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Abstract: We formulate equations governing flows of suspensions of rod-like particles. Such suspen-
sions include linear polymer solutions, FD-virus, and worm-like micelles. To take into account the
particles that form and their rotation, we treat the suspension as a Cosserat continuum and apply
the theory of micropolar fluids. Anisotropy of suspensions is determined through the inclusion
of the microinertia tensor in the rheological constitutive equations. We check that the model is
consistent with the basic principles of thermodynamics. In addition to anisotropy, the theory also
captures gradient banding instability, coexistence of isotropic and nematic phases, sustained temporal
oscillations of macroscopic viscosity, shear thinning and hysteresis. For the flow between two planes,
we also establish that the total flow rate depends not only on the pressure gradient, but on the history
of its variation as well.

Keywords: suspension; rodlike particles; rheology; micropolar fluids; anisotropy; hysteresis

1. Introduction

There is a class of complex fluids which can be considered as suspensions of rod-like
particles. Examples include linear polymer solutions, worm-like micelles, FD-virus, liquid
crystals, etc. Such a class enjoys interesting properties like anisotropy [1], gradient and
vorticity banding [2–4], shear banding instabilities [5], transition between isotropic and
nematic phases [6], and cluster formation [7,8].

Here, we formulate a new mathematical model which is good for concentrated sus-
pensions and show that it predicts anisotropy and some other properties of suspensions
of rod-like particles. To this end, we study Poiseuille-like shear flows. The practice of
pumping oil in pipelines shows that the total oil flux can depend not only on the pressure
gradient, but on the history of pumping as well [9]. We establish that the developed model
captures such an effect and show its relationship with the hysteresis phenomenon.

Studies of rodlike particles flow in fluids go back to Jeffrey’s work on interactions of a
floating isolated ellipsoid with unbounded linear shear fluid flow [10]. It turns out that
such a particle periodically rotates in Jeffrey’s orbits, which depend on the geometry of the
particle and its initial orientation. Jeffery’s approach was developed further in a number of
kinematic models [11,12], which include equations both for particle mass centre and for the
direction vector with the help of a third rank shape tensor. Available experiments [13,14]
confirmed applicability of the generalized Jeffery equations. Such an approach formed
basis for extensions accounting for rod–rod interactions [15,16] and for the prediction fibre
alignment distributions in moulded parts [17]. Equations proposed in [18] also allow for
governing particles motion in a simplified situation where the rod orientation is restricted
to the plane spanned by the direction of shear and the direction of gravity.

In a number of studies, the search for the rheology of suspensions of rodlike particles
is reduced to establishing the relationship between stress and rate of strain in shear flows.
In [19], starting from experiments with FD-viruses, it was studied how viscosity depends
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on concentration, shear rate and ionic strength. An expression for viscosity was derived
in [20] with the use of friction coefficients parallel and perpendicular to the rod axis. We
refer the reader to detailed description of viscosity representation formulas to [1,19,21]; the
viscosity dependence on shear rate is also discussed there.

Our approach is different. We use methods of mechanics of continua by applying
conservation laws only and not involving the concept of particle direction. To take into
account particle rotation and form, we apply the theory of micropolar fluids, which allows
for particle microinertia [22]. According to this theory, which is a part of rational mechanics,
any infinitesimal volume contains sufficiently many particles. This is why such an approach
is applicable for suspensions with a high concentration of particles. As is proved within the
micropolar fluid theory in [23], it is due to particle rotation that the Segre–Silberberg effect
occurs. Such an effect is known as a tubular pinch phenomenon, stating that particles tend
to migrate towards a concentric annular region for the laminar flow of neutrally buoyant
dilute suspension of rigid spheres through a circular tube [24]. There is one more effect
caused by particle rotation and rotational diffusion. This is the separation of particles when
flowing between two concentric rotating cylinders [25].

The micropolar fluid theory allows for intrinsic rotations and micro-inertia thanks
to the concept of the Cosserat continuum where each material point is treated as a rigid
body [26]. We formulate anisotropic constitutive law by including the micro-inertia tensor
into stress/rate of strain relationships. Such an idea of anisotropy was first formulated
in [27]. In a great number of papers, rotation of the particles is neglected and the anisotropy
is taken into account by using the differences of normal stresses [28].

In the micro-polar fluid theory allowing for internal spins, stress tensor loses symmetry,
couple stress appears, and the angular momentum equation should be included into
conservation laws. Formulation of rheological constitutive laws in the present paper
involves introduction of new viscosities both relative to the Cauchy stress tensor and to the
couple stress tensor. Skew-symmetric and anisotropic viscosities are introduced in addition
to the common shear viscosity, which we call here symmetric viscosity. While there are
experiments [29] and theories [25] to determine the skew-symmetric viscosity, the question
of measuring the anisotropic viscosity remains open. We cannot quantitatively confirm
our equations by three-dimensional experiments, since the calculations were carried out
on the basis of one-dimensional flows. However, we prove that it is precisely due to the
anisotropic viscosity that these equations capture such effects as hysteresis, shear gradient
banding instability and phase transition.

The flow of short polymer chains in the channels can be regarded as an example of
the applicability of the method outlined in this work. The flow of such polymers between
graphite surfaces is studied in [30] by the molecular dynamic simulation technique. It
is established there that the polymer chains exhibit preferential alignment of oligomers
parallel to the surfaces with increasing shear rate. Though in the present paper it is assumed
that rods lie in the plane orthogonal to the bounding planes, we predict like in [30] that the
apparent viscosity shows an oscillatory behaviour and its variation versus the shear rate
corresponds to the shear thinning phenomenon. We perform calculations of the simple
flow depending on one variable only; nevertheless, we capture appearance and instability
of the nematic phase. More complicated phase transition was addressed in [31] for colloidal
suspensions in water; the nucleation of a kagom lattice from solution was detected.

The goal of Section 2 is to remind foundations of the micropolar fluid theory and
formulate conservation and constitutive laws obeying the basic principles of thermodynamics.
In Section 3, we derive equations for one-dimensional Poiseuille-like shear flows. Finally, in
Section 4, we perform calculations explaining different phenomena. In addition to anisotropy,
the calculations predict gradient banding instability, phase transition between isotropic and
nematic phases, sustained temporal oscillations of macroscopic viscosity, shear thinning and
hysteresis. For the flow between two planes, we also establish that the total flow rate depends
not only on the pressure gradient, but on the history of its variation as well.
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2. Anisotropic Micropolar Fluids

We remind basic notions of the micro-polar fluid theory. Given a material point
labelled by the Lagrangian coordinate-vector ξ, the position vector x(t, ξ) at the time
instant t in the three dimensional Euclidean space jointly with orthogonal director-vectors
di(t, ξ), i = 1, 2, 3, are assigned to such a point to treat it as a rigid body. Orientation of di
is controlled by an orthogonal tensor Q(t, ξ):

di(t, ξ) = Q(t, ξ)di(0, ξ), Q∗Q = QQ∗ = I.

Here, I is the identity matrix with the elements δi
j, Q∗ is the adjoint matrix, (Q∗)ij = Qji.

The skew-symmetric tensor Ω(t, x) = QtQ∗ defines the particle’s rotation with the angular
velocity

ω(t, x) = ei × (Ωei)/2 = ε : Ω/2, (Ωa)i = Ωijaj ∀ a ∈ R3,

where {ei}3
1 is an orthonormal basis in R3 and ε is the Levi–Civita third order tensor,

ε(a, b, c) = a · (b× c), ei × ej = εsijes, εsij = ε(es, ei, ej), (ε : Ω)i = εijkΩjk.

Given the velocity field v(t, x) = xt(t, ξ), we introduce the rate of strain tensors [22].

B = ∇v−Ω, A = ∇ω,

where (∇v)ij = ∂vi/∂xj. Observe that both B and A are objective relative to the change of
frame of references.

Let ρ, s, T and N stand for the mass density, the specific internal spin, the Cauchy
stress tensor and the angular moment tensor, respectively. We introduce the material
derivative ρ̇ (or dρ/dt) related to the velocity field v as follows

ρ̇ =
∂ρ

∂t
+ vi

∂ρ

∂xi
or ρ̇ =

∂ρ

∂t
+ (v · ∇)ρ. (1)

Conservation laws of mass, momentum and angular momentum are given by the equations

ρ̇ + ρdiv v = 0, (2)

ρ v̇ = div T + ρ f, (3)

ρ ṡ = div N − ε : T + ρ l, (4)

where f is the mass force density, l is the mechanical couple density, and

(div T)i = ∂Tij/∂xj.

Observe that the stress tensor T is not symmetric. Given an orthonormal basis {ei}3
1,

the vector
t = ei × (T · ei) = ε : T

does not depend on the choice of the basis and it is a stress symmetry defect measure in
the sense that the equality t = 0 implies T∗ = T and vice versa. By the definition of t, we
have the formula

t ·ω = T : Ω. (5)

The internal specific spin is defined by the formula s = Jω, where the symmetric
inertia tensor J[cm2] obeys the identity [22]

J̇ −ΩJ + JΩ = 0. (6)
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Before proceeding to constitutive laws, we address the thermodynamics issue. Given a
specific internal energy e, the total energy E = e+ v · v/2+ s ·ω/2 satisfies the equation [32]

ρ Ė = div (T∗v + N∗ω− q) + ρ f · v + ρ l ·ω, (7)

where q is the heat flux obeying the Fourier law q = − κ∇θ, with κ standing for the heat
conductivity. Generally, internal energy e depends on ρ, η and J, e = e(ρ, η, J), where η is
the specific entropy. It is common knowledge that absolute temperature and pressure are
defined by the derivatives θ = ∂e/∂η, p = ρ2∂e/∂ρ respectively [33]. We calculate that

ė = eρρ̇ + eη η̇ +∇Je : J̇, where ∇Je : J̇ =

(
J̇ij

∂

∂Jij

)
e.

From the rheological point of view, the internal energy e(ρ, η, J) should be an isotropic
function of J. Hence, ∇Je is also an isotropic function of J; it implies that [34]

∇Je = α0 I + α1 J + α2 J2, (8)

where the scalar functions αi depend on invariants of J. Now, it follows from (6) and (8)
that ∇Je : J̇ = 0.

We use Equation (6) to calculate that

d
dt
(s ·ω) = ṡ ·ω + s · ω̇ = 2ṡ ·ω.

Hence,

ρĖ =
p
ρ

ρ̇ + ρθη̇ + ρv̇ · v + ρṡ ·ω = −pdiv v + ρv̇ · v + ρṡ ·ω. (9)

Multiplying Equations (3) and (4) by v and ω, respectively, we arrive at the
energetic equality

ρ v · v̇ + ρ ω · ṡ = div(T∗v + N∗ω)− T : B− N : A + ρ f · v + ρ l ·ω (10)

With S standing for the viscous part of the stress tensor T, we write the representation
formula T =−pI + S. Hence, T : B = −pdiv v+ S : B, where T : B = TijBij. Now, it
follows from (7), (9) and (10) that the entropy equation

ρη̇ + div
(q

θ

)
=

R
θ

, (11)

holds, with the function

R = S : B + N : A +
κ|∇θ|2

θ

standing for the entropy production. The second law of the thermodynamics R ≥ 0 can be
formulated as

S : B + N : A ≥ 0. (12)

In what follows, we use the notations

Bs =
B + B∗

2
, Ba =

B− B∗

2

for the symmetric and skew-symmetric parts of B. We formulate anisotropic constitutive
laws as follows:

S = 2µsBs + 2µaBa + 2µanσ2 JB, N =
2ν

σ2 A + 2νan AJ, (13)
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where µs, µa, µan, ν, νan[g/(cm · s)] are the viscosities and σ[cm−1] is the specific particles
surface area. The first rheological equation in (13) suggests that the contributions of the
symmetric part Bs and skew-symmetric part Ba of the rate of strain tensor B into local stress
state are different. The fact that both S and N depend on J implies anisotropy. Such an
approach was first formulated in [22]. Observe that the objectivity of the S and N results
form the objectivity of B, A and J [22].

Due to the symmetry of J, one can verify that

JB : B =
3

∑
1

λj|B∗ej|2,

where ej and λj are the eigenvectors and the eigenvalues of J. Observe that λj ≥ 0 provided
each suspension particle enjoys an axis of rotational symmetry. For such suspensions, we
find that

S : B = 2µsBs : Bs + 2µaBa : Ba + 2µanσ2
3

∑
1

λj|B∗ej|2 ≥ 0.

Similarly, one can verify that

AJ : J = ∑ λj|Aej|2.

Thus, the constitutive laws (13) satisfy the thermodynamic restriction (12), provided
the suspension particles are axially symmetric.

3. Poiseuille Flows

We consider one-dimensional flows along the horizontal x-axis in the vertical layer
|y| < H between two parallel planes under the prescribed pressure gradient∇p = (px, 0, 0),
px(t) < 0, Figure 1a. In this case, v2 = v3 = 0, v1 = v(y, t). We assume that the suspension
particles are the rods of the same size; they lie in the plane z = 0 and rotate around the
z-axis. Hence, ω = (0, 0, ω).

x

y

x
z

y

(a) (b)

Figure 1. (a) Schema of particle’s position in one-dimensional flows. (b) The cylinder approximation
of the rod-like particle.

Let us describe the micro-inertia tensor J. First, we consider a cylinder V0 stretched
along the y-axis with the height h and the radius r, Figure 1b. By definition, the inertia
tensor J(V0) of V0 is given by the formula

J(V0) =
∫
V0

|ζ|2 · I − ξ ⊗ ξ dξ or Jij(V0) =
∫
V0

|ξk|2δij − ξiξ j dξ,
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where I is the identity matrix and a⊗ b stands for the tensor product of two vectors a and
b, (a⊗ b)ij = aibj. Calculations reveal that

J(V0) =

 r2/4 + h2/3 0 0
0 r2/2 0
0 0 r2/4 + h2/3

.

In the limit as r → 0, we obtain the inertia tensor of the rod particle stretched along
the y-axis:

J0 = lim
r→0

J(V0) = j0

 1 0 0
0 0 0
0 0 1

. j0 = h2/3.

Let J(V) be the inertia tensor of the cylinder V, which is produced by rotation of V0
around the z-axis by the angle ϕ counted from the axis y counter-clockwise, see Figure 1a.
By definition of the spin s, we find that

s = J(V) ·ω =
∫
V

x× (ω× x) dx = Qϕ J0Q∗ϕ ·ω,

where Qϕ is the orthogonal matrix such that

Ω = Q̇ϕQ∗ϕ, Ω · h = ω× h ∀ h, (Q∗)ij = Qji, (14)

Qϕ =

 cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

, Ω =

 0 −ω 0
ω 0 0
0 0 0

, (15)

with “dot” standing for the material derivative (1) related to the velocity vector v. Thus,
J(V) = Qϕ J(V0)Q∗ϕ. In the limit as r → 0, we obtain the inertia tensor J(ϕ) of the rod
particle with the position angle ϕ:

J(ϕ) = Qϕ J0Q∗ϕ = j0

 cos2 ϕ sin ϕ cos ϕ 0
sin ϕ cos ϕ sin2 ϕ 0

0 0 1

,
∂ϕ

∂t
= ϕt = ω. (16)

Given an initial distribution of particle’s angles ϕ0(y), we denote the initial micro-
inertia tensor by J0(y) = J(ϕ0(y)):

J|t=0 = J0. (17)

For the described one-dimensional flows, the material derivative J̇ reduces to the time
derivative Jt. With the use of Equation (15), (6) can be written as follows:

∂

∂t
J11 = −2ω J12,

∂

∂t
J12 = ω(J11 − J22),

∂

∂t
J22 = 2ω J12, (18)

and Jij = 0 otherwise. Observe that

∂Jij

∂t
=

∂Jij

∂ϕ

∂ϕ

∂t
= J′ijω, J′ij =

∂Jij

∂ϕ
.

Hence, the system (18) is equivalent to

J′11 = −2J12, J′12 = J11 − J22, J′22 = 2J12, Jij|ϕ=ϕ0 = J0. (19)

One can verify that the matrix J in (16) solves the system (19).
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We calculate the rate of strain tensors and find that

B =

 0 vy + ω 0
−ω 0 0

0 0 0

, B∗ =

 0 −ω 0
vy + ω 0 0

0 0 0

, (20)

Bs =

 0 vy/2 0
vy/2 0 0

0 0 0

, Ba =

 0 vy/2 + ω 0
−vy/2−ω 0 0

0 0 0

,

j−1
0 JB =

 −ω cos ϕ sin ϕ cos2 ϕ(vy + ω) 0
−ω sin2 ϕ cos ϕ sin ϕ(vy + ω) 0

0 0 0

,

A =

 0 0 0
0 0 0
0 ωy 0

, j−1
0 AJ =

 0 0 0
0 0 0

ωy cos ϕ sin ϕ ωy sin2 ϕ 0

, (21)

Let us denote

ε1 =
µa

µs
, ε20 =

µan j0σ2

µs
, ε30 =

νan j0σ2

ν
, B0 = Bs + ε1Ba + ε20 JB.

Calculations reveal that matrix B0 is equal to −ε20ω cos ϕ sin ϕ
vy(1+ε1+2ε20 cos2 ϕ)

2 + ω(ε1 + ε20 cos2 ϕ) 0
vy(1−ε1)

2 −ω(ε1 + ε20 sin2 ϕ) ε20 cos ϕ sin ϕ(vy + ω) 0
0 0 0

.

We consider incompressible fluids with the assumption ρ = const. For one-dimensional
flows, the incompressibility condition div v = 0 is satisfied automatically. Other conserva-
tion laws (3) and (4) become

ϕt = ω, ρvt = −px +
∂S12

∂y
, ρj0ωt =

∂N32

∂y
+ S21 − S12. (22)

For one-dimensional flows, the constitutive laws (13) reduce to

Sij = 2µsB0
ij, N32 = 2

ν

σ2 A32 + 2νan(AJ)32. (23)

Observe that

S21 − S12 = 2µs(B0
21 − B0

12), B0
21 − B0

12 = −vy(ε1 + ε20 cos2 ϕ)−ω(2ε1 + ε20).

We formulate boundary conditions at |y| = H as follows:

v = 0, ω =
α

2
∇× v, 0 ≤ α ≤ 1. (24)

The first condition in (24) states that velocity obeys the no-slip condition. The second
condition in (24) has the meaning that the micro-rotation ω depends linearly on the macro-
rotation ∇× v/2 [25].

Let V and T stand for the velocity and time reference values. We denote Ω = V/H
and choose T = 1/Ω. We introduce dimensionless variables as follows:

S′ =
1

2µsΩ
S, N′ =

Hσ2

2νΩ
N, B′0 =

B0

Ω
, Re =

H2ρΩ
µs

,
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y′ =
y
H

, v′ =
v
V

, t′ =
t
T

, ω′ =
ω

Ω
, Π =

|px|H2

2Vµs
, γ =

ν

H2µsσ2 .

In new variables, Equation (22) become

ϕt′ = ω′,
Re
2

v′t′ = Π +
∂S′12
∂y′

,
Rej0
2H2 ω′t′ = γ

∂N′32
∂y

+ S′21 − S′12. (25)

In what follows, we consider quasi-steady slow flows. Neglecting terms with small
Reynolds numbers in (25), we arrive at the equations

ϕt′ = ω′, 0 = Π +
∂S′12
∂y′

, (26)

0 = γ
∂

∂y′
[
ω′y′(1 + ε30 sin2 ϕ)

]
− [v′y′(ε1 + ε20 cos2 ϕ) + ω′(2ε1 + ε20)], (27)

where

S′12 =
v′y′(1 + ε1 + 2ε20 cos2 ϕ)

2
+ ω′(ε1 + ε20 cos2 ϕ).

Because of the symmetry conditions

v′(−y′, t′) = v′(y′, t′), ω′(−y′, t′) = −ω′(y′, t′), ϕ(−y′, t′) = ϕ(y′, t′)

we consider flows only in the upper half-layer 0 < y′ < 1. In such a case the initial and
boundary conditions take the form

ϕ|t′=0 = ϕ0(y′), v′(1) = 0, v′y′(0) = 0, ω′(1) = −0.5αv′y′(1), ω′(0) = 0. (28)

To perform numerical solution, one should fix the dimensionless parameters
Π, ε1, ε20, ε30, γ, α.

4. Results of Calculations

Here, we address the system (26)–(28) by applying the Wolfram Mathematica solver.
It is well known in many complex fluids that a shear banding effect occurs when

applied shear stress is above some critical value [4,35,36]. Such a phenomenon is char-
acterized by coexisting bands of different shear rates and /or viscosities. Depending on
the directional alignment of the banded structure, there are two types of shear banding
for suspensions of rod-like particles: gradient banding and vorticity banding [2–4]. In
the case of gradient banding, the flow separates into bands of different shear rates along
the gradient direction. With reference to the coordinate system of Figure 1a, x is the flow
direction along the velocity vector v = (v, 0, 0), y is the gradient direction along which the
flow has non-zero derivative ∂v/∂y. The z-axis is the vorticity direction along the non-zero
macro-vorticity vector ∇× v.

The system (26)–(28) cannot be applied for description of the vorticity banding since
the corresponding one-dimensional flow does not depend on the z-variable. However, cal-
culations reveal that the system (26)–(28) can really capture the gradient banding. Figure 2
depicts appearance of gradient banding when shear stress increases; calculations are
performed at t = 10 for

ε1 = 1, ε20 = 2, ε30 = 2, γ = 1.3, α = 0.3, ϕ0 = 0. (29)

Intervals where ϕ(y) = const or ω(y) = const correspond to the nematic phase. The
profiles of the intrinsic angular velocity ω at Figures 2b and 3 imply appearance and
instability of the nematic phase. Figure 4b depicts the phase transition from the isotropic
phase to the nematic phase.
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(a) (b)

Figure 2. From top to bottom, profiles of the dimensionless velocity v(y) and dimensionless micro-
spin ω(y) on the upper half-layer 0 < y < 1 at dimensionless time t = 10 for dimensionless pressure
gradient (a) Π = 0.85 and (b) Π = 2.85. Gradient banding development is observed at high pressure
gradients (b).

(a) (b)

Figure 3. Gradient banding instability with respect to time. From top to bottom, dimensionless
velocity v(y) and dimensionless micro-spin ω(y) profiles at Π = 2.85 for different dimensionless
times t = 15 (a) and t = 25 (b). Values of other parameters are as in the data list (29).

(a) (b)

Figure 4. Gradient banding instability with respect to initial particles orientation. From top to bottom,
profiles of dimensionless velocity v(y) and dimensionless micro-spin ω(y) at Π = 2.85 and at t = 15 for
initial ϕ0(y) = 0 (a) and ϕ0(y) = 4y + 9y2 (b). Values of other parameters are as in the data list (29).

Figure 3 shows gradient banding instability with respect to time. A treatment of time
dependent phenomena for worm-like micelles can be found in [5].

It turns out that the gradient banding is also unstable with respect to initial particles
orientation. When passing from spatially homogeneous initial orientation of particles
ϕ0(y) = 0 to a spatially heterogeneous orientation (like ϕ0(y) = 4y+ 9y2), the gradient
banding effect becomes more pronounced, see Figure 4.

Many shear banding systems display oscillations or irregular fluctuations. Example
systems include worm-like micelles [37]. Within the developed anisotropic model, one
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can observe a chaotic behaviour of the shear velocity even at a constant applied pressure
gradient, see Figure 5. Basically, it is due to anisotropic viscosities in the rheological
constitutive laws (13).

(a) (b)

Figure 5. Time variation of the velocity in the middle of the channel at a constant pressure gradient
in dimensionless variables (a) for homogeneous transversal initial particles orientation and (b) for
non-homogeneous initial particles orientation along the channel.

Next, we consider questions motivated by oil transportation through pipelines. To
optimize pumping, additives are used that change the microstructure of oil. As a result, it
is discovered that friction factor can depend not only on oil discharge, but on its prehistory
as well [38]. It turns out that the smallest friction losses are achieved by decreasing rather
than increasing the flow rate to a predetermined level [9]. Let us show that the developed
mathematical model in Section 1 captures such an a effect.

First, we establish that the system (26)–(28) does not provide one-to-one correspon-
dence between the pressure gradient Π and the total fluid flux Q = 2

∫ 1
0 v dy. Given a

time-dependent pressure gradient Π(t), one can calculate the corresponding total flux Q(t).
Let us consider the parametric line

Π = Π0(1 + sin πt), Q = Q(t), 0 < t < 1, (30)

which corresponds to the curve Ô, P, L on the (Π, Q)-plane, Figure 6. The lower part
Ô, A, P of this curve corresponds to the time interval 0 < t < 1/2. Along this part, both
Q and Π grow, Π0 < Π < 2Π0. The top part P̂, B, L of the curve corresponds to the time
interval 1/2 < t < 1. Along this part, both Q and Π decrease.

For typical viscous fluids like a power law fluid, there is a one-to-one correspon-
dence between Π and Q; as a consequence, the lines Ô, P, L and P̂, B, L coincide. It is not
the case for the anisotropic fluid considered here. Given Π∗ satisfying the inequalities
Π0 < Π∗ < 2Π0, how can one determine a corresponding flux Q? It follows from Figure 6
that there are two values QA and QB corresponding to Π∗. Indeed, let us consider the
intersection of the vertical line Π = Π∗ with the curve Ô, P, L. On this way we arrive at the
points A and B:

A = (Π∗, QA), B = (Π∗, QB).

Clearly, there are tA and tB such that

0 < tA < 1/2 < tB < 1, Π(tA) = Π(tB) = Π∗, QA < QB, Qi = Q(ti),

with i = A, B.
Let us choose the points C = (ΠC, QC) and D = (ΠD, QD) in such a way that

ΠC < Π∗ < ΠD.
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When the value of Π goes from the low value ΠC to Π∗, the value of Q changes from QC to

QA = lim
Π↗Π∗

Q(Π).

When the value of Π goes from the upper value ΠD to Π∗, the value of Q changes
from QD to

QB = lim
Π↘Π∗

Q(Π).

Thus, total flux depends not only on pressure gradient, but on the evolution history of
pressure gradient as well.

2.5 3.0 3.5 4.0 4.5

2.5

3.0

3.5

4.0

4.5

P

Q

O

P

A

B

C

R

NM

S

D

L

Figure 6. On the (Π, Q)-plane, the hysteresis loop corresponding to process (30) for rather small
ε20, ε30, with Π0 = 2.3.

Similarly, we consider determination of Π starting from values of Q. Again, one
should know a prehistory of Q. Indeed, let us consider a total flux Q∗, which is between
Q|t=0 and Q|t=1/2. Let us consider the intersection of the horizontal line Q = Q∗ with the
hysteresis loop Ô, P, L. In this way, we arrive at the points N and M:

N = (ΠN , Q∗), M = (ΠM, Q∗).

Clearly, there are tN and tM such that

0 < tN < 1/2 < tM < 1, Q(tN) = Q(tM) = Q∗, ΠM < ΠN , Πi = Π(ti),

with i = N, M. Let us choose points R = (ΠR, QR) and S = (ΠS, QS) in such a way that
QR < Q∗ < QS.

If Q goes from the lower value QR to Q∗ then Π changes from ΠR to

ΠN = lim
Q↗Q∗

Π(Q).

If Q goes from the upper value QS to Q∗ then Π changes from ΠS to

ΠM = lim
Q↘Q∗

Π(Q).
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Thus, pressure gradient depends not only on total flux, but on the prehistory evolution
of total flux as well.

As far as the oil pipelines are concerned, the designed oil flux can be obtained in two
ways: by switching from a fast or slow flux. By the developed anisotropic model, the
pressure drop to ensure the designed oil flux is less in the first case.

Now, we consider friction losses which play an important role in oil pumping through
pipelines. Returning to dimension variables, we remind that the mean velocity U and the
friction factor λ are defined as follows:

U =
1

2H

H∫
−H

v(y) dy, |px| =
λ

2H
ρU2

2
.

In dimensionless variables, we have

U′ =
∫ 1

0
v′(y)dy =

Q
2

, Λ ≡ Re · λ
8

=
Π

U′2
,

where Λ is the reduced friction factor.
To analyse flows on the plane (U′, Λ), we omit the prime indexes. Calculations reveal

that, starting from the pressure gradient law

Π(t) = Π0(1 + sin πt),

the curve

U = U(t), Λ(t) =
Π(t)
U2(t)

, 0 < t < 1,

becomes as is shown in Figure 7. The top part of this curve corresponds to the time interval
0 < t < 1/2. Along this part, both U and Π grow, Π0 < Π < 2Π0, whereas Λ decreases.
The lower part of the curve corresponds to the time interval 1/2 < t < 1. Along this part,
both U and Π decrease, whereas Λ grows. How can one calculate the friction factor Λ
corresponding to a designed mean velocity U∗? The answer depends on the history; one
can attain U∗ by increasing U or by decreasing U. Given U∗ lying between Umin = U|t=0
and Umax = U|t=1/2, we choose t1 and t2 in such a away that

0 < t1 < 1/2 < t2 < 1, U(t1) = U(t2) = U∗.

With Λi standing for Λ(ti), one can conclude from Figure 7 that Λ1 > Λ2 despite the
fact that both Λ1 and Λ2 correspond to the same U∗. Thus,

Λ1 = lim
U↗U∗

Λ(U) = Λ|U∗− > Λ|U∗+ = lim
U↘U∗

Λ(U) = Λ2.

Returning to the issue of oil transportation, one can attain the productive regime in
two ways by switching from a faster or from a slower flux. After switching to a productive
regime, the developed friction loss is less in the first case. Such a conclusion agrees with
known in situ data [9].

Consider the stress response to a change in velocity gradient. It follows from the
dimensional steady-state Equation (22) that the shear stress S12 is given by the formula

S12 = pxy, τ̃ ≡ −S12
∣∣
y=H = −px H,

where τ̃ is the stress at the upper plane y = H. Let us calculate the curve τ̃ = τ̃(γ̇1) where
γ̇1 = −vy

∣∣
y=H . Observe that γ̇1 does not stay for the the shear rate in the micropolar fluid

theory. We pass to the dimensionless variables

τ =
τ̃

2µsΩ
= Π, γ̇ = −v′y′

∣∣∣
y′=1

, γ̇1 = Ωγ̇.
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Performing calculation of the parametric curve

Π = Π0(1 + sin πt), γ̇ = γ̇(t), 0 < t < 1, (31)

we arrive at the hysteresis loop τ = τ(γ̇), which is shown in Figure 8. Thus, there is no
one-to-one correspondence between velocity gradient and shear stress in shear flows. Such
an effect has been seen in worm-like micelle solutions [39].

Figure 7. Hysteresis loop on the (U, Λ) plane, where U is the mean velocity and Λ is the friction
factor. The data are the same as in Figure 2.

Figure 8. Hysteresis of the rheological stress–strain curve Π = Π(γ̇).

Let us introduce the apparent viscosity ηa = τ̃/γ̇1. Figure 9 depicts how its dimen-
sionless replica η = τ/γ̇ varies with time for the case Π = const. Sustained temporal
oscillations of macroscopic viscosity are observed in [40] for the rod-like suspension.

Figure 9. Apparent viscosity versus time. The case Π = Π0 = const.
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As far as the function η = η(γ̇) is concerned, the shear thinning nature of suspensions
of rod-like particles is clearly depicted on Figure 10 in agreement with observations in [1].

Figure 10. Apparent viscosity η versus velocity gradient γ̇ for the case Π = Π0 = const.

5. Discussion

We address rheology of suspensions of rodlike particles. To take into account both
particle–fluid and particle–particle interactions, we treat the suspension as a Cosserat
continuum and apply the micropolar fluid theory approach. Assuming that local stress
depends on the rods directions, we include the micro-inertia tensor into constitutive laws as
an independent variable jointly with the rate of strain tensors. The micropolar fluid theory
allows for particle’s rotation obeying the angular momentum conservation law. The Cauchy
stress tensor loses symmetry and the couple stress tensor is of importance. This is why
one should formulate two stress-rate of strain rheological equations for the stress tensor
and the couple stress tensor. Unlike a Newtonian fluid, a micropolar fluid is characterized
by two rates of strain tensors, through which the linear velocity gradient and the angular
velocity gradient are expressed. The impact of variation of rate of strains and the micro-
inertia onto the local stress state in the rheological equations is manifested through the
viscosities. This is why, in addition to the usual shear viscosity, we also introduce skew-
symmetric and anisotropic viscosities. The derived governing equations are proved to be
consistent with basic principles of thermodynamics. By performing calculations of simple
one-dimensional pressure driven flows between two parallel planes, we establish that the
skew-symmetric and the anisotropic viscosities underlie a number of important properties,
which include gradient banding instability, coexistence of isotropic and nematic phases,
sustained temporal oscillations of macroscopic viscosity, shear thinning and hysteresis.
Keeping in mind data for oil transport in pipelines, we also establish that the total flow
rate depends not only on the pressure gradient, but on the history of its variation as well.
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