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Sepsis has a complex pathophysiology in which both excessive and refractory

inflammatory responses are hallmark features. Pro-inflammatory cytokine responses

during the early stages are responsible for significant endothelial dysfunction, loss of

endothelial integrity, and organ failure. In addition, it is now well-established that a

substantial number of sepsis survivors experience ongoing immunological derangement

and immunosuppression following a septic episode. The underpinning mechanisms

of these phenomena are incompletely understood yet they contribute to a significant

proportion of sepsis-associated mortality. Epigenetic mechanisms including DNA

methylation, histone modifications, and non-coding RNAs, have an increasingly clear

role in modulating inflammatory and other immunological processes. Recent evidence

suggests epigenetic mechanisms are extensively perturbed as sepsis progresses,

and particularly play a role in endothelial dysfunction and immunosuppression. Whilst

therapeutic modulation of the epigenome is still in its infancy, there is substantial

evidence from animal models that this approach could reap benefits. In this review,

we summarize research elucidating the role of these mechanisms in several aspects

of sepsis pathophysiology including tissue injury and immunosuppression. We also

evaluate pre-clinical evidence for the use of “epi-therapies” in the treatment of

poly-microbial sepsis.
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INTRODUCTION

An Overview of Sepsis Pathophysiology
Sepsis is a syndrome with a broad clinical manifestation, defined by The Third International
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) as “a life-threatening organ
dysfunction caused by dysregulated host responses to infection” (1). Due to the numerous possible
presentations, sepsis can be a difficult clinical condition to recognize, especially during the early
stages if patients exhibit non-specific symptoms of being unwell (1–4) or if archetypal signs of
infection are absent, e.g., in young infants, the elderly, and the immunocompromised (5–8). Signs
which are highly suggestive of sepsis include (but are not limited to) acute confusion, hypotension,
tachycardia, and tachypnoea, hypoxia, reduced urine production, a high blood lactate level and a
non-blanching rash. Only one of these signs may be present, and none are unique to sepsis (9).
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Screening tools have been developed to aid identification
of patients who are seriously ill with suspected sepsis (10–12).
An example of one such tool, the Sequential Organ Failure
Assessment (SOFA) score, codifies the progression of sepsis-
related organ failure (13). However, despite these efforts to
improve diagnostics, sepsis still can be missed, leading to
delays in treatment which can dramatically worsen outcomes.
Rapid administration of antibiotics is critical; for every hour
of delayed treatment, mortality risk increases by 7.6% (14).
The development of tests that accurately predict the onset of
sepsis before organ failure occurs would be useful for improving
outcomes. The broad manifestation and rapid onset of sepsis
make this very challenging, but it nevertheless continues to be
an active area of research (15–22).

Infection-driven inflammation causes substantial tissue injury
and organ dysfunction during acute sepsis and represents a major
cause of mortality (22, 23). The binding of commonly expressed,
conserved pathogen antigens (pathogen-associated molecular
patterns, PAMPs) to pattern recognition receptors activates NF-
κB signaling and promotes transcription of a wide range of
pro-inflammatory factors (24–26). The endothelium becomes
activated, increasing its permeability as well as the adherence and
migration of leucocytes (27). Loss of endothelial integrity drives
intravascular leak, hypotension, and widespread oedema (27,
28). The production of damage-associated molecular patterns
(DAMPs) from host cells feeds the inflammatory response,
resulting in more tissue injury, and thereby, creating a vicious
circle. Concurrent to this, cytokines with anti-inflammatory
properties are produced in efforts to promote resolution of
inflammation and tissue repair; antigen presenting cells become
less responsive to lipopolysaccharide (LPS) and other PAMPs,
widespread apoptosis of leucocytes is observed, and myeloid-
derived suppressor cells (MDSCs) are substantially increased
(9, 29). It was once thought that acute hyperinflammatory
responses preceded an immunosuppressive phase, however, it is
now believed that there two phases can exist simultaneously (30).

Individuals who clear infection can still exhibit protracted,
deranged immune responses following a septic episode.
Persistent inflammation, immunosuppression, and catabolism
syndrome (PICS), whilst not a universal phenomenon in sepsis,
describes a clinical syndrome that patients with longer ICU
stays can exhibit (31, 32). One characteristic of PICS is increased
susceptibility to opportunistic infections and reactivation of
latent viruses, which contributes to morbidity and mortality
after the initial infective insult has resolved (33, 34). The factors
which contribute to PICS are multi-factorial but the significant
risk of rehospitalization with infection may suggest an ongoing
perturbation of the immune response (35). Indeed, a study by
Arens et al. demonstrated persistent immunoparalysis weeks
to years after sepsis (36). There is a paucity of studies which
investigate the persistence of PICS after hospital discharge,
however, it is notable that sepsis survivors have a significantly
reduced survival rate over the years following acute infection
vs. age matched individuals, occurring independently of health
status preceding the septic episode (37–39). The increased
death rate may result from persisting sequalae of sepsis; e.g.,
increased frailty, irreversible impairment in organ function

and/or from sepsis-associated, sustained changes in immune
function e.g., immunosuppression. Work is underway to
elucidate the mechanisms behind these modifications, with some
studies suggesting they arise from changes to the epigenome
of leucocytes.

Epigenetics: Definition and Mechanisms
Epigenetics refers to the regulation of gene expression not
caused by underlying changes in DNA sequence (40). In
eukaryotes, DNA forms a stable structure with octomers of
histone proteins; this stable structure is known as chromatin
[Figure 1, (41)]. The “openness” of chromatin structure affects
the accessibility of DNA to transcription factors and RNA
polymerase II, and is therefore a key factor in determining
the rate of mRNA expression (42). Three major epigenetic
mechanisms are described, two of which exert their effect
by influencing chromatin compaction (see Figure 1). DNA
methylation is a modification of cytosine residues mainly in
the context of cytosine-guanine (CpG) motifs. The majority of
the mammalian genome is CpG poor, with enriched regions
occurring at transcriptional regulatory loci such as promotors
and enhancers (termed CpG islands). Around 60–70% of
promotors contain CpG islands (43). The second mechanism
is histone modification; post-translational modifications of
the amino acids in the tail region of histone proteins
which include acetylation, phosphorylation, ubiquitylation, and
methylation. Modifications of amino acids at specific locations
in the protruding tails either strengthen or weaken the
interaction between DNA and histones. The final mechanism
involves non-coding RNAs (ncRNAs), which can modulate
gene expression by binding to either sites in the genome to
prevent gene transcription or mRNA transcripts to prevent
translation (44, 45).

There is growing evidence that modifications of the
epigenome impacts the phenotype of immune cells in such a way
as to affect responses to infection, and are involved in propagating
inflammatory disorders (46, 47). Whilst most epigenetic marks
are generally stable over time, those at certain loci show high
plasticity in response to environmental factors such as smoking,
diet, and disease, making them of interest in the context of
various pathologies (48–50). The rewritable nature of epigenetic
modifications and the responsiveness of epigenetic enzymes
to inhibitor therapy creates great potential for this avenue of
treatment in patients both with chronic and acute inflammatory
diseases such as sepsis.

In this review, the epigenetic modifications associated with
various stages of sepsis will be discussed. Specifically, we cover
mechanisms involved in endothelial dysfunction during the
hyperinflammatory response and those underpinning aspects of
immunosuppression in PICS. The pre-clinical evidence for use of
epi-therapies will also be described.

SEARCH STRATEGY

References were identified through Ovid using search terms
(“sepsis” OR “septic shock” OR “endotoxin tolerance (ET)”)
AND (“epigenomics” OR “epigenetic” OR “DNA methylation”
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FIGURE 1 | (A) Histone modifications: The negative charge of DNA allows it to bind tightly to positively charged histone proteins. DNA wraps around octomers of

histone proteins and forms discrete units known as nucleosomes, the basis of chromatin. The overall structure and openness of chromatin is dictated by chemical

modifications of the N terminal amino acid tails of the histone proteins. Chemical modifications include acetylation, methylation, phosphorylation, SUMOylation,

citrullination, and ADP-ribosylation. (B) CpG methylation: The majority of cytosines found in cytosine-guanine dinucleotides (gray circles) are methylated. CpG-rich

sections of the genome (CpG islands) occurs in areas requiring transcriptional control e.g., retrotransposons and gene promotors. Here, methylation status is more

dynamic, with some hypomethylated CpGs (white circles) facilitating promotor accessibility and gene transcription. (C) Small non-coding RNAs interact with

complementary sequences in DNA and on mRNA to interfere with gene transcription and translation respectively. A well-known species of small RNAs are

microRNAs. Mature single stranded microRNAs molecules (21–24 nt long) are incorporated into the RNA induced silencing complex (RISC) and then bind to a

complementary sequence in the 3’UTRs of mRNA molecules. This binding inhibits mRNA translation and results in either mRNA degradation or storage.

OR “Histonemodifications” OR “histone” OR “non-coding RNA”
OR “micro RNA”). Bibliographies of papers of interest were
searched by hand to identify additional studies. Relevant papers
identified in the database were included.

EPIGENETIC CHANGES ASSOCIATED
WITH SEPSIS PATHOPHYSIOLOGY

Histone Acetyltransferases (HATs) and
Histone Deacetylases (HDACs) as
Regulators of Inflammation
Histone acetylation is a key process involved in regulating
inflammatory response genes (51, 52). Addition or removal
of acetyl groups is mediated by two families of antagonistic
enzymes, histone acetyltransferases (HATs), and histone
deacetylases (HDACs). There are numerous studies that
associate levels of histone acetylation with expression of pro-
inflammatory cytokines and other anti-microbial products
(52). Therefore, understanding the relative activities of these
two enzymatic groups has great relevance to sepsis. To date,
five families of HATs enzymes have been discovered. Using
acetyl-CoA as a substrate, these enzymes target primarily lysine
residues on histones 3 and 4 (53). In humans, 18 HDACs have
been discovered, grouped into four classes based on sequence
homology with their yeast counterparts. Classes I, II, and IV
represent the “classical” HDACs and are the most extensively
studied. Class III HDACs, otherwise known as sirtuins, utilize
a distinct mechanism for lysine deacetylation requiring NAD+
as a substrate, in contrast with classical HDACs which are
Zn2+-dependent metalloproteases (54).

Whilst acetylation is generally considered a pro-
transcriptional modification, increasing evidence suggests
this is an over-simplistic view and that the effect of acetylation on

chromatin structure is in fact site-specific (55, 56). Therefore, the
roles of these enzymes in transcriptional regulation is likely to
be highly complex and requires detailed elucidation as they are
pursued as targets of therapeutics. In addition to histones, HATs,
and HDACs have multiple non-histone targets that are critical
for a range of cellular processes including metabolism and cell
cycle (54).

Epigenetic Changes Associated With
Endothelial Dysfunction, Tissue Injury, and
Organ Failure in Sepsis
Endothelial damage, as a result of an excessive cytokine
response, is one of the initiating steps that ultimately leads to
sepsis-associated organ dysfunction. Other than provision of
fluids and use of inotropic drugs, there are no interventions
available to restore loss in arterial partial pressure and organ
perfusion (57). During sepsis, the endothelium is activated and
adhesion molecules including ICAM, VCAM, and E-selectin
are upregulated (58, 59). These adhesion molecules are critical
for leucocyte infiltration into tissues. Entry of neutrophils
into the endothelium in particular has been paradoxically
associated with both containment of infection and exacerbation
of tissue injury (60). Besides adhesion molecule upregulation,
endothelial cell junctions become “loose,” leading to an increase
in permeability and a loss of fluid from the vascular system into
the surrounding tissues. Whilst neither of these processes are
pathological in themselves, the extent to which they occur in
sepsis is a major driver of organ failure. Therefore, stabilizing
endothelial disruption could be an effective avenue of therapeutic
intervention in sepsis.

Loss of histone acetylation during acute lung injury may
partially drive the over-expression of adhesion molecules
and regulate endothelial permeability. Acetylation loss at the
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promotors of Angp1, Tek, and Kdr–genes with critical roles in
both Tie2/Angiopoietin and vascular endothelial growth factor
(VEGF/VEGFR) signaling cascades–was observed in lung and
extra-pulmonary organs in a mouse sepsis model (61). Loss
of acetylation was suggested to be responsible for a significant
reduction in gene expression 6 h post-induction of sepsis and for
increased albumin leak. Despite the limitations of this study [as
discussed in detail by Bataille et al. (62)], these findings highlight
a potential mechanism by which inflammatory factors can
influence epigenetic regulation and drive maladaptive changes
in endothelium. Indeed, ICAM-1, and E-selectin expression are
markedly reduced in the lungs of mice with poly-microbial
sepsis if they are pretreated with histone deacetylase inhibitors
(HDACi) (63, 64). Neutrophil infiltration and albumin leak were
both minimized and associated with improved survival.

Other epigenetic mechanisms are also implicated inmediating
tissue injury [extensively reviewed in (44)]. Perturbation of
several micro RNAs (miRNAs) during sepsis has been described
in plasma and the endothelium (65). MiR-181b expression
in endothelial cells minimizes leucocyte invasion of tissues
by reducing expression of adhesion molecules, mediated by
suppression of NF-κB signaling (66). Injection of miR-181b
mimics in a mouse model of endotoxemia downregulated
VCAM-1 in the lung and reduced leucocyte adhesion and
lung histopathology scores (66). Interestingly, 24 intensive care
patients with sepsis have lower circulating levels of miR-181b
than those with other inflammatory conditions, suggesting this
mechanism is particularly pertinent in driving sepsis-associated
overexpression of adhesion molecules (66). Suppression of NF-
κB signaling by miRNAs may also confer protective effects
in other organs. Animal models of sepsis-associated cardiac
dysfunction have shown that miR-146a expression can attenuate
NF-κB activation and inflammatory responses in both the
myocardium and peripheral blood, changes associated with
improved survival (67–69). Further mechanistic studies would
be helpful to fully elucidate the functions of these miRNAs, and
beyond this should explore whether their therapeutic modulation
would be of benefit in sepsis.

Persistent Inflammation,
Immunosuppression, and Catabolism
Syndrome (PICS)
Immunosuppression in critically ill patients was first noted in
1970’s when it was discovered that these patients did not develop
delayed hypersensitivity responses to common antigens (70).
It is now recognized that ongoing immunological disturbance
following sepsis occurs in a subset of patients, keeping them
in intensive care with a milieu of symptoms despite clearance
of initiating infection. These symptoms are collectively referred
to as PICS. Individuals may exhibit inappropriately elevated
protein catabolism (leading to loss of lean body mass and
thus increased frailty), poor wound healing, an increased
susceptibility to infection, and prolonged immunosuppression.
Current prognosis is poor with many requiring extensive stays
in intensive care and high rates of mortality (71). Understanding

of the mechanistic features that drive immunosuppression is
essential and likely to involve epigenetic elements.

Expansion of Myeloid-Derived Suppressor Cells

(MDSCs)
Several studies have highlighted the extensive apoptosis of
immune cells during acute sepsis as a prominent driver
of subsequent immune dysfunction. Besides a depletion in
sheer numbers of cells, several studies have noted functional
abnormalities in the remaining subsets of the immune system.
The proportional number of regulatory T-cells (Tregs) and other
immunosuppressor subsets is significantly increased in patients
with PICS. MDSCs are a subset of immature myeloid cells with
highly immunosuppressive properties [reviewed extensively by
Schrijver et al. (72)]. Specifically, their production of arginase-
1, reactive oxygen species, TGF-β, and IL-10 critically suppress
T-cell and NK cell function (73). These cells are largely absent in
healthy individuals but form amajor component of tumormicro-
environments in cancer and are detectable in blood following
sepsis (74). MDSCs associate with deleterious outcomes and
are highly elevated in patients with PICS. Their considerable
expansion following sepsis and function as immunosuppressors
make understanding of their development an important area
of research.

Epigenetic modulation of myeloid progenitors may explain
the disproportional expansion in MDSCs. Transcriptional
regulators in these cells are precisely controlled by numerous
epigenetic mechanisms. Regulation of nuclear factor 1A (NFI-
A) has been shown to be critical for myeloid cell differentiation
(75). MiR-181b and miR-21, through a synergistic mechanism,
negatively modulate NFI-A expression in mice subjected to cecal
ligation and puncture (76). In this study, miR-181b and miR-21
were both upregulated in bone marrow, and blockade of these
miRNAs substantially impeded MDSC expansion, improved
the capacity of these mice to clear peritoneal infection, and
increased survival. Other transcription factors, including C/EBP-
β and Runx1, are also epigenetically regulated and drive MDSC
expansion. HDAC11 is recruited to the C/EBP- β promoter
and negatively controls its expression; in knockout models,
loss of HDAC11 significantly increases MDSC populations (77).
Whether HDAC11 is upregulated during sepsis is unclear.
MDSC differentiation and suppressive capacity can also be
altered by regulation of miR-9 which in turn exerts its effect
by regulation of Runx1 (78). Elevation of miR-9 expression
during sepsis is not confirmed, however it should be noted
that it is inducible by LPS and several pro-inflammatory
cytokines (79), making a strong case for activity during
sepsis. Whether targeting the mechanisms that drive MDSC
development could be of therapeutic benefit in sepsis is an
unanswered question. The miRNAs and acetylation enzymes
highlighted here have multiple targets and their inhibition may
have other undesirable effects. Furthermore, specific targeting
of regulatory mechanisms in these cells alone may prove
a challenge. However, further exploration of this area is
undoubtedly warranted.
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Endotoxin Tolerance as a Mechanism Mediating

Immunosuppression
The second notable aspect of immunosuppression is the
hypo-responsiveness, particularly of innate immune cells,
to subsequent challenge. ET is a well-described clinical
phenomenon whereby pro-inflammatory responses to LPS
are repressed during secondary encounter. Not all refractory
responses are necessarily harmful–acute modulation of pro-
inflammatory responses may in fact be beneficial during
early sepsis. However, protracted suppression has detrimental
consequences, potentially making patients more vulnerable
to Gram-negative infections. Several epigenetic mechanisms
have been linked to the persistence of ET (80, 81). Elevated
miR-221 and miR-222 following prolonged LPS exposure
were recently found to have a role in regulating Brahma-
related gene 1, which in turn mediated transcriptional
silencing of several pro-inflammatory products (80). In
addition, failure to induce pro-transcriptional histone
modifications–namely, acetylation and tri-methylation
of histone 3– was shown by Foster et al. to repress pro-
inflammatory gene expression on secondary LPS encounter,
whilst leaving anti-microbial, and metabolic gene expression
intact (81). Other studies have also demonstrated alterations
in promotor histone profiles during sepsis–including loss
of marks of active transcription–downregulating genes
involved in pro-inflammatory responses and antigen
presentation (82).

Some of the epigenetic machinery responsible for modifying
histones has been demonstrated to be directly regulated by
LPS [reviewed in (9)], potentially providing a mechanistic
link between epigenetics and immune regulation. Expression
of histone demethylase enzyme, JMJD3, was shown to be
induced by LPS stimulation via NF-κB signaling in macrophages
(83, 84). Furthermore, the activity of HAT and HDAC
enzymes can also be modulated by LPS, although the extent
to which their activity contributes to ET remains unclear.
CREB-binding protein (CBP), a transcriptional co-activator
with HAT activity, is critically involved in NF-κB signaling
and regulation of the inflammatory responses (85). LPS
exposure increases CBP stability by stimulating the removal
of ubiquitin and blocking proteosomal degradation (86).
This in turn correlates with increased histone acetylation
and cytokine release. Stabilization of histone acetyltransferase
HBO1 via a similar mechanism has also been reported (87).
Conversely, sirtuins (class III HDAC) have demonstrable
suppressive roles in cytokine regulation. Sirtuin 1 (SIRT1)
rapidly accumulates at the proximal promotors of TNFα
and IL1B following LPS stimulation and induces facultative
heterochromatin formation thus silencing gene expression
(88). In the same study, SIRT1 was additionally shown to
deacetylate (and deactivate) the transcription factor NF-κB
p65, a critical inducer of inflammatory signaling, preventing
further transcription of pro-inflammatory genes. Another
prominent sirtuin family member, SIRT6, can also act as an
inflammatory repressor by deacetylating histone 3 at lysine
9 (H3K9) and inducing heterochromatin formation at NF-κB
target gene promoters (89). In addition to acetylation changes,

methylation and the enzymes which regulate methylation
state are observed to negatively regulate expression of some
of pro-inflammatory gene loci such as TNFα during sepsis
immunosuppression (90).

Cytokines, TNF-α and type I interferons, have also been
shown to modulate monocyte responsiveness to LPS through
changes in the epigenome. Pre-treatment of monocytes in
vitro with TNF-α prior to LPS stimulation was shown
to block accumulation of euchromatin-associated H4ac and
H3K4me3 at promotor regions of NF- κB target genes
(90). When stimulated with LPS pre-treated monocytes had
significantly lower pro-inflammatory mRNA expression than
those without prior TNF-α exposure. Conversely, type I
interferons propagated LPS responses by priming chromatin
to respond, heightening sensitivity to weak upstream signaling.
The ability of the immune response to self-modulate may
represent a beneficial protective mechanism in the short-
term. It is the timing and extent of the immunosuppression,
specifically an inappropriate continuation once infection has
cleared, which generates harm. It is notable that in most
of these studies a very small selection of cytokines have
been investigated (typically TNF-α and IL-6). Furthermore,
no studies have characterized the persistence of epigenetic
modifications, for example, in re-hospitalized patients after
sepsis. Therefore, the ability of these described changes to
potentiate long term suppression is difficult to assess. Repression
of pro-inflammatory cytokines represents only one element of
immunosuppression. Therefore, the contribution of epigenetic
modulation of immune function to overall patient outcome
remains to be fully elucidated.

Additional Epigenetic States of Potential
Relevance to Sepsis
Other epigenetic states have been associated with modulation
of immune function and may be pertinent to inflammatory
disorders such as sepsis. Trained immunity in innate cells
was reported in 2011 by Netea et al. (91), defined as a
heightened immune response to secondary challenge following
sub-lethal exposure to an initial stimulus. This phenomenon
was subsequently linked to deposition of permissive histone
modifications, H3K4me3, at promotors of tnfα, il6, and tlr4 in
monocytes following antigen exposure (92). Primed monocytes
were found to mount a stronger pro-inflammatory cytokine
response during secondary challenge. Priming with other
antigens such as fungal β-glucan has also been shown to increase
H3K4me3 occupancy at pro-inflammatory gene promotors and
correlate with increased cytokine release (93).

The induction of ET or trained immunity appears to
be dependent on the microbial stimulus itself and antigen
concentration (94). Stimulation of monocytes via Nod Like
Receptor (NLR) or Toll Like Receptor (TLR) pathways resulted
in unique effector functions, epigenetic and metabolic profiles
(95, 96). Whilst TLR stimulation via LPS induced strongly
immunosuppressive effects, NLR engagement had the opposite
effect, enhancing effector function in a dose-dependent manner.
Interestingly, tolerized monocytes regain responsiveness when
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stimulated with β-glucan (97). These findings underline the
complexity of proposed innate immunological “memory.” A
plethora of factors including the host cytokine milieu, the
antigen in question and antigen concentration all influence
the development of either refractory or enhanced effector
function. In a complex immune response such as during
sepsis, it is likely that a combination of these features
occurs simultaneously. Which factors, epigenetic or otherwise,
contribute to persistence of ET still require complete elucidation.
That immune states such as trained immunity have been shown
to propagate via progenitor cells suggests that alteration of host
epigenetic regulation can persist extensively (98, 99). Therefore,
characterization of histone alterations in sepsis survivors over a
prolonged period of time would provide useful information on
the longevity of sepsis-induced changes.

EPIGENETIC THERAPEUTICS: POTENTIAL
AND LIMITATIONS IN TREATMENT OF
SEPSIS-ASSOCIATED TISSUE INJURY

Histone Deacetylase Inhibitors (HDACi)
A significant amount of research has examined the effect
of modulating epigenetic enzymes upon sepsis-associated
organ dysfunction and outcome. Numerous histone deacetylase
inhibitor studies in pre-clinical models of sepsis have been
conducted (summarized in Table 1), discussed in detail in this
section. Characterizing the effect of HDACi at the tissue level is
difficult in humans. Animal models circumvent this limitation
and have brought valuable insights.

Histone deacetylases inhibitors targeting classical HDACs are
currently used in a number of clinical contexts including cancer.
HDACi administration has been shown to attenuate tumor
growth and cause apoptosis in tumorigenic cells though the exact
mechanism of action is unknown. Synergistic beneficial effects
of combinational HDACi use have been demonstrated, although
how synergy is achieved is unclear. Vorinostat (or suberoylanilide
hydroxamic acid, SAHA) was licensed in 2006 for the treatment
of relapsed and/or refractory cutaneous T-cell lymphoma (120).
Two other pan-HDACi, for peripheral T-cell lymphoma and
multiplemyeloma, are also in use (121, 122). Outside of oncology,
valproic acid (VPA) is used as an anticonvulsant which acts
on class I and II HDACs, and trichostatin A (TSA) is an
antifungal which also acts on class I and II HDACs. These
examples demonstrate that HDACi treatment, in principle, has
an acceptable safety profile, therefore, their use in sepsis is a
realistic option should they prove effective.

Pre-clinical Evidence of HDACi Efficacy in
Sepsis
In addition to the positive effects of HDACi on the endothelium
during sepsis in mice (discussed above), HDACi treatment has
been shown to curb other pro-inflammatory and innate immune
responses in pre-clinical models of sepsis. Leoni et al. were the
first to report anti-inflammatory properties of Vorinostat both in
vitro and in vivo (123). Prophylactic administration of Vorinostat
in mice reduced pro-inflammatory cytokine production upon

challenge with LPS. Other reports reveal the impact of VPA
and TSA on macrophage activity. Host anti-bacterial responses
are inhibited via multiple mechanisms: phagocytic receptors are
downregulated and release of reactive oxygen species and nitric
oxide is reduced. Bacterial killing, demonstrated in mice with E.
coli and S. aureus, is significantly impeded (123).

Roger et al. demonstrated a significant reduction in mortality
in mouse models of toxic shock induced by Pam3CSK4 and
cecal ligation and puncture when HDACi were given (64). TSA
negatively regulated the expression of several pattern recognition
receptors involved in microbial antigen detection. In addition,
they observed that treatment with TSA, Vorinostat, and VPA all
repressed cytokine release following TLR stimulation. A recent
study exploring the effects of the HDAC6 inhibitor Tubastatin A
in a cecal ligation and puncture model of sepsis demonstrated
strong therapeutic efficacy. Survival was greater in Tubastatin
A-treated mice vs. controls, and pro-inflammatory TNF-α and
IL-6 were significantly reduced in peritoneal fluid and plasma
of treated animals (106). In addition, a significant reduction
in lung injury and bacterial load in the spleen 24 h after cecal
ligation and puncture was observed (23 h after HDAC6 inhibitor
treatment) (106).

Histone deacetylase inhibitors have been used synergistically
with other epigenetic modifiers to ameliorate endothelial
integrity and prevent lung injury. Prophylactic inhibition of
histone deacetylation alone or combined with inhibition of
histone methylation reduced capillary leak and pulmonary
oedema in endothelium in vivo and substantially minimized lung
histopathology (109).

Evidence from the clinic suggests that HDACi could be useful
in attenuating the deleterious pro-inflammatory responses seen
in sepsis as there is already a precedent for using HDACi
in inflammatory disorders. Vorinostat and another HDACi,
Givinostat, are licensed therapies for autoimmune inflammatory
disorders graft-vs.-host disease and systemic onset juvenile
idiopathic arthritis (SOJIA) (juvenile onset Still’s disease),
respectively (124, 125).

Considerations and Limitations of HDACi
Use
Apotential caveat of HDACi treatment is the associated increased
risk of subsequent infection that accompanies a reduction in pro-
inflammatory responses. Some phase I and II trials of HDACi
as cancer treatments noted an increase in severe infections (126,
127) although trials of Vorinostat in graft-vs.-host disease and
Givinostat in systemic onset juvenile idiopathic arthritis (SOJIA)
have not reported such findings.

It should be noted that the effects of HDACi on the
inflammatory response may not be restricted to alterations to
the epigenome. The exact effect of HDACi on histone and non-
histone acetylation is difficult to characterize, particularly for
pan-inhibitors where alterations are likely to be widespread.
This impairs our understanding of the exact mechanism
driving potentially beneficial effects, in turn hampering the
improvement of therapeutic specificity. HDACs have a degree of
functional redundancy, therefore knockdown of a given enzyme
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TABLE 1 | Summary of pre-clinical studies investigating the therapeutic potential of various HDACi inhibitors.

Inhibitor Target Study HDACi dose Sepsis

model

Animal model Effect

Valproic acid (VPA) HDAC1

HDAC2

(100) 50 mg/kg LPS Beagles Significant reduction in TNF-α and IL-6 mRNA in PBMCs

3 and 6 h post-treatment. No difference in clinical

symptoms between treated and untreated groups.

(101) 300 mg/kg CLP C57Bl/6J mice Reduced TNF-α, IL-1β, and IL-6 in peripheral blood,

reduced histopathological events, and oxidative damage

in renal tissue. No comment on survival.

(102) Prophylactic and

therapeutic doses given.

CLP Sprague-Dawley

rats

Improves survival of treated mice, inhibits transcription of

TNF-α and IL-6, reduced oxidative burst.

Reduced acute lung injury All animals were exposed to

haemorrhagic shock 24 h prior to CLP.

(103) Prophylactic and

therapeutic doses given.

CLP BALB/c mice Anti-apoptotic effect in lung and spleen tissue. No effect

on serum cytokine levels or inflammation in lungs. No

controls used.

(104) 100 mg/kg CLP C57BL/6 mice No significant difference in survival between treated and

untreated mice. Hippocampal IL-1β levels were reduced

in VPA group, Spatial learning ameliorated in treated

mice.

Tubastatin A

(Tub-A)

HDAC6 (105) 70 mg/kg CLP C57Bl/6J mice Improved survival, inhibits transcription of TNF-α and

IL-6, reduced oxidative burst.

All animals were exposed to haemorrhagic shock 24 h

prior to CLP.

(106) 70 mg/kg CLP C57BL/6J mice Improved survival, reduced TNF-α and IL-6 in peritoneal

fluid and plasma, reduced lung injury, and macrophage

apoptosis.

Trichostatin A

(TSA)

HDAC1

HDAC2

(107) 1 mg/g (co-administered

with DNA methyltransferase

inhibitor, Aza)

LPS C57BL/6J mice Reduced apoptosis in lung tissue, reduced

pro-apoptotic gene expression in lung.

(108) 1µg/g (administered alone

or DNA methyltransferase

inhibitor, Aza)

LPS C57BL/6J mice Treatment with both epigenetic modifiers had synergistic

effect.

Increased M2 macrophages in lungs, reduced

pro-inflammatory cytokines in plasma, increased

acetylation of STAT3 promotor in BMDMs, increased

STAT3–Bcl2 signaling, reduced p38MAPK activation.

(109) 3.3 µmol/L/kg (administered

alone or DNA

methyltransferase

inhibitor, Aza)

Co-administered with 4.4

µmol/L/kg Aza

LPS C57BL/6 mice Treatment with both epigenetic modifiers had synergistic

effect.

Reduced inflammation in lung

Reduced pulmonary microvascular permeability

Reduced apoptosis of lung cells

(110) 10 mg/kg CLP Male

Sprague–Dawley

rats

Daily treatment for 7 days reduced neuronal cell death

and improved spatial learning and memory defects

induced by sepsis.

(111) 10 mg/kg CLP Sprague-Dawley

rats

HDAC inhibition increased skeletal muscle catabolism

4h after sepsis induction, atrogin-1 expression is

upregulated.

Suberoylanilide

hydroxamic acid

(SAHA or

Vorinostat)

Pan-inhibitor (112) 50 mg/kg CLP C57BL/6J mice Improved survival, ameliorated coagulation disturbances

at 48 h post-sepsis induction.

(113) 50 mg/kg CLP C57BL/6J mice Improved survival, reduced cytokine levels in peritoneal

fluid and blood, reduced acute liver injury.

(114) Prophylactic and

therapeutic doses given.

LPS C57B1/6J mice Reduced phosphorylation of MAP kinase proteins at 3 h

post-induction, reduced neutrophil, and macrophage

activity in the liver, reduced pro-inflammatory cytokine

levels in liver tissue.

(Continued)
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TABLE 1 | Continued

Inhibitor Target Study HDACi dose Sepsis

model

Animal model Effect

(115) 50 mg/kg LPS C57BL/6J mice Improved survival, reduced MyD88 gene expression,

reduced TNF-α and IL-6 production.

(116) Prophylactic and

therapeutic doses given.

LPS C57BL/6J mice Improved survival, reduced inflammatory infiltration into

lungs and spleen, increased histone acetylation, reduced

TNF-α in blood, reduced pro-inflammatory gene

expression in lung.

Sodium butyrate HDAC1

HDAC2

(117) 500 mg/kg (2 doses) CLP Wister rat Improved survival 6 days post-sepsis, protective effect

on liver, kidney, and lung

Cambinol SIRT1

SIRT2

(118) Prophylactic and

therapeutic doses given.

LPS BALB/c mice Improved survival, lowered TNFα levels and bacteraemia,

blocked phosphorylation of MAPKs.

EX-527 SIRT1 (119) 47 mg/kg CLP C57BL/6J mice Improved survival, reduced TNF-α and IL-6 levels,

attenuated bone marrow atrophy.

is frequently compensated for by another of the same class
(128). In addition, several HDAC enzymes are known to form
multiple complexes, each of which targets a different histone
substrate (128).

In several studies of the effects of HDACi on sepsis
outcomes treatment was given either prophylactically or very
soon following sepsis induction (within an hour), well ahead
of the development of symptoms (in CLP models the first
symptoms generally appear around 6–12 h post-induction)
(Table 1). Therefore, the impact of HDACi treatment in a
clinical setting when administered during symptomatic disease
is currently unclear.

Histone deacetylase inhibitors may not be appropriate for use
in individuals with latent infections. Vorinostat has been proven
to reactivate transcription of the HIV reservoir in infected CD4+
T-cells (129). To this end, it has been heavily investigated as part
of the “shock and kill” strategy for HIV reservoir eradication
(130). Several latent infections such as Epson-Barr virus (EBV)
and other herpesviruses also enter lytic replication following
HDACi treatment (131). Given the ubiquity of herpesviruses and
the seriousness of HIV, reactivation of latent infections during or
after a septic episode could be highly detrimental. Whilst HDACi
treatment in the context of sepsis is unlikely to be administered
long-term, more detailed understanding of HDACi effects on
viral latency and reactivation is critical for safe usage.

The Role of HATs Inhibitors in Inflammation
Given the role of acetylation in sepsis, there is a surprising paucity
of data examining the role of HATs activity and inhibition.Whilst
less well-characterized than that of HDACs, several studies
suggest that HATs inhibition could also elicit anti-inflammatory
effects. Several HATs inhibitors including delphinidin, gallic acid,
epigallocatechin-3-gallate, diferuloylmethane, and cerulenin
have all been shown to reduce pro-inflammatory cytokine release
by regulating NF-κB acetylation (132–136). In animal models of
acute respiratory distress syndrome and renal injury, elevated
HATs activity associated with worsened tissue injury suggesting
these inhibitors could have therapeutic benefits in cases of sepsis
(137, 138). However, contradictory findings have been reported
with some suggesting HATs inhibition has either no effect on

pro-inflammatory responses or could in fact exaggerate cytokine
release (139, 140). This discordance demonstrates the highly
context-specific effect of these drugs. Further, exploration of their
role in vivo and in sepsis pathophysiology would be welcome.

CONCLUDING REMARKS

Sepsis has a worldwide clinical burden with significant associated
morbidity and mortality. Whilst our understanding of the
underlying immunopathology has improved over the last 30
years, this has yet to inform effective therapeutic strategies.
In this review, we have collated evidence from a large
number of studies that highlight the epigenetic mechanisms
underlying some of the major aspects of sepsis pathology.
Together these reveal the importance of epigenetic changes
at transcriptional promotors or enhancers in driving many
pathological adaptions. It is key to note that the cell-specific
context and stage of sepsis in which these changes occur is
important for determining phenotypic effect. The potential
use of HDACi as therapeutics in inflammatory disorders has
garnered interest over the past decade. These drugs have
proven tolerability and are already used in the treatment of a
number of cancers. Their mechanism of action is incompletely
understood and there are legitimate concerns about off-target
effects. Histone deacetylase enzymes are involved in modulating
thousands of genes and there are likely to be numerous non-
histone targets within the cell that are also affected by their
activity. Therefore, detailed exploration of enzyme selectivity
and development of more targeted inhibitors are vital next
steps in the clinical development of HDACi for use in
inflammatory disorders.

We are only just beginning to understand the full scale
of epigenetic influence on immune function (141). A critical
question to address is the longevity of these adaptions. A
limitation of many of the above studies is the relatively short
time frame in which epigenetic changes are reported. Results
from Mitroulis et al. which demonstrate sustained epigenetic
modulation inmyeloid progenitors now need to be expanded and
built upon (98). A more comprehensive description of both the
nature of epigenetic changes and the retention of them is needed

Frontiers in Immunology | www.frontiersin.org 8 June 2019 | Volume 10 | Article 1363

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Cross et al. Epigenetics in Sepsis Pathophysiology

to fully understand epigenetic contribution to sepsis pathology
and outcome.
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