the latter follows a log−normal
function like all other solvent force distributions explored here
and that the derived σi

SASA parameters would be the same if the
distribution was that of the SASA-only selection.
The derived σi

SASA values show a good correspondence
between the original and current parametrization. Charged
atoms adopt σi

SASA values of −26.1 (NH3
+) and −13.3 (Arg NH2

+)
kJ mol−1 nm−2, hydrophobic atoms values between 3.3 (CH3)
and 5.0 (CH2) kJ mol

−1 nm−2. Additionally we observed a group
of polar atom types (e.g., OH and CO) that adopt
intermediate values between −7.0 (OH) and −4.0 (NH2) kJ
mol−1 nm−2. We partitioned the resulting σi

SASA distributions of
the 16 GROMOS atom types into three groups using dynamic
programming. The partitioning maximizes the Mutual Informa-
tion between the (discretized) σi

SASA distributions and the
assigned group labels. The resulting three groups can be labeled

Table 4. Solvation Parameters σi
SASA for Each GROMOS Atom Type Derived for Angle Ranges [0°, θ° ] and [(180-θ)°, 180°]a

atom type solvation parameter

id. type σ15 σ30 σ45 σ60 σ75 σ90 σ180

1 O −7.7 (4.9) −7.7 (5.3) −7.2 (5.1) −6.4 (4.7) −5.2 (4.4) −3.8 (4.7) −0.5 (7.5)
2 OM −22.4 (15.4) −23.4 (15.7) −21.7 (14.4) −18.4 (13.5) −14.1 (12.6) −10.3 (13.1) −4.6 (16.7)
3 OA −7.9 (5.2) −7.6 (5.2) −7.0 (5.0) −6.1 (4.6) −5.0 (4.3) −3.8 (4.7) −0.8 (7.0)
5 N − (−) − (−) − (−) − (−) − (−) − (−) − (−)
6 NT −4.0 (2.8) −4.1 (2.9) −4.0 (3.0) −3.6 (2.9) −2.9 (2.6) −2.0 (2.7) 4.6 (4.2)
7 NL −28.6 (27.2) −28.7 (24.9) −26.1 (22.5) −22.4 (20.7) −19.1 (20.0) −16.9 (20.6) −12.6 (23.0)
8 NR −5.1 (4.9) −4.7 (4.8) −4.5 (4.5) −4.1 (4.5) −3.4 (4.1) −2.7 (3.9) −0.5 (5.3)
9 NZ −17.7 (15.0) −18.9 (20.9) −13.3 (12.9) −10.3 (7.5) −7.1 (6.0) −4.0 (6.0) 2.1 (8.5)
10 NE − (−) − (−) − (−) − (−) − (−) − (−) − (−)
11 C − (−) − (−) − (−) − (−) − (−) − (−) − (−)
12 CH1 4.6 (3.3) 4.2 (3.1) 3.8 (3.0) 3.3 (2.8) 2.8 (2.8) 2.5 (2.9) 2.1 (3.1)
13 CH2 5.8 (4.8) 5.4 (4.5) 5.0 (4.3) 4.3 (3.9) 3.5 (3.7) 2.7 (3.7) 1.2 (4.3)
14 CH3 3.9 (3.2) 3.0 (3.0) 3.3 (2.9) 2.9 (2.6) 2.5 (2.5) 2.2 (2.6) 1.9 (2.7)
16 CR1 5.0 (4.5) 4.9 (4.6) 4.5 (4.5) 4.1 (4.3) 3.5 (4.0) 2.8 (3.8) 1.6 (4.4)

aAtom types 4 (water oxygen) and 15 (CH4) were not included in this parameterization. Atom types with unassigned data (−) are under-
represented in the selected data. σ̅, median value of σ⟨SA & θ+⟩

SASA in units kJ mol−1 nm−2, θ value as subscript; the error is given as interquartile range in
parentheses (assuming normality, the conversion between iqr and sd is sd = iqr/1.349).
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as ‘charged’ (σg
SASA = −23.3 kJ mol−1 nm−2), ‘polar’ (σg

SASA =−7.3
kJ mol−1 nm−2), and ‘hydrophobic’ (σg

SASA = 4.1 kJ mol−1 nm−2).
The current parameter values were tested on a set of 6 proteins

for which data of long and independent (from this study)
simulations were available. The new parameters improve the
hydrophilic SASA, indicating that the average solvent forces on
hydrophilic atoms are well reproduced by the implicit solvent
model.
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log-likelihood log-normal fits of various explicit solvent force
distributions (Table S3). Solvation parameters σg

SASA of atom
groups derived by partitioning via dynamic programming (Table
S4). Mutual Information (I), Joint Entropy (H), and the
normalized Mutual Information Inorm = I/H of the partitioning
via dynamic programming into k groups for 1 kJ mol−1 nm−2

binning of the σi value range (Table S5). Original implicit
solvation parameters27 for GROMOS atom types29 (Table S6).
This material is available free of charge via the Internet at http://
pubs.acs.org.
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