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In this study, the modification of the desorption behavior of LiAlH4 by the addition

of K2NbF7 was explored for the first time. The addition of K2NbF7 causes a notable

improvement in the desorption behavior of LiAlH4. Upon the addition of 10 wt.% of

K2NbF7, the desorption temperature of LiAlH4 was significantly lowered. The desorption

temperature of the LiAlH4 + 10 wt.% K2NbF7 sample was lowered to 90◦C (first-stage

reaction) and 149◦C (second-stage reaction). Enhancement of the desorption kinetics

performance with the LiAlH4 + 10 wt.% K2NbF7 sample was substantiated, with the

composite sample being able to desorb hydrogen 30 times faster than did pure LiAlH4.

Furthermore, with the presence of 10 wt.% K2NbF7, the calculated activation energy

values for the first two desorption stages were significantly reduced to 80 and 86 kJ/mol;

24 and 26 kJ/mol lower than the as-milled LiAlH4. After analysis of the X-ray diffraction

result, it is believed that the in situ formation of NbF4, LiF, and K or K-containing phases

that appeared during the heating process promoted the amelioration of the desorption

behavior of LiAlH4 with the addition of K2NbF7.
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INTRODUCTION

The excessive consumption of fossil fuels and the emission of carbon dioxide are the roots
of environmental pollution. As a resolution to this global issue, the utilization of clean, and
sustainable energy resources such as hydrogen, wind, and solar has become an inescapable need.
Recently, hydrogen has received a large amount of attention as a future energy carrier. Hydrogen
promises to be a clean and renewable energy carrier. Moreover, the production of hydrogen can be
achieved from various resources, both renewable (e.g., solar, wind, and hydro) and non-renewable
(e.g., natural gas and coal; Winter, 2009; Parra et al., 2019). Furthermore, energy production via
hydrogen-oxygen reaction will only produce water as a by-product (Crabtree et al., 2004).

In pursuit of the success of hydrogen as a future energy carrier, the need for an efficient and
reliable storage method has become the top priority. In general, there are three forms of hydrogen
storage which are: (i) compressed hydrogen gas, which requires high pressure, (ii) liquefaction, and
(iii) solid-state hydrogen storage via hydrides (Dalebrook et al., 2013; Zhang et al., 2016; Barthelemy
et al., 2017). Solid-state hydrogen storage has been perceived to be an efficient and favorablemethod
because of its safety, storage requirements, and storage capacity.

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2020.00457
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2020.00457&domain=pdf&date_stamp=2020-06-12
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mohammadismail@umt.edu.my
https://doi.org/10.3389/fchem.2020.00457
https://www.frontiersin.org/articles/10.3389/fchem.2020.00457/full
http://loop.frontiersin.org/people/995585/overview
http://loop.frontiersin.org/people/995572/overview
http://loop.frontiersin.org/people/951753/overview
http://loop.frontiersin.org/people/845634/overview


Ali et al. Effect of K2NbF7 on LiAlH4

Lithium aluminum hydride (LiAlH4) has major benefits and is
the preferable solid-state material. LiAlH4 is attractive due to its
low temperature of hydrogen release and high storage capacity
(10.6 wt.%; Andrei et al., 2005; Ares et al., 2008). The desorption
process of LiAlH4 occurs in three stages, as follows:

3LiAlH4 → Li3AlH6 + 2Al + 3H2 (1)

Li3AlH6 + 2Al → 3LiH + 3Al + 3/2H2 (2)

3LiH + 3Al → 3LiAl + 3/2 H2 (3)

The first reaction (1) occurs in a temperature range of 150–175◦C
and desorbs 5.2 wt.% of the hydrogen. The second reaction (2)
takes places at 180–220◦C and desorbs 2.6 wt.% of the hydrogen,
while the third reaction (3) happens at temperatures > 400◦C,
with 2.6 wt.% of the hydrogen desorbed.

In spite of its advantages, LiAlH4 has some shortcomings,
such as irreversible and slow desorption kinetics (Pukazhselvan
et al., 2012). Moreover, the thermal decomposition in reaction
3 is considered incompatible with applied applications due
to its high requirement for temperature (>400◦C) to release
hydrogen. Tremendous efforts have been devoted to overcoming
the shortcomings of LiAlH4, such as the implementation of the
ball milling method (Balema et al., 2000, 2001; Liu et al., 2009)
and impurity-doping with various catalysts such as metals (Resan
et al., 2005; Xueping et al., 2009; Langmi et al., 2010; Varin and
Parviz, 2012), metal oxides (Zhai et al., 2012; Li Z. et al., 2013; Li
et al., 2014; Liu et al., 2014; Sulaiman and Ismail, 2017; Ali et al.,
2019; Sazelee et al., 2019), Ti-based additives (Ismail et al., 2011;
Amama et al., 2012; Wohlwend et al., 2012; Li L. et al., 2013),
and metal halides (Fernandez et al., 2007; Suttisawat et al., 2007;
Xueping et al., 2007; Sun et al., 2008; Li et al., 2012).

Among these catalysts, previous studies have revealed
that metal halides provide essential catalytic effects on the
performance of LiAlH4. Cao et al. (2018) reported that the
addition of ScCl3 had a superior effect on the performance of
lithium alanates. The desorption process of the LiAlH4-10 mol%
ScCl3 sample began at a lower temperature (∼120◦C), while
the undoped LiAlH4 released hydrogen from around 150◦C.
Besides, the time needed to complete the dehydrogenation
process was shortened with the addition of 1–10 mol% ScCl3.
Meanwhile, Sun et al. (2008) found that NiCl2 significantly
boosted the desorption behavior of LiAlH4. A composite sample
of LiAlH4-NiCl2 demonstrated three times the desorption
rate of pure LiAlH4, which was not able to desorb any
hydrogen at 100◦C. It was believed that the LiAlH4-NiCl2
sample presented this notable improvement due to the
formation of Ni, which plays a vital role in accelerating
the LiAlH4-NiCl2 system. Another investigation of the
catalytic effect of metal halides was carried out by Liu et al.
(2012). They proved that a LiAlH4-TiCl3 sample could
release hydrogen at a lower temperature (80◦C) than the
pure LiAlH4. Furthermore, the dehydrogenated sample had
good cyclability, with the composite sample able to retain a
high capacity for hydrogen (6.4 wt.%) even after completing
the 3rd cycle. Moreover, Ismail et al. (2010) observed that
the composite sample of LiAlH4-1mol NbF5 showed a 5–6
times faster dehydrogenation rate than the milled LiAlH4.

Additionally, the LiAlH4-NbF5 composite sample had lower
activation energy; 67 kJ/mol (first-stage reaction) and 77
kJ/mol (second-stage reaction), respectively. However, the
improvement of LiAlH4 through the addition of a catalyst is
still lacking, and further enhancements still need to be carried
out. Moreover, different catalysts will enable different effects
and performances. Therefore, it is interesting to enhance the
desorption performance of LiAlH4 by the addition of other
metal halides.

Metal halides, especially fluorides, are known to be highly
effective catalysts for solid-state materials (Sulaiman et al., 2016;
Yap et al., 2017; Youn et al., 2017). A number of researchers
have reported that niobium fluoride exhibits a notable effect
on the hydrogenation behavior of metal hydrides and the
complex hydrides. A study conducted by Luo et al. (2008)
revealed that the addition of 2mol of NbF5 led to faster
desorption kinetics for the MgH2-NbF5 sample as compared to
pure MgH2. At 573K, the MgH2-NbF5 sample could desorb
4.7 wt.% of hydrogen, while the pristine MgH2 desorbed
almost no hydrogen. Other than that, Kou et al. (2014) added
NbF5 to LiBH4 and demonstrated notable improvement on
the desorption performance of LiBH4. In comparison to the
milled LiBH4, which started to desorbed hydrogen at >400◦C,
the composite sample of LiBH4-NbF5 had a lower desorption
temperature, 60◦C. Moreover, Wang and colleagues (Wang
et al., 2020) showed that a composite of Mg(BH4)2-doped NbF5
possessed the best dehydrogenation performance, with the ability
to release hydrogen at low temperature (120◦C), as compared
to amorphous Mg(BH4)2 (126.9◦C), and pristine Mg(BH4)2
(282.7◦C). Meanwhile, Cheng et al. (2018) demonstrated that
upon the addition of NbF5, the composite of 4LiBH4-MgH2-
Al exhibited excellent kinetics and reversibility performance. It
took <4 h to achieve 90% of the total amount of hydrogen
desorption. Other than that, Xiao et al. (2012) proved that the
performance of LiBH4/MgH2 was significantly improved with
the addition of NbF5. Here, the addition of NbF5 not only had
reduced the onset decomposition temperature but also improved
the dehydrogenation and absorption rates.

On the other hand, potassium (K) is another well-known
additive for hydrogen storage systems. Wang et al. (2009)
demonstrated that the addition of K significantly boosted the
desorption process of Mg(NH2)2/LiH by reducing the overall
reaction temperature. Furthermore, Dong et al. (2014) revealed
that superior results for the hydrogenation performance of the
LiH-NH3 system were obtained by the addition of various
potassium compounds.

In respect to this matter, it is interesting to mix niobium
fluoride with potassium as a ternary compound in the form of
K2NbF7 and to study its potential catalytic effect. To date, no
studies have been conducted using doped K2NbF7 as a catalyst
for LiAlH4. Moreover, previous studies reported that K2NbF7
enables a remarkable improvement in the hydrogen storage
performance of MgH2 (Yahya et al., 2018; Yahya M. S. and Ismail
M., 2018). Thus, it is of great interest to explore the influence
of K2NbF7 on the desorption performances of LiAlH4. It is
anticipated that the addition of K2NbF7 will have notable effects
on the desorption and kinetic performances of LiAlH4.
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EXPERIMENTAL DETAILS

Commercial powders of LiAlH4 (purity 95%) and K2NbF7
(purity 98%) were obtained from Sigma Aldrich and were used
without any modification. To minimize exposure to oxygen and
water moisture, the samples were prepared and handled in the
Ar-filled Mbraun Unilab glove box. In this study, 10 wt.% of
K2NbF7 wasmechanicallymilled together with LiAlH4 to explore
its effect on the desorption behavior of LiAlH4. The milling
process was done in a planetary ball mill (NQM-0.4) for 1 h,
starting with 0.5 h of milling, followed by 6min of rest time,
and then another 0.5 h of milling in a different rotation direction
at a speed of 400 rpm. The samples were placed in a hardened
stainless-steel jar with four stainless balls, each 1 cm in size. The
ratio of the balls to the weight of the powder was 40:1. For
comparison purposes, the as-received LiAlH4 was treated under
the same conditions.

The hydrogenation performances of LiAlH4 + 10 wt.%
K2NbF7 were studied with temperature-programmed desorption
(TPD) using Sievert-type pressure-composition-temperature
(PCT) equipment (Advanced Materials Corporation). In order
to determine the initial decomposition temperature, the sample
was heated from room temperature to 250◦C (heating rate:
5◦C/min). Other than that, the desorption kinetics performances
were evaluated at 90◦C under 1.0 atm of pressure. The apparent
activation energy, EA, was determined using differential scanning
calorimetry (DSC, Mettler Toledo, DSC/TGA 1), loading 5–
7mg of the samples into a crucible and heating from 25 to
300◦C at heating ramps of 15, 20, 25, and 30◦C/min under an
argon flow (50 ml/min). In terms of the morphology and phase
structure characterizations, the samples were analyzed using
scanning electron microscopy (SEM: JEOL JSM 6350LA), X-ray
diffractometry (XRD, Rigaku Miniflex), and Fourier transform
infrared (IR Shimadzu Tracer-100).

RESULTS AND DISCUSSION

Figure 1 demonstrates the TPD results of the LiAlH4 and
modified LiAlH4 system. The results show that the as-received
and as-milled LiAlH4 have similar desorption processes that
occur in two stages of desorption, as in Equations (1, 2), with
7.4 wt.% hydrogen capacity. Before the ball milling process,
the first stage of desorption occurred at 147◦C, with 5 wt.% of
hydrogen released. Meanwhile, the desorption process for the
second stage was recorded to happen at around 175◦C, with a
capacity of 2.4 wt.% of the hydrogen. After the milling process,
the initial desorption temperature of the sample was similar to
that of pure LiAlH4 but with slight temperature reductions to
144◦C (first stage) and 174◦C (second stage). This phenomenon
showed that the 1-h milling process had an insignificant effect
on the desorption behavior of LiAlH4. In contrast, the addition
of 10 wt.% of K2NbF7 significantly decreased the decomposition
temperature for both stages, to 90 and 149◦C. However, the
amount of hydrogen released from the LiAlH4 + 10 wt.%
K2NbF7 sample was decreased to 6.3 wt.%. This is expected due
to the deadweight of K2NbF7, which does not hold any hydrogen.

FIGURE 1 | TPD profile for the as-received LiAlH4, as-milled LiAlH4, and

LiAlH4 + 10 wt.% K2NbF7.

FIGURE 2 | Dehydriding kinetics curves of as-received LiAlH4, as-milled

LiAlH4, and LiAlH4 + 10 wt.% K2NbF7 at 90◦C.

Further study on the catalytic activity of K2NbF7 was
performed based on the desorption kinetics experiment. Figure 2
depicts a comparison of the hydrogen desorption at 90◦C for
LiAlH4 and LiAlH4 modified by the addition of 10 wt.% K2NbF7.
It is noticeable that within 120min, the undoped LiAlH4 was
only able to desorb a small amount of hydrogen; 0.1 wt.% for
the as-received LiAlH4 and 0.4 wt.% for the as-milled LiAlH4.

Surprisingly, with the addition of 10 wt.% K2NbF7, the doped
sample desorbed ∼3.2 wt.% H2 within the same duration. This
desorption rate was 30 times faster than that of the as-received
LiAlH4. This enhancement may be correlated to the formation of
surface defects and active materials through the reaction of the
LiAlH4 + 10 wt.% K2NbF7 composite (Cai et al., 2016).

In terms of thermal behavior, DSC experiments were
conducted for the doped and un-doped LiAlH4 samples. Figure 3
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displays the DSC curves of the samples at a heating ramp of
15◦C/min. Both the doped and un-doped LiAlH4 have two
endothermic and exothermic peaks. The first exothermic peak
corresponds to the reaction of LiAlH4 with surface hydroxyl
groups, while the first endothermic peak is ascribed as its
melting process. The second exothermic peak is attributed to
the decomposition of LiAlH4, as described in Equation (1), and
the second endothermic peak correlates with the decomposition
of Li3AlH6, as described by Equation (2). Both samples exhibit
similar thermal behavior, but the peaks of the LiAlH4 + 10 wt.%
K2NbF7 sample occur at a lower temperature as compared to
as-milled LiAlH4.

Fundamentally, the enhancement of the initial temperature
to release hydrogen and the faster desorption kinetics rates are
correlated with the energy barrier of LiAlH4. In this study, the
decomposition activation energy (EA) is the least possible amount
of energy needed by LiAlH4 to begin the hydrogen desorption

FIGURE 3 | DSC traces of the as-milled LiAlH4 and LiAlH4 + 10 wt.% K2NbF7
(heating ramp: 15◦C/min).

process. Figure 4 shows DSC traces for several heating ramps (15,
20, 25, and 25◦C/min). By referring to the plots, the activation
energies for both decomposition stages of the as-milled LiAlH4

and LiAlH4 + 10 wt.% K2NbF7 samples were determined using
the Kissinger analysis, as in equation (4):

ln [β/Tp
2] = −EA/RTp + A (4)

where β , Tp, R, and A are the heating rate, peak temperature in
the DSC curve, gas constant, and linear constant, respectively.
The apparent activation energy was determined from the slope
of ln [β / Tp

2] versus 1000/Tp, as shown in Figure 5.
The activation energy was calculated based on the second

exothermic (decomposition of LiAlH4) and second endothermic
(decomposition of Li3AlH6) reactions. For the as-milled LiAlH4,
the activation energy values were 104 and 112 kJ/mol for the first
two stages of reaction, respectively. After the addition of 10 wt.%
K2NbF7, the activation energy values dropped to 80 kJ/mol (first
stage) and 86 kJ/mol (second stage), 23% lower than those of the
un-doped LiAlH4. These results are in good agreement with other
studies that prove the addition of a catalyst is able to reduce the
activation energy of LiAlH4. Table 1 lists the activation energy
from previous studies for comparison purposes. The reduction in
these activation energies verifies that K2NbF7 plays a major role
in enhancing the desorption kinetics performance of LiAlH4.

The morphological structures of the doped and un-doped
LiAlH4 were examined using SEM equipment. Figure 6 shows
SEM images of the un-doped and doped-LiAlH4 samples. As
shown in Figure 6, the pure LiAlH4 exhibits larger particle sizes
than the milled sample. The as-received LiAlH4 (Figure 6A)
has larger (15–40µm), non-uniform rod-shaped particles.
Furthermore, the as-received LiAlH4 shows a uniform size
distribution and consists of “blocky” particles, consistent with
the report by Varin and Zbroniec (2010). Meanwhile, after
1 hour of milling, the milled LiAlH4 (Figure 6B) displays a
reduction in particle sizes but with some agglomeration and
inconsistency in particle size. Then, with the addition of 10
wt.% of K2NbF7 (Figure 6C), the morphological structure of the
sample was notably enhanced. The doped sample has smaller

FIGURE 4 | DSC traces at various heating ramps of the LiAlH4 when (A) as-milled and (B) with 10 wt.% of K2NbF7.
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FIGURE 5 | Corresponding Kissinger plots of the as-milled LiAlH4 and LiAlH4 + 10 wt.% K2NbF7 for the (A) first stage and (B) second stage of reaction.

TABLE 1 | Activation energy of catalyst-doped LiAlH4 from previous studies.

System Activation energy (kJ/mol) References

First stage Second stage

LiAlH4+K2TiF6 78.20 90.80 Li et al., 2012

LiAlH4+Ti3C2 79.81 99.68 Xia et al., 2019

LiAlH4+FeCl2 81.48 105.01 Cai et al., 2016

LiAlH4+ScCl3 82.30 93.20 Cao et al., 2018

LiAlH4+Co@C 95.36 115.60 Li et al., 2015

particle sizes and is less agglomerated. This observation is in
line with numerous research results that have shown a reduction
of particle sizes with the addition of a catalyst (Aguey-Zinsou
et al., 2007; Ali et al., 2018; Yahya M. and and Ismail M., 2018).
In this study, K2NbF7 functioned as a dispersing agent that
impeded the sample from agglomerating. The particle size is
important because smaller particles providemore area for surface
defects and additional grain boundaries (Schulz et al., 1999;
Sakintuna et al., 2007; Ranjbar et al., 2009). As a consequence,
the desorption kinetics of LiAlH4 will be improved.

Figure 7 presents the XRD profiles of the as-received LiAlH4,
as-milled LiAlH4, and LiAlH4-K2NbF7 sample. The XRD
characterization was performed to explore the reaction process
and the mechanism that operated during the milling process.
Figure 7A displays the XRD pattern of the as-received LiAlH4

and shows that only the LiAlH4 phase was detected, which
confirms the purity of the LiAlH4. The XRD pattern of the
milled LiAlH4 Figure 7B shows similar peaks to the as-received
LiAlH4. This result shows that LiAlH4 has high stability during
the milling process and agrees well with a previous study (Ismail
et al., 2010). Meanwhile, with the addition of 10 wt.% of K2NbF7
(Figure 7C), only LiAlH4 and Al peaks are visible and no peak
of K2NbF7 was detected, suggesting that the amount of catalyst
was too small to be picked up by the XRD. The appearance of
Al peaks indicates that a part of the LiAlH4 had decomposed

to Li3AlH6 and Al (reaction 1) during the milling process in
the presence of 10 wt.% K2NbF7. Surprisingly, the XRD result
for the 10 wt.% K2NbF7-doped LiAlH4 sample does not show
any peaks of Li3AlH6. Additional characterization was carried
out for a doped sample with 30 wt.% K2NbF7 (Figure 7D). A
K2NbF7 peak was against not detected by the XRD for this
sample. This may be because the K2NbF7 is in an amorphous
state. Similar phenomena were reported by previous studies,
where several catalysts like TiO2 and TiF3 were not detected
by the XRD after the milling process (Ismail et al., 2011; Zang
et al., 2015). However, for the LiAlH4 + 30 wt.% K2NbF7
sample, diffraction peaks corresponding to the decomposition
product, Al and Li3AlH6, were detected. Meanwhile, unlike for
the LiAlH4 + 10 wt.% K2NbF7 sample, for which only peaks of
Al were detected while peaks of Li3AlH6 could not be discovered
by XRD.

Figure 8 shows the IR spectra of the as-received LiAlH4, as-
milled LiAlH4, and LiAlH4 + 10 wt.% K2NbF7 in the range of
800 to 2,000 cm−1. The FTIR characterizations were conducted
to identify the presence of Li3AlH6 in the 10 wt.% K2NbF7-
doped LiAlH4 sample. For all samples, two distinct regions of
Al-H modes were detected at around 800–900 cm−1 ([AlH4]

−

stretching modes) and 1,600–1,800 cm−1 ([AlH4]
− bending

modes), respectively. Furthermore, with the addition of 10 wt.%
K2NbF7, a weak IR absorption peak at 1,398 cm−1 was detected,
which indicates the presence of Li3AlH6. This result suggests
that with the addition of 10 wt.% K2NbF7, LiAlH4 was partially
decomposed to Li3AlH6 and Al (reaction 1) during the milling
process, consistent with the XRD results (Figure 7C).

To investigate the specific mechanism that is related
to the enhanced desorption performance of LiAlH4, the
dehydrogenated sample was examined using XRD. The XRD
pattern for the dehydrogenated sample is depicted in Figure 9.
After the dehydrogenation process at 250◦C, the main peaks
observed are the LiAlH4 dehydrogenation products, LiH and
Al, which indicates complete dehydrogenation of LiAlH4. In
addition, peaks for LiF and NbF4 were detected after the
dehydrogenation process. However, the peak of the K-containing
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FIGURE 6 | SEM images of LiAlH4 when (A) as-received, (B) as-milled, and (C) with 10 wt.% of K2NbF7.

FIGURE 7 | XRD patterns of (a) as-received LiAlH4, (b) as-milled LiAlH4, (c)

LiAlH4 + 10 wt.% K2NbF7, and (d) LiAlH4 + 30 wt.% K2NbF7.

phase was not detected after the dehydrogenation process,
potentially due to the low amount of catalyst.

Niobium fluoride is well established as a promising catalyst
that plays a vital role in enhancing the hydrogenation
performance of solid-state material (Luo et al., 2007; Malka et al.,

FIGURE 8 | IR spectra of the LiAlH4 when (A) as-received, (B) as-milled, and

(C) with 10 wt.% of K2NbF7.

2011; Mao et al., 2013). It is reasonable to state that the NbF4
that formed in situ after the desorption process contributes to a
remarkable amelioration of the desorption behavior of LiAlH4.
This result well-agreed with previous research that demonstrates
the outstanding dehydrogenation performance of LiAlH4-NbF5
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FIGURE 9 | XRD pattern of dehydrogenated LiAlH4 + 10 wt.% K2NbF7
sample at 250◦C.

(Ismail et al., 2010). On the other hand, the LiF formed was
believed to significantly affect the hydrogenation behavior of the
doped sample based on work carried out as by Gosalawit-Utke
et al. (2010). Additionally, it is believed that the formation of LiF
plays a similar role in the growth of LiH and Al, since LiF has a
similar cubic structure (space group: Fm-3m; Y. Liu et al., 2010).
Also, LiF crystallites act as nucleation sites and facilitate the
growth of LiH and Al crystallites, which promotes to the change
of the nucleation morphology. These two factors significantly
contribute to the kinetics enhancement achieved in the doped
sample. Additionally, it is believed that K or K-containing phases
also play a vital role in enhancing the desorption behavior of
LiAlH4. This was deduced based on successful previous work
on the application of K as a catalyst for solid-state materials
(Wang et al., 2009; Dong et al., 2014). Therefore, it can be
concluded that the in situ formation of LiF, NbF4, and K or K-
containing phases synergistically contributed to the amelioration
of the dehydrogenation kinetics of LiAlH4.

CONCLUSION

K2NbF7 demonstrated an excellent catalytic effect on the
desorption behavior of LiAlH4. The initial temperatures at which
LiAlH4 + 10 wt.% K2NbF7 released hydrogen, 90 and 149◦C for
the first two stages, were lower than those of the as-milled LiAlH4

(147 and 175◦C). In terms of desorption kinetics behavior, the
LiAlH4 + 10 wt.% K2NbF7 released 3.2 wt.% of hydrogen within
120min, which is 30 faster than the pure LiAlH4. The addition
of K2NbF7 significantly reduced the decomposition activation
energy from 104 to 80 kJ/mol for the first stage and 112 to 86
kJ/mol for the second stage. The XRD spectra suggested that the
in situ formation of LiF, NbF4, and K or K-containing phases
acted as boosters and ameliorated the dehydrogenation behavior
of LiAlH4. This work demonstrates that K2NbF7 was has a
superior catalytic effect and confers better desorption behavior
to LiAlH4.
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