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Abstract

Sphingolipids are well-recognized as major players in the pathogenesis of many human diseases, 

including chronic kidney disease. The kidney is a very sensitive organ to alterations in 

sphingolipid metabolism. The critical issues to be addressed in this review relate to the role of 

sphingolipids and enzymes involved in sphingolipid metabolism in the pathogenesis of glomerular 

diseases with a special focus on podocytes, a key cellular component of the glomerular filtration 

barrier. Among several sphingolipids, we will highlight the role of ceramide, sphingosine, 

sphingosine-1-phosphate and ceramide-1-phosphate. Additionally, we will summarize the current 

knowledge with regard to the use of sphingolipids as therapeutic agents for the treatment of 

podocyte injury in kidney disease.
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Introduction

Being a sophisticated and highly organized living system, mammals harbor a large number 

of biomolecular machineries which represent a dynamic and complex network of 
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interconnections responsible for the effective operation, development and survivability of 

their body cells. Sphingolipids are a special class of lipids in eukaryotic cells, which have 

recently gained the attention of researchers because of their involvement in several 

fundamental processes of living cells, including proliferation and cell death (Figure 1).

Within the kidney, the proper filtration function relies primarily on podocytes, which are 

terminally differentiated epithelial cells lining the urinary surface of the glomerular capillary 

tuft. Changes in the function and number of podocytes can lead to the development and 

progression of glomerular diseases, including diabetic kidney disease (DKD) and focal 

segmental glomerulosclerosis (FSGS), both of which are common causes of end-stage 

kidney disease (ESKD) in the USA [1]. However, the cause of podocyte injury and 

detachment in DKD and FSGS remains largely unknown. Proper filtration function of the 

glomerular filtration barrier depends heavily on the integrity of lipid raft domains, special 

regions of the plasma membrane which are enriched in cholesterol, sphingomyelin and 

glycosyl-phosphatidylinositol (GPI)anchored proteins. However, renal accumulation of lipid 

droplets observed both in clinical and experimental glomerular disorders has been shown to 

correlate with the development of glomerulosclerosis [2–4]. Additionally, seminal studies in 

experimental DKD established a clear role of glycosphingolipids in its pathogenesis [5]. 

More recently, podocyte malfunction due to altered metabolism of ceramide-1-phosphate [6, 

7] and sphingosine-1-phosphate [8–11] has been described to directly contribute to podocyte 

injury. In this review we will discuss the contribution of sphingolipids to the pathogenesis of 

glomerular diseases with a major focus on DKD and FSGS.

Glomerular Diseases: Focus on DKD and FSGS

Chronic kidney disease (CKD) is a condition of gradual loss of kidney function. In 2019, it 

was estimated that 37 million people, or 15% of US adults, are affected by CKD [12]. Major 

CKD risk factors include diabetes and high blood pressure, while obesity, heart disease, 

family history of CKD, and older age may also contribute significantly to kidney damage. 

Current treatment strategies may slow the decline in kidney function and delay kidney 

failure, but do not prevent CKD progression. Thus, the development of new treatment 

options is critical to cure CKD.

Diabetic kidney disease (DKD)

DKD is a major cause of chronic kidney disease leading to ESKD [1]. Clinically, one of the 

early features of DKD is loss of podocytes. Podocyte loss is an independent predictor of 

DKD progression in patients with type 1 (T1D) and type 2 (T2D) diabetes [13,14], resulting 

in a compromised filtration barrier and leakage of proteins into the urine (proteinuria). 

Several stimuli, such as hyperglycemia, chronic inflammation, oxidative stress and 

hemodynamic changes have been shown to contribute to podocyte injury in DKD. More 

recently, altered renal metabolism of lipids such as cholesterol, triglycerides [2,15–17], and 

sphingolipids has been shown to negatively impact podocyte function and lead to DKD 

progression and will be reviewed here.
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Focal and segmental glomerulosclerosis (FSGS)

FSGS is a histologic lesion that manifests clinically with nephrotic syndrome and is 

characterized by the presence of sclerotic lesions that affect some glomeruli (focal) and only 

some area of each glomerulus (segmental). FSGS is the most common cause of primary 

glomerular disease in adults in the United States and accounts for 10–15% of nephrotic 

syndrome cases [18]. Irrespective of the form of FSGS, whether primary (idiopathic), 

secondary, or genetic, loss of podocytes is an important determinant of progression to ESKD 

[19]. Among different causes of FSGS, recently described familial forms of FSGS 

demonstrate a causative link between altered sphingolipid metabolism and FSGS [8,9].

Sphingolipid Signaling in Glomerular Disease

Overview of sphingolipid metabolism: focus on the most important metabolites

Sphingolipids were long thought to be passive barrier lipids in cell membranes. Only in the 

last two decades sphingolipids and their metabolites, the most important being ceramide, 

sphingosine, ceramide-1-phosphate, and sphingosine-1-phosphate, have been considered as 

bioactive signaling molecules.

Sphingolipids belong to a large and diverse class of lipids that share a sphingosine base 

backbone, which is linked to a fatty acid (usually palmitic and stearic acid) via an amide 

bond, and are known to regulate cell membrane fluidity and structure [20]. The most critical 

role sphingolipids play in lipid rafts or raft-related caveolae, which are sphingomyelin- and 

cholesterol-rich microdomains of the plasma membrane, is to regulate protein-protein 

interactions and intracellular signal transduction. Thus, ceramide accumulation at the plasma 

membrane results in changes to the biophysical properties of the cell membrane, leading to 

altered lipid raft composition and changes in signaling properties (as reviewed in Ref. [21]).

Ceramide (Cer) is the central lipid intermediate of sphingolipid metabolism and regulates 

many of the functions in a cell, particularly anti-proliferative responses, such as growth 

arrest and/or senescence, and apoptosis (Figure 1). Additionally, ceramides are recognized 

as tumor-suppressive lipids and the inhibition of ceramidases has proven effective in 

anticancer therapy [22]. Ceramides can be produced by de novo synthesis from sphingosine 

(on the surface of the endoplasmic reticulum through the condensation of L-serine and 

palmitoyl-CoA by serine palmitoyl transferase) by the salvage pathway or from the 

hydrolysis of sphingomyelin (SM) or other complex sphingolipids by sphingomyelinases 

[23].

Ceramide kinase (CERK) catalyzes the formation of another bioactive lipid, ceramide-1-

phosphate (C1P), from ceramide. The first biological role of C1P was reported in 1995 by 

Gomez-Munoz et al., who established a role for C1P as a regulator of cellular proliferation 

and growth [24]. Later on, C1P was described as an anti-apoptotic lipid [25] and, currently, 

it is well recognized as an important regulator of inflammation (reviewed in Ref. [26]). C1P 

is also involved in the production of pro-inflammatory eicosanoids, recruiting enzymes 

responsible for the release of the eicosanoid precursor arachidonate to the plasma membrane 

[27]. Interestingly, a hypothetical possibility for the direct conversion of C1P to S1P and 

vice versa has also been suggested [28].
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Sphingosine (Sph) is generated from ceramide by the action of ceramidases, primarily 

alkaline ceramidase 1 (ACER1), and is subsequently converted to sphingosine-1-phosphate 

(S1P) by the action of sphingosine kinases (type 1 and type 2). S1P is implicated in cellular 

growth, survival, migration, angiogenesis and immune reactions (Figure 1). S1P can be 

dephosphorylated to sphingosine by S1P phosphatase or irreversibly degraded by S1P lyase 

leading to the formation of ethanolamine-1-phosphate and C16 fatty aldehyde. Interestingly, 

in the kidney, S1P lyase has been shown to play a role in development of proteinuria in mice 

[10], while genetic mutations in the gene coding for S1P lyase are associated with severe 

podocyte injury and nephrotic syndrome in humans [8,9]. Another interesting and important 

peculiarity of S1P is that it operates both intra-and extra-cellularly, i.e. as an autocrine and 

paracrine agent [29]. As an autocrine agent, S1P acts through five specific G protein-coupled 

receptors (designated S1P1-S1P5) and triggers distinctive signaling pathways and cellular 

responses, some of which can be antagonistic. S1P is primarily produced by erythrocytes 

and its concentration in blood and tissue may represent a biomarker for some diseases [30–

34].

Over the last decades, little attention has been paid to the role of sphingolipids in the kidney 

and, to their role in podocyte function in health and disease. However, more recently, 

researchers have actively investigated the role of sphingolipids in the kidney, particularly in 

glomerular diseases. The accumulation of sphingolipids in glomerular diseases may be of 

genetic or non-genetic origin. For more information on the role of sphingolipids in 

glomerular diseases of genetic origin, readers are referred to a review previously published 

by us [35].

Sphingolipids in DKD

Historically, increased levels of glycosphingolipids [36], ceramide [37], sphingosine and 

sphinganine [38] have been reported in the plasma of patients with T1D and T2D.

A recent study performed on diabetic C57BLKS db/db mice demonstrated elevated long-

chain ceramides (C14:0, C16:0, C18:0, C20:0) and C18:0 glucosylceramide in plasma, while 

long-chain (C14:0, C16:0, C18:0) and very-long-chain (C24:0, C24:1) ceramide species and 

C16:0 glucosylceramide levels were decreased in kidney cortices [39]. In the same study, 

microarray analysis of kidney cortex from 24-week-old diabetic mice showed significantly 

altered expression of genes involved in ceramide synthesis and metabolism (decreased 

expression of Degs2, Cers5, Fads3, Smpd2, and increased expression of Sptlc2, Cers4, 

S1Pr1, Acer2, Smpdl3b). Similarly, our studies also demonstrated decreased levels of total 

ceramide in kidney cortices of db/db mice [6,40], where long-chain species (C14:0, C18:0, 

C18:1, C20:0, C20:1), but not very-long-chain species were affected [6]. In a prospective 

study on T2D patients from Singapore, long-chain ceramide levels (C16:0 and C18:0) were 

also found elevated in the plasma of patients with early or overt DKD compared to non-

DKD controls [41]. Interestingly, high plasma levels of very-long-chain ceramide species 

were associated with a decreased risk of progression to macroalbuminuria in a subgroup of 

T1D patients enrolled in the Diabetes Control and Complications Trial (DCCT) and its long-

term observational follow-up (EDIC) [42], which may reflect a regulatory role of ceramides 

in loss of renal function. On the other hand, podocyte-specific deletion of the main catalytic 
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subunit of acid ceramidase resulted in ceramide accumulation in glomeruli and development 

of nephrotic syndrome in mice [43]. Notably, a recent report on urinary sphingolipids from 

patients with DKD also showed elevated urinary levels of ceramide d18:1/16:0, d18:1/18:0, 

d18:0/20:0, d18:1/22:0 and d18:1/24:0, which were correlated with urinary albumin [44]. It 

should be noted that increased levels of ceramide species were observed in diabetic patients 

with CKD stage 4, which may be due to the progression of kidney injury and reduced 

synthesis and/or excretion of ceramides by the kidney. Indeed, production of very-long-chain 

ceramide species is regulated by ceramide synthases (CerS), where CerS2, the most highly 

expressed isoform in the kidney, has been found to be associated with albuminuria in 

diabetic patients [45], and its haploinsufficiency has been reported to induce insulin 

resistance in the liver of mice fed on a high fat diet (HFD) [46].

In addition, ceramides have gained recent attention due to their role in insulin resistance, a 

significant contributor to DKD development and progression (as reviewed by us previously 

in Ref. [47]). Ceramides are known to inhibit signal transduction via phosphatidylinositol-3 

kinase and block activation of protein kinase B (AKT), thereby interfering with glucose 

uptake and impairing storage of glycogen and triglycerides (as reviewed in Ref. [48]). In a 

recent study using diabetic mice, deletion of dihydroceramide desaturase 1 (DEGS1), an 

enzyme critical to the formation of ceramide from dihydroceramide, resolved hepatic 

steatosis and insulin resistance [49]. Similarly, a beneficial effect of pharmacological or 

genetic ablation of DEGS1 was shown to be associated with decreased obesity-associated 

lipid accumulation in adipocytes [50]. In a deterministic and stochastic simulator model 

using cultured macrophages, ceramide and S1P were shown to play a role in controlling the 

AKT pathway and insulin resistance via manipulating levels of ceramide synthases (CERS2, 

CERS5 and CERS6) and DEGS2 [51]. In MIN6 cultured cells, elevated levels of ceramides 

(C14:0, C16:0, C20:1, C24:0) were associated with decreased insulin secretion and 

increased apoptosis [52], indicating the undeniable involvement of ceramides in 

development of insulin resistance. The role of ceramides in insulin resistance is reviewed 

elsewhere in greater detail [53]. Furthermore, we have recently identified a sphingolipid 

related enzyme that affects insulin receptor (IR) subtype signaling (as reviewed more 

extensively below).

Ceramide can be further catabolized to sphingosine, which is then phosphorylated to S1P, 

another important bioactive sphingolipid. Recent studies support an important role for S1P 

in renal diseases, including renal fibrosis (reviewed in Ref. [54]), nephrotic syndrome [8,9] 

and other glomerular diseases such as IgA nephropathy and lupus nephritis [55,56]. Early 

studies of streptozotocin (STZ)-treated rats revealed increased levels of S1P in isolated 

glomeruli during initial stages of DKD [57]. In support of this observation, another study 

also demonstrated increased renal levels of S1P in mice with STZ-induced DKD, which was 

prevented by intraperitoneal injections of insulin [58].

As mentioned earlier, S1P may act as an extra- or intracellular signaling molecule. 

Extracellular S1P is synthesized in the cytosol by SphK1/Sphk2 and then exported by a 

number of transporters. Such transporters include SPNS2, MFSD2B, and the ATP-binding 

cassette (ABC) transporters ABCA, ABCC1, and ABCG2. We previously reported that 

ABCA1 deficiency is one of the peculiarities in glomeruli isolated from patients with T2D 
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and DKD [2], an observation which we further confirmed by demonstrating that genetic or 

pharmacological overexpression of ABCA1 is sufficient to ameliorate podocyte injury in a 

mouse model of DKD [16,17]. Unbalanced expression of S1P receptors (enhanced S1PR2 

expression and decreased S1PR1 expression) in mesangial cells of STZ-induced diabetic rats 

has been also shown to contribute to DKD progression [59]. Increased expression of S1P has 

been shown to be associated with increased reactive oxygen species production and injury in 

CKD [60].

On the contrary, much less is known about the role of C1P in DKD development and 

progression. C1P has been found to modulate AKT phosphorylation in skin fibroblasts, 

hematopoietic cells [61], macrophages [62,63], and adipocytes [64], consistent with the 

observation that bioactive sphingolipids are major modulators of insulin signaling [65–67]. 

Knockdown of ceramide kinase was demonstrated to be efficient in the treatment of 

mesangioproliferative glomerular diseases [68]. Our studies demonstrated that diabetic 

db/db mice have less total C1P (with C18:0 species mostly affected) in kidney cortices, and 

that exogenous administration of C1P protects from DKD progression [6].

It is important to note that other sphingolipids, such as glucosylcerebrosides (GlcCer) and 

gangliosides (especially GM3), have been previously reported to contribute to DKD 

development [69–71]. GM3 is the most abundant renal ganglioside. In podocytes, GM3 has 

been shown to localize in lipid rafts, which are also called GM3-raft domains, and to bind 

the soluble vascular endothelial growth factor receptor sFLT-1, which plays a critical role in 

the regulation of angiogenesis and rapid actin reorganization [72]. Moreover, a pivotal role 

of GM3 in promotion of insulin resistance has been demonstrated [73]. In patients with 

DKD, increased levels of sialic acid, one of the components of gangliosides, were 

significantly positively correlated with hemoglobin A1c, serum creatinine, and 

microalbuminuria [74]. The biology and role of GM3 in diabetes and other metabolic-related 

diseases is reviewed elsewhere [75]. Levels of glucosylceramide (GlcCer) in diabetic ob/ob 
mice and STZ-induced diabetic rats are increased in several tissues, including liver, muscle 

[76] and kidney [69]. Pharmacological inhibition of glycosphingolipid synthesis has been 

shown to have a beneficial effect on insulin sensitivity and glycemic and weight control in 

animal models of obesity and diabetes [76–78]. In diabetic db/db mice, elevated levels of 

hexocyl-, glucosyl-, galactosyl- and lactosylceramides were shown in kidney cortices [79]. 

In addition, a recent study reported that C18:1 hexosylceramide is associated with DKD, 

while very-long-chain lactosylceramides are associated with the development of 

microalbuminuria in patients with T1D [80].

Sphingolipids in FSGS

Compared to DKD, much less is known about the role of sphingolipids in FSGS 

development and progression. In a mouse model of FSGS (doxorubicin-induced 

nephropathy), lipid peroxidation was reported as the main driver of macrophage-derived 

foam cell formation [81]. Using a mass spectrometric metabolomics approach, a recent 

report demonstrated that the urine of patients with FSGS contains elevated levels of fatty 

acids (C16:0, C22:4) and lysophosphotidylcholines (C14:0, C18:1) and decreased levels of 

phosphotidylcholine (C38:4) when compared to healthy subjects [82]. The same study also 
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reported decreased levels of urinary acylcarnitine (C12:0) in patients with FSGS, suggesting 

impaired fatty acid oxidation and possible mitochondrial dysfunction. Mutations in SGPL1, 

the gene which encodes S1P lyase, have been reported to be associated with steroid-resistant 

nephrotic syndrome [8,9,83], which manifests histologically with FSGS and diffuse 

mesangial sclerosis [84]. Sgpl knockout mice were shown to recapitulate many features of 

human renal disease [9]. Using microarray analysis on glomeruli isolated from patients with 

FSGS of the NEPTUNE cohort, we previously demonstrated altered expression of genes 

involved in cholesterol and free fatty acid homeostasis [4], supporting the hypothesis that 

dysregulation of cholesterol homeostasis contributes to the pathogenesis of FSGS. 

Additionally, we previously reported an important role of sphingomyelin phosphodiesterase 

acid-like 3b (SMPDL3b) in the recurrence of FSGS after transplantation [85]. We 

demonstrated that the expression of SMPDL3b is significantly decreased in podocytes from 

patients with recurrent FSGS. The role of SMPDL3b in glomerular diseases will be 

discussed in detail in the section below.

Therefore, similarly to DKD, modulating the sphingolipid content in glomeruli may also 

represent a valid strategy to prevent or treat podocyte injury in FSGS.

Role of SMPDL3b in the kidney

SMPDL3b is a glycosylphosphatidylinositol (GPI)anchored protein [86,87] with reported 

roles in inflammatory processes [88] and in kidney diseases [6,40,85]. Recently, the crystal 

structure of murine SMPDL3b was revealed and helped to identify possible substrates for 

SMPDL3b, which included CDP-choline, ATP and ADP [89]. Sphingomyelin could also be 

a potential substrate for SMPDL3b.

In macrophages, deficiency of Smpdl3b has been shown to cause alterations in the 

membrane lipid composition and changes in its fluidity [88,90]. The same study 

demonstrated that Smpdl3b knockdown results in enhanced responsiveness to Toll-like 

receptor stimulation (TLR4) and increased inflammatory response. SMPDL3b expression 

has also been found in pancreatic zymogen granules [91], in plasma protein-depleted 

cerebrospinal fluid [92], in saliva exosomes [93], in human milk [94], liver [95], and 

hepatocellular carcinoma [96], suggesting a diverse function of SMPDL3b in different 

tissues and organs.

In the kidney, we previously reported that SMPDL3b is a resident in lipid raft domains [85]. 

In the same study, we demonstrated that kidney biopsies of patients with recurrence of FSGS 

express less SMPDL3b, while overexpression of SMPDL3b in podocytes can prevent actin 

cytoskeleton disruption and apoptosis. Furthermore, we reported that rituximab, an anti-

CD20 monoclonal antibody targeting B cells, binds to SMPDL3b, thereby protecting 

podocytes from cytoskeleton disruption and apoptosis induced by treatment with sera from 

patients with recurrent FSGS [85]. Similarly, SMPDL3b protein loss has been reported in 

xenotransplants, where rituximab pretreatment maintained levels of SMPDL3b [97]. 

Additionally, adriamycin-induced nephropathy in rats was associated with reduced 

expression of SMPDL3b, which was also prevented by rituximab [98].
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In contrast, SMPDL3b expression is elevated in glomeruli from patients with DKD, as well 

as in animal models of DKD, where SMPDL3b expression in kidney cortices of 24-week-

old diabetic db/db mice was found to be almost three-fold higher when compared to controls 

using a transcriptomic approach [39]. We previously demonstrated that, in podocytes, 

SMPDL3b binds to the soluble urokinase plasminogen activator receptor (suPAR) (40), 

which is reported to be elevated in sera from patients with FSGS and DKD among other 

causes of CKD [40,99,100]. Furthermore, FSGS sera-treated podocytes showed decreased 

expression of SMPDL3b in association with increased cortical actin and loss of stress fibers, 

while podocytes treated with DKD serum demonstrated increased expression of SMPDL3b 

in association with actin reorganization in cell blebs [40].

Moreover, an excess of SMPDL3b in human podocytes may cause the displacement of 

insulin receptor isoforms from caveolin-1-rich domains of the plasma membrane in a C1P-

dependent manner, resulting in impaired ability to phosphorylate AKT thus promoting 

podocyte injury in vitro and development of DKD in vivo [6]. In addition, we demonstrated 

that overexpression of SMPDL3b in human podocytes causes suppression of protein kinase 

B and activation of p70S6 kinase phosphorylation, through its binding to both insulin 

receptor isoforms, IR-A and IR-B and caveolin-1, suggesting a novel role for SMPDL3b as a 

modulator of insulin signaling in podocytes [6]. Indeed, we demonstrated that SMPDL3b 

can interfere with the binding of insulin receptor B to caveolin-1 while facilitating insulin 

receptor A binding to caveolin-1, which may be responsible for increased insulin-stimulated 

p70S6 kinase phosphorylation. Thereby, overexpression of SMPDL3b is associated with 

reduced levels of C1P in human podocytes in vitro and in kidney cortices in vivo [6], while 

podocyte-specific deficiency of SMPDL3b in diabetic db/db mice results in reduced 

proteinuria and improved renal outcome. The idea that SMPDL3b may regulate the 

availability of bioactive sphingolipids such as C1P in podocytes is indeed intriguing. 

However, if SMPDL3b may have a direct phosphatase activity and convert C1P to ceramide 

remains to be investigated. Our further studies demonstrated that SMPDL3b interacts with 

ceramide kinase (CERK) and binds C1P in vitro and that SMPDL3b expression positively 

correlates with CERK expression [7].

Interestingly, single dose irradiation of human podocytes results in a time-dependent 

decrease of SMPDL3b protein expression in association with cortical actin remodeling, 

while overexpression of SMPDL3b in human podocytes yields a protective effect from 

radiation injury [101]. Pretreatment with rituximab mitigated radiation-induced cytoskeletal 

changes and increased expression levels of SMPDL3b [101]. In contrast, a single dose of 

radiation applied to human immortalized glomerular endothelial cells results in increased 

levels of SMPDL3b and decreased levels of C1P [102], while treatment with exogenous C1P 

or genetic knocking down of SMPDL3b partially protects glomerular endothelial cells. 

Notably, inhibition of NOX1 seems sufficient to restore normal expression of SMPDL3b and 

to reduce radiation-induced damage of glomerular endothelial cells. For a more detailed 

review on the role of sphingolipids in renal oncology, the reader is referred to [103].

Although these reports provide clues to the functions of SMPDL3b in various cells and 

organs, a better understanding of the role of SMPDL3b in health and disease is still needed. 
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Nevertheless, SMPDL3b seems to be an attractive therapeutic target, at least for the 

treatment of glomerular diseases.

Targeting sphingolipids in DKD and FSGS

A role for sphingolipids as modulators of podocyte function in DKD, FSGS and other 

glomerular diseases is an emerging concept. Increasing evidence suggests an involvement of 

sphingolipid metabolism in the development and progression of glomerular diseases. It has 

become clear that targeting sphingolipids may be beneficial for the treatment of DKD and 

FSGS.

One option to target sphingolipids is through the manipulation of S1P receptors (S1PRs). 

Treatment with FTY720, or fingolimod, a non-selective S1PR agonist, or SEW2871, a 

selective agonist of S1PR1, was shown to reduce urinary albumin excretion as well as 

urinary levels of the pro-inflammatory cytokine tumor necrosis factoralpha in mouse and rat 

models of STZ-induced DKD [104], suggesting that targeting kidney S1PR1 may represent 

a therapeutic intervention for the treatment of DKD. Additionally, treatment with berberine 

improved renal injury in STZ-induced diabetic rats via downregulation of S1PR2 [105] and 

the use of the S1PR2 specific antagonist LTE-013 showed improved insulin resistance in 

human and rat hepatocytes [106], suggesting the possibility that S1PR2 inhibition may prove 

useful for the treatment of diabetes and its related complications. Another study 

demonstrated that inhibition of ceramide accumulation with myriocin in Otsuka Long Evans 

Tokushima fatty rats and HFD-fed mice ameliorates albuminuria and histologic features of 

DKD [107]. Finally, our studies demonstrated that exogenous C1P treatment or podocyte-

specific inhibition of SMDP3Lb results in reduced proteinuria, improves renal outcome and 

restores insulin receptor signaling in diabetic db/db mice [6].

While the therapeutic use of active sphingolipids or modulators of S1P receptor activation 

remains of high interest and deserves further study, the possibility to target sphingolipid 

related enzymes remains an attractive opportunity. Among them, SMPDL3b may surely 

represent an attractive target. As no drug is yet available to directly agonize and antagonize 

the function of SMPDL3b, repurposing strategies with rituximab or other anti-CD20 

antibodies that recognize the same epitope could and should be considered. Our 

retrospective study clearly suggested that a single dose of rituximab administered in the pre-

transplant setting may be sufficient to prevent the recurrence of proteinuria after 

transplantation in patients with FSGS [85]. Observational studies have demonstrated that 

rituximab is a safe and effective treatment option in patients with steroid-dependent or 

frequently relapsing nephrotic syndrome, including minimal change disease and FSGS. 

While randomized controlled trials are needed, rituximab has been shown to prevent 

recurrences and reduce the need for immunosuppressive therapy [108,109]. A recent meta-

analysis on the use of rituximab in clinical settings suggests an additional benefit of 

rituximab if added to the standard therapy in adults with FSGS [110]. Therefore, rituximab 

may represent a potentially effective agent for the treatment of some glomerular diseases. 

Whether these beneficial effects are due to B lymphocyte depletion or to stabilization of 

SMPDL3b expression and function cannot be discerned in treated patients and requires 

further experimental studies with humanized mouse models.
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Another reported therapy targeting sphingolipids is enzyme replacement therapy (ERT), 

which currently represents a standard of therapy for Fabry disease, or lipid storage disease. 

In a recent case report of a Japanese man with FSGS and low activity of alpha-galactosidase 

(with mutation in M296I), ERT in association with immunotherapy with steroids and 

cyclosporine A [111] improved proteinuria levels, while in another case report of an obese 

male with histologically proven FSGS and low activity of alpha-galactosidase (with 

missense mutation in R310Q) no improvement in renal function despite ERT was described 

[112]. Thus, while ERT may be a very promising therapy for the treatment of lipid storage 

disease, its therapeutic potential in the treatment of patients with FSGS warrants further 

investigation.

Concluding Remarks

In this review, we highlighted new research trends and scientific knowledge acquired within 

the past few years indicating that sphingolipids are key players contributing to the 

pathogenesis and progression of glomerular diseases such as DKD and FSGS (Figure 2). 

Studies suggest that SMPDL3b, S1P lyase, C1P, S1P and S1P receptors are valid and 

important targets for the development of novel therapeutic therapies for glomerular diseases. 

Manipulation of the S1P signaling pathway, particularly modulation of S1P receptors and/or 

sphingosine kinases is evolving as an attractive therapeutic strategy to slow the progression 

of kidney diseases. An important question, which needs to be further addressed in detail, is 

the contribution of altered sphingolipid metabolism to the pathogenesis of glomerular 

diseases. Indeed, while many reports describe changes in sphingolipid levels and species at 

disease onset, it remains unclear if these changes are in fact pathogenic. Moreover, because 

of their biophysical properties, sphingolipids are less capable of moving freely from one 

compartment to another inside of a cell. Thus, a better understanding of the relationship 

between the localization and function of sphingolipids in different cell compartments is 

needed as it may explain some of the conflicting reports in the literature and further our 

understanding of the role of sphingolipids in the pathogenesis and progression of glomerular 

diseases.
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Highlights

• Sphingolipids and related enzymes modulate podocyte function in both DKD 

and FSGS.

• Ceramide, sphingosine, ceramide-1-phosphate and sphingosine-1-phosphate 

may directly contribute to the pathogenesis of glomerular diseases.

• Sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) is a novel enzyme 

involved in the development of podocyte injury in DKD and FSGS.

• Therapeutic strategies that target cellular sphingolipids might be protective in 

DKD, FSGS, and more broadly chronic kidney diseases.
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Figure 1: 
The biological roles of active sphingolipid metabolites. Ceramide, sphingosine-1-phosphate 

(S1P) and ceramide-1-phosphate (C1P) can be converted into each other and regulate many 

important functions in a cell. While the conversion of C1P to S1P and vice versa might be 

possible, it has not yet been confirmed experimentally.
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Figure 2: 
Suggested mechanism of the dysregulation of the sphingolipid machinery in glomerular 

diseases. The data summarized are related to the events in kidney cortex only. Decreased 

activity of desaturase (Degs2) results in the accumulation of dihydroceramides (DH-Cer) 

and causes accumulation of reactive oxygen species (ROS), which impairs ATP production 

and leads to apoptosis. Decreased activity of sphingosine-1-phosphate lyase 1 (Sgpl1) results 

in the accumulation of sphingosine-1-phosphate (S1P). At the plasma membrane, decreased 

activity of sphingomyelin phosphodiesterase 2 (Smpd2) affects ceramide (Cer) production, 

while elevated activity of alkaline ceramidase 2 Acer2) increases levels of sphingosine (Sph) 

and, as a consequence, S1P. Overproduction of S1P results in increased S1P efflux via S1P 

transporters (such as ATP-binding cassette transporters ABCA1, ABCG1, ABCC1 and S1P 

transporter Spns2), where S1P acts as a paracrine factor and activates S1P receptors 

(primarily, S1P receptor 1, S1Pr1), leading to overproduction of NAPDH oxidase (NOX), 

increased ROS production and apoptosis. Overexpression of sphingomyelin 

phosphodiesterase acid-like 3b (SMPDL3b) blocks ceramide kinase (CERK) activity and the 

conversion of ceramide to ceramide-1-phosphate (C1P), which affects interaction between 

insulin receptor (IR) and caveolin-1 (Cav1), leading to decreased protein kinase B (AKT) 

phosphorylation and apoptosis. Accumulation of the ganglioside GM3 at the plasma 

membrane has a similar effect, causing displacement of IR from Cav1 and impaired AKT 

phosphorylation.
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