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Activation of the innate immune system through pattern-recognition receptor (PRR) 
signaling plays a pivotal role in the early induction of host defense following exposure 
to pathogens. Loss of intestinal innate immune regulation leading aberrant immune 
responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). 
The precise role of PRRs in gut inflammation is not well understood, but considering 
their role as bacterial sensors and their genetic association with IBD, they likely con-
tribute to dysregulated immune responses to the commensal microbiota. The purpose 
of this review is to evaluate the emerging functions of PRRs including their functional 
cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, 
and influence adaptive immune responses by interacting with the antigen presentation 
machinery. The review also summarizes some of the recent attempts to harness these 
pathways for therapeutic approaches in intestinal inflammation.

Keywords: innate immunity, pattern-recognition receptors, toll-like receptors, NOD-like receptors, inflammatory 
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THe iNNATe iMMUNe SYSTeM AND PATHOGeN SeNSiNG

The innate immune system represents the first line of defense against pathogens, providing an 
immediate response to infection, and is conserved throughout evolution (1, 2). In vertebrates, the 
innate immune system also serves to prime the adaptive immune system, generating long-lasting 
immunological memory. The critical importance of the innate immune system is underlined by the 
observation that defects can be lethal to the host (2) or associated with inflammatory disorders, such 
as inflammatory bowel disease (IBD).

The innate immune system faces two key challenges. First, it is faced with a near constant barrage 
of microorganisms. Second, it must accurately and rapidly discriminate between non-infectious 
self and infectious pathogen. To achieve this, it relies upon a relatively small number of pattern-
recognition receptors (PRRs) that recognize features common to many pathogens, known as 
pathogen-associated molecular patterns (2). Pathogen-associated molecular patterns are typically 

Abbreviations: DAMP, damage-associated molecular pattern; DCs, dendritic cells; DSS, dextran sulfate sodium; IBD, 
inflammatory bowel disease; IEC, intestinal epithelial cell; mtDNA, mitochondrial DNA; MDP, muramyl dipeptide; mROS, 
mitochondrial reactive oxygen species; NLR, NOD-like receptor; PRR, pattern-recognition receptor; TLR, toll-like receptor; 
TNBS, 2,4,6-trinitrobenzenesulphonic acid.
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critical for survival of the pathogen and thus cannot be mutated 
by the pathogen to avoid detection; consequently, they are often 
invariant across entire classes of pathogens (3).

Pattern-recognition receptors are germline-encoded receptors 
that are expressed on the cell surface, in intracellular compart-
ments such as the cytosol or endosomes, or secreted into serum 
or tissue fluid. PRRs are classified according to their function, 
localization, and ligand specificity. Two main classes of PRRs 
have been described in mammalian cells, namely membrane 
bound receptors, including toll-like receptors (TLRs) and C-type 
lectin receptors (CLRs), and cytoplasmic receptors, including 
nucleotide-binding oligomerization domain (NOD)-like recep-
tors (NLRs), RIG-I-like receptors (RLRs), AIM2-like receptors, 
and the more recently identified cyclic GMP-AMP synthase 
(cGAS). PRRs often act in synergy allowing rapid amplification 
of the initial immune response. The varied location of PRRs pro-
vides the ability to detect pathogens invading a range of cellular 
compartments. Multiple PRRs are capable of recognizing a single 
microorganism, which may present a broad array of antigenic 
ligands, ensuring a robust immune response. PRRs also recognize 
host-derived endogenous ligands known as danger-associated 
molecular patterns. These endogenous danger response signals, 
such are uric acid and HMGB1, are released by stressed cells 
upon necrosis to promote an innate immune response through 
activation of PRRs (4, 5).

Toll-like receptors are the best-characterized PRRs. First iden-
tified in Drosophila (6), to date 11 separate receptors have been 
identified in humans, classified as TLR1–10, with human TLR11 
believed to be a pseudogene (7). A further two TLRs, TLR12 
and TLR13, have been described in mice, but are not found in 
humans. Although TLRs sense a broad range of ligands, derived 
from both exogenous microbial pathogens and host (damage-
associated molecular patterns), they share a common structure. 
This consists of an extracellular ectodomain containing a variable 
number of leucine-rich repeat (LRR) motifs that mediate ligand 
binding, a single transmembrane helix, and an intracellular toll-
like interleukin 1 receptor domain required for intracellular sign-
aling (8). Dependent on which TLR is activated, specific adaptor 
molecules are recruited which can broadly be considered as 
MyD88 dependent or independent. It is this selectivity of adapter 
molecule recruitment that leads to the specificity of TLR signal-
ing pathways and the subsequent inflammatory response. The 
role of TLR signaling in the pathogenesis of IBD, together with 
the potential for therapeutic modulation, is discussed in Section 
“Potential Therapeutic Targets Altering Signaling through TLRs.”

There is emerging evidence for the importance of another class 
of PRR, the CLR in IBD. CLRs comprise a large family of receptors 
that bind to carbohydrates via carbohydrate-recognition domains 
and appear of particular importance in mediating antifungal 
immunity, but are also able to recognize other pathogens includ-
ing bacteria and protozoa (9). A polymorphism in the gene for 
Dectin-1 is linked to a severe form of ulcerative colitis, driven by 
an aberrant response to commensal intestinal fungi (10). Genetic 
variants in mannose-binding lectin (MBL) have been linked to 
Crohn’s disease (11) while mice deficient in MBL show increased 
susceptibility to experimental colitis (12). Macrophage galactose-
type C-type lectin-1 and SIGN-R3 have also separately been 

linked to protective regulatory roles in murine models of colitis 
(13, 14). It is clear that CLRs may also act in synergy with TLRs, 
with a deficiency of both the CLR SIGN-R1 and TLR4 leading to 
reduced susceptibility to colitis in a murine model, with reduced 
responsiveness to the TLR4 ligand lipopolysaccharide (15).

OveRview OF THe NLR FAMiLY

The NLR family of proteins are cytosolic PRRs that sense a 
diverse range of microbial structures such as peptidoglycan and 
flagellin, and also endogenous danger signals, to trigger innate 
immune activation (16, 17). NLRs consist of three domains—an 
N-terminal protein interaction domain, a central NOD domain, 
and a C terminal LRR. The NLRs are divided into four subfamilies 
on the basis of their N-terminal effector domains: NLRA, acidic 
domain containing; NLRB, Baculovirus inhibitor of apoptosis 
protein repeat domain containing; NLRC, caspase recruitment 
domain (CARD) domain containing; NLRP, pyrin domain 
containing. NLRX represents other NLR proteins with no sig-
nificant homology to the N-terminal domain of the other NLR 
subfamilies (18).

Functionally, the NLR family can be divided into further 
subgroups related to inflammasome assembly, autophagy, 
antigen presentation, signaling transduction, and transcription 
activation (19). The N-terminus effector domain that mediates 
protein–protein interactions is important in determining func-
tion, for example, the pyrin domain of the NLRP subfamily allows 
binding and activation of the caspase-1 inflammasome, while 
the CARD domain of the NLRC subfamily binds and activates 
receptor-interacting serine/threonine protein kinase 2 (RIPK2), 
activating downstream NF-κB, and MAPK signaling pathways 
(20, 21). The LRR domain is required for binding and detection of 
ligands and consists of leucine-rich amino acid strands forming 
a peptide loop.

The NOD domain, which has ATPase activity, is required for 
self-oligomerization of NLRs following binding of ligand to the 
LRR domain, likely facilitating binding and activation of down-
stream effector molecules via the N-terminus effector domain 
(22). The structural diversity of the LRR and N-terminus effector 
domains allows NLRs to interact with a wide array of ligands and 
binding partners, activating a broad range of signaling pathways. 
This breadth of role is reflected in the wide variety of human 
diseases that result from mutations in NLR-encoding genes (23).

ReGULATiON OF NOD2 SiGNALiNG

Two related members of the NLR family, NOD1 and NOD2, 
are critical for the innate immune response to many bacterial 
infections. Both NOD1 and NOD2 respond to distinct structural 
motifs derived from intracellular peptidoglycan, a fragment of 
bacterial cell walls. NOD1 recognizes the dipeptide d-glutamyl-
meso-diaminopimelic acid, present in all Gram-negative, and a 
limited number of Gram-positive bacteria such as Listeria spp. 
and Bacillus spp. (24, 25). By contrast, NOD2 recognizes muramyl 
dipeptide (MDP), the largest fraction of peptidoglycan consisting 
of one carbohydrate and two amino acids, present in all Gram-
negative and Gram-positive bacteria (26). Activation of NOD1 
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and NOD2 signaling upon peptidoglycan sensing leads to their 
direct interaction with RIPK2 in a complex called “nodosome.” 
The nodosome formation leads to activation of pro-inflammatory 
and antimicrobial responses as discussed further in this review 
(27, 28). In 2001, NOD2 was found to be associated with Crohn’s 
disease and it remains one of the strongest genetic risk factors 
(29, 30). Given this evidence, the review of innate mechanisms 
relating to NLRs will focus on NOD2.

NOD2 is expressed in cells of the gastrointestinal tract, 
specifically Paneth cells, intestinal epithelial cells (IECs), stem 
cells, and stromal cells. It is also expressed in the hematopoietic 
compartment in monocyte-derived cells including dendritic 
cells (DCs) and macrophages. In IECs, membrane targeting of 
NOD2 is required for NF-κB activation by MDP (31). NOD2 
also recruits the autophagy protein autophagy-related 16-like 1 
(ATG16L1) to the plasma membrane at the site of bacterial entry 
to drive autophagy (32). It remains unclear where NOD2 engages 
ligand in other cellular locations, such as ligands derived from 
endosome resident bacteria including Salmonella enterica serovar 
Typhimurium (33).

NOD2 consists of a LRR domain, a central NOD domain, 
and an N-terminal effector domain that contains two CARDs in 
tandem. Extrapolation of the recently solved crystal structure of 
NLRC4 predicts that the NOD domain is followed by a proximal 
helical domain, a winged-helix domain, and a distal helical 
domain (34). The ADP-mediated interaction between the NOD 
domain and winged-helix help stabilize a closed, auto-inhibited 
conformation, with the LRR occluding these two domains and 
maintaining a monomeric state (27, 34).

The precise mechanisms by which MDP enters cells and 
activates NOD2 remains uncertain, but a number of entry routes 
have been described: (1) phagocytosis of bacteria and degra-
dation into fragments including MDP, (2) shedding of pepti-
doglycan by invasive bacteria (35), (3) uptake of peptidoglycan 
fragments from bacteria-derived extracellular outer membrane 
vesicles (36), (4) endocytosis (37), and (5) transport across host 
membranes through bacterial secretion systems or channels 
(27, 38). The relative importance of these varied mechanisms is 
likely to differ depending on the host cell type. Taken together, 
these mechanisms suggest that NOD2 may be able to sense 
extracellular bacteria, significantly expanding upon its classi-
cally described role as a sensor of invading cytosolic bacteria 
(33). The ability of soluble MDP to stimulate NOD2 in  vitro 
further supports the presence of routes of direct entry for the 
ligand (27).

Following MDP binding and conformational change of 
NOD2 to an open structure and homo-oligomerization, NOD2 
recruits RIPK2 via interaction between their CARD domains 
(27, 39). The NOD2–RIPK2 signaling axis has been extensively 
studied and mapped. RIPK2 is essential for NOD2 signaling, 
as evidenced by the failure of RIPK2-deficient murine mac-
rophages to respond to MDP (40). Engagement of RIPK2 can 
occur via NOD1 or NOD2 but not via TLR-mediated signaling 
pathways (33).

Although it was initially uncertain whether MDP binds 
directly to NOD2 once it has reached the cytosol, recent reports 
support a direct interaction but do not exclude the requirement 

for accessory molecules (41, 42). It is generally believed that 
recognition is mediated by the LRR domain, although a potential 
role for the NOD domain has also been suggested (42). A mecha-
nism has been proposed whereby ATP binding to NOD2 leads 
to homo-oligomerization and enhances MDP binding and sub-
sequent signal transduction (42). It is likely that the distal helical 
domain is required to mediate NOD2 conformational change to 
an open activated structure upon ligand binding (34). However, 
further structural data are required to confirm the mechanism of 
NOD2 activation.

The stable ubiquitination of RIPK2 leads to the recruitment 
and activation of the kinase TAK1 (27). This activated TAK1 com-
plex interacts with the simultaneously bound IκB kinase (IKK) 
complex, ubiquitinating and degrading IKKγ, which allows IKKα 
and IKKβ to phosphorylate IκKBα (NF-κB inhibitor IκB) (38). 
Phosphorylated IκKBα is degraded, allowing the translocation 
of NF-κB to the nucleus and inflammatory gene transcription  
(27, 43). In addition to NF-κB pathways, NOD2 activation via 
RIPK2/TAK1 also activates the MAPK regulated extracellular 
ERK1/2, JNK, and p38 (39). NOD2 can also activate p38 and JNK 
via CARD9 (44).

More recently, it has been shown that NOD2 is able to respond 
to pathogen-associated molecular patterns other than MDP, most 
notably viral ssRNA (45). This results in a quite separate RIPK2 
independent signaling pathway, mediated by the mitochondrial 
antivirus signaling protein (MAVS). Engagement of MAVS at the 
mitochondria leads to a signaling cascade involving interferon 
regulatory factor 3 (IRF3) that produces interferon (IFN)-β (45). 
It was shown in vitro that NOD2 drives type 1 IFN production 
in response to a range of viruses containing an ssRNA genome 
including respiratory syncytial virus and influenza virus (45). 
This was confirmed in vivo, with NOD2 knockout mice demon-
strating an increased susceptibility to infection with respiratory 
syncytial virus or influenza, although increased susceptibility to 
viral infections has not yet been shown in humans expressing 
NOD2 polymorphisms (45).

Much remains to be understood about how NOD2 signaling 
pathways are regulated but it is clear that a complex system of 
protein–protein interactions underlies this. In addition to the 
actions of the E3 ligases described above, roles for TRAF 2, 4, 
and 5 have been described (43, 46). NOD2 signaling can also be 
fine-tuned by the removal of ubiquitin. An important example is 
the action of ovarian tumor deubiquitinase A20, which inhibits 
NOD2 signaling by regulating the MDP-induced ubiquitination 
of RIPK2 (47).

Additional negative regulators include Erbin that directly 
binds to NOD2 and inhibits MDP signaling (48), Rac1 GTPase 
(49) and RIG-I (50). By contrast, GRIM-19 (51), a cell death 
protein, and CARD9 (44) positively regulate NOD2 signaling. 
It appears that the cytoskeleton plays a key role in modulating 
NOD2 activity; in addition to cytoskeletal-related proteins, Erbin 
and Rac1 GTPase, the intermediate protein filament vimentin is 
also important (52). Intriguingly, three RHO GTPases, including 
Rac1 GTPase, that play important roles in cytoskeletal modeling, 
are apparently able to activate NOD2 in the absence of MDP, 
raising the possibility of NOD2 stimulation in the absence of a 
bacterial pathogen (33, 53).
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THe iNTeRReLATiONSHiP OF NOD2  
AND TLRs

A complex interplay between PRRs provides cross-regulation 
of innate immune receptor signaling and can both amplify and 
suppress the immune response (54). The intricacy of this inter-
relationship results from the varied array of PRR ligands, many 
of which may arise from the same pathogen, and the divergent 
signaling pathways they may simultaneously induce (54). 
Synergistic signaling results from NOD2 acting together with 
a number of PRR-mediated pathways including NOD1, TLR2, 
TLR3, TLR4, and TLR9 to boost production of a range of both 
pro- and anti-inflammatory cytokines (IL-6, IL-8, TNF, IL-1β, 
and IL-10) in antigen-presenting cells (APCs) (22, 55–57). The 
cross-talk between NOD2 and TLR2 remains the most well char-
acterized to date. Their close relationship is not surprising given 
that both respond to ligands derived from the same bacterial 
component, peptidoglycan. Although the precise mechanisms of 
cross-regulation are not well understood, both NOD2 and TLR2 
activate separate upstream signaling cascades to recruit the same 
MAPK and NF-κB pathways, which play a central role in cytokine 
production (54). NOD2 and TLR2 also collaborate in adaptive 
immune roles, and they have been shown to cooperatively regu-
late the functional maturation of DCs (58).

MiTOCHONDRiA PROviDe A 
STRUCTURAL HUB FOR iNNATe  
iMMUNe SiGNALiNG

Mitochondria are highly active organelles that continuously 
relocate within the cell, undergoing fission, fusion, biogenesis, 
and mitophagy to maintain a pool suitably responsive to cellular 
demands. These processes are termed mitochondrial dynamics 
and control mitochondrial morphology, quality, abundance, and 
location, which are critical to the immune role of mitochondria 
(59). There is still much to understand about how the innate 
immune system regulates mitochondrial dynamics, but a recent 
study provides an interesting insight. Following recognition of 
bacteria by TLRs, macrophages were found to adapt their elec-
tron transport chain architecture by destabilizing complex I in 
a NLRP3 and reactive oxygen species (ROS)-dependent manner 
(60). This resulted in enhanced mitochondrial respiration from 
complex I and II and increased mitochondrial reactive oxygen 
species (mROS) and may regulate IL-1β and IL-10 production.

Mitochondria act as a platform for innate immune signaling, 
with key innate immune effectors assembling on the outer mito-
chondrial membrane (59, 61). One of the first proteins discovered 
was MAVS, a key adapter protein for the RLR signaling pathway 
that responds to viral infections (62). On viral infection and 
RLR triggering, MAVS is targeted to the outer membrane by a 
C-terminal transmembrane domain. Although it remains unclear 
precisely why MAVS must be recruited to the mitochondria, 
localization here is essential to mediate downstream signaling 
via NF-κB and IRF3 to regulate type-1 IFN production (61, 62). 
As described earlier, NOD2 can also engage MAVS in response 
to viral ssRNA triggering a similar IFN cascade (45). MAVS 

activation is additionally regulated by mitochondrial dynamics 
(63) and mROS (64) (Figure 1D). A further illustration of the 
intersecting nature of mitochondrial signaling pathways is the 
recent discovery of the regulation of the NLRP3 inflammasome 
by MAVS (65). Another mitochondrial membrane protein, 
cardiolipin, also controls NLRP3 inflammasome activation in an 
mROS-independent manner (66).

ACTivATiON OF THe iMMUNe ReSPONSe 
FOLLOwiNG MiTOCHONDRiAL DAMAGe

Given the ancient bacterial roots of mitochondria, it is unsur-
prising that mitochondrial injury releases compounds carrying 
bacterial molecular motifs, sensed as danger-associated molecu-
lar patterns, to trigger an immune response (67). Mitochondrial 
DNA (mtDNA), which shares hypomethylated CpG motifs with 
bacterial DNA, is one such danger-associated molecular pattern, 
which can be sensed by the innate immune receptor for CpG 
DNA, TLR9 (67). TLR9 activation leads to NF-κB and MAPK 
inflammatory cascades and can also signal through IRF7 to 
enhance type-1 IFN responses (68). mtDNA is also an important 
endogenous agonist for NLRP3 inflammasome (69), and in mac-
rophages has been shown to activate the NLRC4 (70) and AIM2 
(absent in melanoma 2) inflammasomes (69). Finally, mtDNA 
can also trigger pro-inflammatory cytokine responses via the 
cGAS PRR (71, 72). mtDNA-dependent inflammatory pathology 
has been described in a diverse range of diseases including heart 
failure, atherosclerosis, rheumatoid arthritis, and liver disease, 
and following bacterial infection (68).

It is essential that cells are able to efficiently eliminate damaged 
mitochondria and their danger-associated molecular patterns to 
prevent aberrant inflammation, and here autophagy plays a vital 
role. Mitophagy inhibits NLRP3 inflammasome activation by 
clearing damaged mitochondria and limiting the release of both 
mROS and mtDNA (69, 73). Mice deficient in the autophagy pro-
tein LC3B showed enhanced caspase-1-dependent cytokines in 
sepsis models (69). As described earlier, following viral infection 
the NOD2–RIPK2 axis also acts to increase mitophagy and limit 
inflammasome activation (Figure 1C). These studies underline 
the importance of mitophagy in responding to the mitochon-
drial damage that occurs during an immune response, thereby 
preventing hyperactivation of the immune system.

MiTOCHONDRiA AND CROHN’S DiSeASe

While it is clear that mitochondria are of central importance in 
immunity, their role in Crohn’s disease is not well understood. 
A number of studies suggest the presence of mitochondrial dys-
function in IBD. Enterocytes isolated from patients with IBD have 
abnormal mitochondrial morphology (74), and murine models of 
colitis result in similar mitochondrial changes in IECs (75). There 
is evidence of elevated ROS, although the source was not clarified, 
and impaired mitochondrial membrane potential in patients with 
active Crohn’s, which was found to improve on disease remission 
(76). In pediatric Crohn’s disease patients, proteomic analysis of 
mucosal biopsies suggested a marked downregulation of mito-
chondrial proteins, including components of the mitochondrial 
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of the cytosol. This negatively regulates the NLRP3 inflammasome response by limiting the release of mitochondrial reactive oxygen species and other 
mitochondrial damage-associated molecular patterns following the mitochondrial damage caused by viral infection. (D) NOD2 recognizes viral ssRNA to trigger 
mitochondrial antivirus signaling protein (MAVS) mediated activation of interferon regulatory factor 3 (IRF3), leading to production of the antiviral interferon (IFN) 
response.
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respiratory chain (77). It has been suggested that IBD is a state 
of energy deficiency, with impaired mitochondrial β-oxidation of 
fatty acids implicated (78). This theory is supported by the find-
ings that, mutations in SLC22A5 (OCTN2), which encodes a car-
nitine transporter, are associated with Crohn’s disease (79), with 
carnitine essential for fatty acid oxidation. Mice lacking OCTN2 
develop spontaneous intestinal inflammation and atrophy (80). 
Conversely, mice carrying mutations that increase mitochondrial 
oxidative phosphorylation activity and ATP generation are pro-
tected from chemical models of colitis (81). It is clear that more 

research is needed to elucidate the contribution of mitochondrial 
dysfunction to Crohn’s disease, but the potential intersection 
with processes such as autophagy and inflammasome activation 
is intriguing.

iNNATe iMMUNe MODULATiON  
OF AUTOPHAGY

A distinct role for innate immunity is the induction of a form 
of autophagy, macroautophagy (32, 82), a highly conserved 
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mechanism for the bulk degradation of cellular contents. 
Macroautophagy is distinguished from the two other primary 
types of autophagy in mammalian cells, microautophagy and 
chaperone-mediated autophagy, by the formation of a double 
membrane bound phagophore and autophagosome (83). In its 
most basic form, autophagy represents a cellular adaptation to 
starvation and allows the non-specific breakdown of a cell’s own 
constituents to recycle nutrients and balance biosynthetic path-
ways (84, 85). This form of autophagy, known as non-selective 
autophagy, is also induced by cellular stress. However, autophagy 
can also be utilized by cells in a more precisely targeted process 
(selective autophagy) for various indications, and indeed is not 
restricted to “self-constituents” as it can target invading patho-
gens (86). This important host defense against pathogens, termed 
xenophagy, can target a range of invasive bacteria including  
S. enterica serovar Typhimurium, Listeria monocytogenes, Shigella 
flexneri, and Mycobacterium tuberculosis, as well as bacteria inter-
nalized by phagocytosis (87). Both NOD2 and TLRs can mediate 
xenophagy and this influences loading of microbial antigens to late 
endosomal compartments, where substrates are then degraded 
by lysosomal hydrolases. During antigen presentation, foreign 
proteins are captured by autophagosomes and are delivered to 
major histocompatibility complex (MHC) class II-processing and 
-loading compartments (Figure 1A).

Following induction of autophagy, the core pathway of mac-
roautophagy begins with the nucleation of a double-membrane 
phagophore. The origin of the phagophore is a source of con-
siderable debate, with a role proposed for numerous membrane 
compartments including the endoplasmic reticulum (ER) and 
the mitochondria (88, 89). This step and the subsequent exten-
sion of the phagophore into an autophagosome that engulfs 
the targeted cytoplasmic components requires the autophagy 
ubiquitin-like protein LC3 (the mammalian homolog of ATG8) 
(90). To date, over 40 proteins have been identified as important 
for macroautophagy, primarily the autophagy-related genes first 
mapped in yeast (91) with mammalian homologs subsequently 
described. Broadly, they can be grouped according the stage of 
autophagy at which they function—(1) induction, (2) nucleation 
and expansion, (3) fusion, and (4) degradation and efflux (90). 
A number of these proteins are involved in the processing of 
LC3, underlining its importance. The ATG4 protease first cleaves 
the inactive pro-form of LC3 at its C-terminus to generate the 
cytosolic LC3-I. LC3-I is then conjugated to phosphatidylethan-
olamine in the phagophore membrane by ATG3 and 7, producing 
the lipidated LC3-II, which initiates the formation and matura-
tion of the autophagosome. A critical role of LC3 is to recruit 
other autophagy proteins to the autophagosome, including the 
ULK1 kinase (90, 92) and ATG13 (90). This typically requires 
an LC3-interacting region (LIR), characterized by a WXXI/L 
sequence, with tryptophan (W) beginning the sequence, any two 
amino acids (XX) following, and either isoleucine (I) or leucine 
(L) two residues downstream (93). A number of LIR containing 
autophagy proteins also contain an ubiquitin-binding domain, 
allowing recruitment of the aforementioned ubiquitinated targets 
to the autophagosome. Important examples in xenophagy are 
p62 (SQSTM1) (94), NDP52 (95), NBR1 (96), and optineurin 
(OPTN) (97). In addition, and vital to the concept of xenophagy, 

an LC3-decorated single membrane phagosome may also 
become sequestered within an autophagosome (98). This type of 
xenophagy is restricted to phagocytic cells (macrophages, DCs, 
and neutrophils).

During the process of autophagosome maturation, LC3-II 
is deconjugated by ATG4 and thus released from the outer 
membrane. By contrast, the GATE-16/γ-aminobutyric acid 
receptor-associated family (GABARAPs) appear important for 
the maturation of the autophagosome (99). Following closure 
and maturation, the autophagosome progresses toward fusion 
with the lysosome. The autophagosome may fuse with a late 
endosome forming an amphisome (100), which subsequently 
fuses with a lysosome to generate an autolysosome. Alternatively, 
an autophagosome may fuse directly with a lysosome, and this 
should also be termed an autolysosome (101). By contrast, when 
a phagosome is incorporated into an autophagosome and fuses 
with a lysosome, this should be distinguished as an autophago-
lysosome (101). The term autophagolysosome also describes the 
fusion of an LC-decorated phagosome with a lysosome (102), a 
process independent of autophagy termed LC3-mediated phago-
cytosis, but which shares a number of overlapping features with 
autophagy.

Three protein families are key to the process of autophago-
some–lysosome fusion. Rab GTPases localize to the membranes 
of both structures, recruiting membrane-tethering complexes 
that bridge the autophagosome to the lysosome. Soluble 
N-ethylmaleimide-sensitive factor attachment protein recep-
tors then drive the fusion of the opposing lipid bilayer mem-
branes (103). In addition, GABARAPs also regulate modulate 
autophagosome–lysosome fusion by regulating the generation of 
phosphatidylinositol-4-phosphate (104). Once fused, lysosomal 
hydrolases digest the contents of the autophagolysosome.

iNNATe iMMUNiTY AFFeCTS THe 
UNFOLDeD PROTeiN ReSPONSe (UPR)

A cascade of intracellular pathways have evolved to respond to 
protein misfolding—this is known as the UPR (105). The com-
bined action of three ER transmembrane stress sensors is respon-
sible for UPR activation: inositol-requiring enzyme 1α (IRE1α), 
PKR-like ER kinase (PERK), and activating transcription factor 
6α (ATF6α). Usually, the luminal domains of these proteins are 
inactive through association with binding immunoglobulin pro-
tein (BiP). However, BiP has higher affinity for misfolded proteins. 
Therefore when misfolded proteins accumulate, BiP dissociates 
from the stress sensors activating downstream signaling cascades 
(106). These signaling pathways lead primarily to a reduction in 
the quantity of proteins that enter the ER. Also, through increased 
transcription of ERAD- and autophagy-related proteins, mis-
folded proteins are eliminated. Finally, the ER expands, and the 
capacity to refold proteins is increased (107–110).

Dimerization of IRE1α, followed by release from BiP, initiates 
splicing of a single mRNA encoding X-box-binding protein 
1 (XBP1) (111, 112). This generates XBP1s, an activator of 
transcription, which induces the transcription of chaperones 
and protein-folding enzymes resident in the ER. Together, these 
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increase ER size and function (113). Dissociation of BiP from 
PERK allows PERK homodimerization and autophosphoryla-
tion to activate the cytoplasmic kinase domain. Activated PERK 
attenuates global translation of mRNA by inhibiting eIF2-TC to 
enable cells to temporarily manage ER stress (114, 115). Finally, 
following BiP dissociation, ATF6α relocates to the Golgi appa-
ratus. Here, it is processed by site 1 and 2 proteases (S1P and 
S2P) producing a p50 fragment. This fragment translocates to 
the nucleus and induces gene expression related to proteins that 
increase overall ER capacity, the ability to refold proteins, and 
activates the ERAD pathway (116–118).

Inflammation represents a critical factor in the induction of 
the UPR. Immune cells are highly sensitive to environmental fac-
tors which induce ER stress. Protein-folding demand is markedly 
increased following pathogen exposure (105). ER stress and TLR 
signaling are linked—TLR signaling in macrophages induces ER 
stress and ER stress acts to increase the response to TLR signal-
ing. The TLR 2 and 4 ligands, Pam3CSK4 and LPS, induce IRE1α 
activation. IRE1α-induced XBP1 splicing in response to TLR 
ligation affects pro-inflammatory cytokine production, such as 
the production of IL-6, TNF, and IFNβ. Increased IL-1β produc-
tion results from the activation of glycogen synthase 3β (GSK3β) 
which is IRE1α dependent. Furthermore, GSK3β inhibits ongoing 
splicing of XBP1, attenuating TNF transcription thereby altering 
the inflammatory response (119, 120).

Dysregulation in UPR signaling have been associated with 
various complex inflammatory diseases, including IBD. Among 
the risk genes associated with IBD identified by genome-wide 
association studies (GWAS), some encode for proteostatic 
proteins including Orosomucoid-like 3 (ORMDL3) or anterior 
gradient 2 (AGR2) (121–124). Paneth cells are abnormally located 
in the ileum of Agr2-deficient mice who also exhibit reduced 
mucin 2 (MUC2) expression in goblet cells. These mice also 
develop spontaneous ileo-colitis and an activated UPR (125). 
Mice with a knockout of XBP1 specifically in IECs (Xbp1ΔIEC) 
exhibit signs of ER stress. They are more susceptible to chemical 
colitis induced by dextran sulfate sodium (DSS) and develop a 
spontaneous ileitis (126). If these mice also lack the autophagy 
gene ATG16L1 in IECs they develop a Crohn-like transmural 
spontaneous enteritis (127). Importantly, patients carrying the 
Crohn’s risk allele ATG16L1 (T300A) have evidence of ER stress 
in Paneth cells (128).

PRRs iNFLUeNCe ADAPTive iMMUNe 
ReSPONSeS

Activation of the innate immune signaling pathways through 
PRRs discussed above provides immediate detection of micro-
bial presence and viability, which is necessary to determine a 
successful activation of naïve T  cells and generate appropriate 
effector responses. Activation of PRRs leads to a significant 
change in the phenotype of APCs, which is characterized by 
enhanced expression of costimulatory molecules and increased 
secretion of pro-inflammatory cytokines (129). In addition, sig-
nals derived from PRRs in DCs determine whether the antigen 
presentation machinery leads to activation or cross-tolerance 

of T  cells, depending on whether or not DCs are exposed to 
PRR ligands and on the length of this exposure (130). This 
contributes, in physiological conditions, to minimize the risk 
of generating pro-inflammatory responses to self-antigens, to 
maximize T-cell priming against microbial antigens during the 
initial phase of DC maturation, and to temporally control MHC 
class I and II antigen presentation and prevent excessive prim-
ing during chronic phases of pathogen handling. Consequently, 
dysregulation of these mechanisms may be highly relevant in the 
pathogenesis of IBD.

NOD2-DePeNDeNT GeNeRATiON OF 
CD4+ T CeLL ReSPONSeS

NOD2 recruits the autophagy protein ATG16L1 to the plasma 
membrane at the site of bacterial entry to direct autophagy. This 
facilitates bacterial trafficking to the autophagosome through 
a signaling pathway independent of RIPK2. NOD2 signaling 
via RIPK2 also upregulates the autophagosome formation and 
increases autophagic flux, further potentiating autophagy. This is 
required for the generation of MHC class II antigen-specific CD4+ 
T cell responses (82) (Figure 1A). Importantly, DCs expressing 
the Crohn’s disease NOD2 and ATG16L1 variants have reduced 
autophagic response and MHC class II antigen presentation in 
response to MDP. Decreased macroautophagy due to NOD2 and 
ATG16L1 mutations may impair innate resistance to invading 
bacteria and, thereby, trigger inflammation as a result of increased 
antigenic load or lead to insufficient tolerance induction against 
commensals in the gut and trigger Crohn’s disease (82).

In the context of NOD2-dependent generation of MHC class 
II antigen-specific CD4+ T  cell responses, several studies also 
suggest that NOD2 signaling influences CD4-specific adaptive 
immune responses. The induction of IL-17 by bacteria-primed 
DCs is not through the TGF-β–IL-6 pathway in naïve human Th 
cells. Instead, Th17 cells develop from memory Th cells (27). In 
addition, MDP programs DCs to increase IL-23 and IL-1 produc-
tion which orchestrates Th17-mediated immunity in humans. In 
line with this, expression of IL-17 following MDP stimulation 
is impaired in DCs derived from Crohn’s disease patients with 
polymorphisms in the NOD2 gene. This can be attributed to loss 
of NOD2/TLR synergy on production of IL-1α and IL-1β, and 
IL-23 (131, 132).

It is important that the synergistic effects of NOD2 with other 
TLR signaling pathways inducing effector cytokines such as IL-23 
are tightly regulated so that homeostasis can be restored at the 
termination of an immune response. MicroRNAs (miRNAs) are 
important regulators of gene expression whose main function 
is to repress target mRNA levels including regulators of innate 
immune responses by targeting key signaling proteins and 
cytokines (133–137). Our group has previously demonstrated 
that NOD2 can regulate induction of the miRNA family 29a, 29b, 
and 29c and induces this family alone or additively with TLR2 
or TLR5 in DCs. miRNA-29 downregulates IL-12p40/IL-23 and 
attenuates Th17 CD4+ T cell responses; however, Crohn’s disease 
DCs expressing associated NOD2 variants are incapable of induc-
ing miR-29 following NOD2 triggering. Therefore, NOD2 has an 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


8

Corridoni et al. Innate Immunity in IBD

Frontiers in Medicine | www.frontiersin.org February 2018 | Volume 5 | Article 32

immunoregulatory function in human DCs of the miR-29 family, 
and a loss of miR-29 induction in Crohn’s DCs might contribute 
to the abnormal elevation of IL-23 observed in inflamed lesions 
during this disease (132).

NOD2 activation by MDP in mice generates specific Th2-type 
immune responses. Costimulation with TLR agonists promotes 
the priming of not only Th1 and Th2 but also Th17 responses  
(138, 139). In this context, direct triggering of NOD2 by MDP, 
generates a specific Th2-type immune response and stromal 
NOD2 expression is needed to prime effector CD4+ Th2 responses. 
In addition, NOD2-dependent stimulation induces OX40 ligand, 
necessary for Th2 immunity (140, 141). A more recent study 
has investigated the effect of Nod2 deletion in a spontaneous 
mouse model of chronic intestinal inflammation, SAMP1/YitFc, 
characterized by a progressive cobblestone CD-like ileitis that 
develops in the absence of chemical, genetic, or immunological 
manipulation (142). Nod2 deletion in SAMP1/YitFc mice was 
associated with inhibition of the Th2 cytokines IL-4, IL-5, and 
IL-13 whereas no effect was observed in Th1 cytokine expression, 
including TNF-α and IFN-γ. In addition, the role of Th2 effector 
signaling pathways were also affected by NOD2 deletion, with 
decreased phosphorylated-STAT6 and GATA3 in the gut mucosa 
of SAMP × NOD2−/− mice. These effects were observed in the 
presence of the same bacterial flora, which suggests that changes 
in the bacterial community are not associated with the effects of 
NOD2 in ameliorating intestinal inflammation in SAMP1/YitFc 
mice, and that NOD2 regulates Th2 responses in the intestine 
independent of acute dysbiosis (142).

With the availability of new drug compounds that target inhi-
bition of NOD2 and RIPK2 signaling, potential pharmacological 
inhibition of NOD2 signaling may be a reasonable therapeutic 
strategy to prevent Th2-driven intestinal inflammation and other 
CD4 T cell responses.

iNNATe iMMUNe ReGULATiON OF 
CROSS-PReSeNTATiON AND CD8+  
T CeLLS ReSPONSeS

Cross-presentation represents a critical mechanism for priming 
adaptive immune responses against exogenous antigens derived 
from microbial pathogens or tumors (143), which are presented 
by MHC class I molecules (144). During cross-presentation, the 
establishment of CD8+ T-cell-mediated responses is dictated by 
DCs whose function is to acquire exogenous antigens and direct 
the formation of a complex between the MHC-I peptide and a 
cognate TCR leading to activation and proliferation of antigen-
specific CD8+ T cells. Different pathways and subcellular locations 
regulating cross-presentation have been described, including 
the vacuolar and phagocytic pathways (143). Engagement of 
the vacuolar pathway implicates the degradation of antigens by 
endosomal or phagosomal proteases (i.e., cathepsin S) and the 
resultant peptides are loaded onto MHC class I molecules (145). 
By contrast, during activation of the phagocytic pathway, inter-
nalized antigens from endosomes or phagosomes are exported 
to the cytosol where they are degraded by the proteasome. The 
resultant peptides are then transported back into the phagosome 

and loaded onto MHC-I (144, 146) or, instead, peptides are trans-
ported via TAP into the ER, for loading onto ER-resident heavy 
chain-B2m complexes (147) (Figure 1B). It has been indicated 
in several studies that PRRs signaling influence on multiple pro-
cesses associated with cross-presentation. Thus, any dysfunction 
of these mechanisms may lead to abnormal activation of CD8+ 
T cells responses associated with inflammation.

There is temporal control of MHC-I antigen presentation 
by the innate immune system, with initial PRRs engagement 
promoting its efficiency during the early or acute phase of 
microbial exposure and with prolonged stimulation leading to 
mechanisms to prevent excessive priming during chronic phases 
of pathogen handling. Following a short stimulation of TLR4 by 
LPS in DCs, antigen translocation from the phagosome to the 
cytosol is increased. During this phase, Blander and colleagues 
have also recently shown that the recruitment to phagosomes 
of MHC class I molecules, stored in endosomal recycling com-
partments (ERCs), is enhanced by TLR4 stimulation (148). In 
fact, LPS stimulation leads to IKK2-dependent phosphorylation 
of phagosome-associated SNAP-23 (synaptosome-associated 
protein of 23 kDa) promoting fusion between ERCs and phago-
somes. This mechanism acts to deliver to phagosomes enough 
numbers of MHC-I molecules once TLRs senses microbial 
components to increase cross-presentation and priming of CD8+ 
T cells (148, 149).

During the intermediate phase of DC maturation followed 
by 3–16 h of TLR engagement, the efficacy of cross-presentation 
is still increased (150, 151). During this phase, DCs exhibit 
increased endocytosis, proteasomal and TAP activity, delayed 
phagosomal degradation, and decreased acidification (mediated 
by a decrease in recruitment of lysosomal proteases to phago-
somes). RAB34-dependent peri-nuclear clustering of lysosomes 
and reduced shift of phagosomes along microtubules prevents 
their fusion, with the end result of increasing the efficiency of 
cross-presentation (152, 153).

During the late stage of DCs stimulation by TLR agonists (24–
40 h), there is a markedly reduced efficiency of cross-presentation 
(150). This is likely due to decreased antigen uptake or antigen 
export to the cytosol (154, 155).

Given the presence of NLRs at sites that are in close proximity 
to phagosomal and endosomal membranes containing high levels 
of bacterial components, engagement of their signaling pathways 
may play a critical role in interacting with the MHC class I anti-
gen presentation machinery. However, there are only few studies 
investigating how NLR activity affects cross-presentation (156).

NLRP3 inflammasome and caspase-1 activation modulate 
phagosome activity by causing locally restricted modification of the 
proteins associated to the organelle, which results in induction of 
the microbicidal activity (157). In fact, phagosome-associated cas-
pase-1 can control the activity of NADPH oxidase NOX2 inducing 
changes on pH of the vacuole. In line with this, NLRP3-deficient 
and caspase-1-deficient cells fail to induce phagosome acidification 
in response to microbial infection (157). Since cross-presentation 
of phagocytosed antigens to CD8+ T cells occurs primarily from 
a non-acidified phagosome, activation of the inflammasome 
negatively impact cross-presentation by controlling the pH of 
phagosomes, which accelerates degradation of antigens.
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Early stimulation of both NOD1 and NOD2 signaling alone 
or together with other PRRs enhances cross-presentation while 
during the late phase DC maturation their stimulation lead to 
decreased cross-presentation. NOD1 and NOD2 activation by 
peptidoglycan in DCs increase cross-presentation (Figure  1A) 
via upregulation of intracellular components, such as TAP, SEC61, 
and calnexin, which are essential for MHC class I-dependent 
antigen presentation and enhanced antigen-specific CD8+ T cells. 
During this process, NOD/RIPK2-mediated signals might mimic 
the TLR4–MyD88 signals necessary to induce recruitment of 
TAP to the early endosomes, which is an important step for 
enhancing cross-presentation of soluble antigens (158). By 
contrast, peptidoglycan pre-treatment of DCs led to progressive 
inhibition of cross-presentation over time, with decreased cross-
presentation after 12 h and complete inhibition after 18 h (159). 
This demonstrates that maturation of DCs by NOD1 and NOD2 
engagement, prior to antigen encounter negatively modulates 
cross-presentation. Therefore, NOD-dependent signaling path-
ways temporally control MHC class I antigen presentation and 
may prevent excessive priming during chronic phases of pathogen 
handling. This may be highly relevant in the context of chronic 
intestinal inflammation in which loss of function associated 
polymorphisms in the NOD2 gene are associated with increased 
susceptibility to Crohn’s disease. As increasing evidence suggests 
that CD8+ T cells may play an earlier role in IBD development 
than the CD4+ T cells (160), whether dysregulated NOD2 signal-
ing may affect CD8+ T cell responses by aberrant priming via the 
cross-presentation pathway remains to be investigated.

MODiFiCATiON OF PRR SiGNALiNG  
iN THe MANAGeMeNT OF iNTeSTiNAL 
iNFLAMMATiON

Modulating NLR Pathways—NOD1, NOD2, 
and NLRP3
NOD1, polymorphisms of which are associated with human IBD 
(161), is constitutively expressed in IECs and has been shown to 
activate NF-κB by pathogens in particular those which have devel-
oped methods to bypass sensing by TLRs (162). Furthermore, 
NOD1 is required for innate immune responses in human IECs 
to Campylobacter jejuni infection and transient knockdown of 
NOD1 increases bacterial invasion (163). However, NOD1−/− 
mice do not exhibit any pathological differences to wild-type in 
a Salmonella-induced colitis model, whereas NOD1−/−NOD2−/− 
double knockout resulted in milder colitis (164). Contrary to this, 
NOD1 deficiency has been shown to result in increased colitis-
associated colonic cancer in a chemical colitis model (165), which 
may, in part, reflect differences in colitis modeling. Together, this 
suggests that augmentation rather than complete inhibition of 
NOD1 may derive benefit in intestinal inflammation. There are 
currently no preclinical or clinical studies modulating NOD1 
signaling directly although a number of inhibitors have been 
developed, including Noditinib-1 (ML130) and ML146, to enable 
further study of this pathway (166–169).

The function of NLRs in intestinal inflammation is of 
particular interest given the strong association between NOD2 

polymorphisms [R702W, G908R, and 1007fs (3020insC) (29, 30)]  
and Crohn’s disease. Patients with a NOD2 variant are more 
likely to have disease affecting the terminal ileum, exhibit a fibro-
stenosing phenotype, and to require surgical intervention (170). 
Interestingly, there are no differences in phenotype between 
homozygotes or compound heterozygotes for the three polymor-
phisms listed. Approximately half of patients with Crohn’s disease 
have at least one mutation in NOD2 (170) and importantly not 
everyone in the wider population with NOD2 variants develop 
intestinal inflammation (171, 172) highlighting the complexities 
of this disease and the non-essential role of NOD2 in disease 
pathogenesis. Unlike NOD1, NOD2 is expressed predominantly 
in myeloid cells (173). However, a role for recognition of intracel-
lular bacteria in IECs, which is lost in 3020insC mutants, has been 
demonstrated (174).

Given that NOD2 polymorphisms are generally thought 
to lead to loss of function, it is intriguing as to why these 
might lead to an increased risk of intestinal inflammation. 
It is unclear as to whether repair of NOD2 signaling defects 
might represent a therapeutic strategy for patients expressing 
Crohn’s disease-associated polymorphisms (175, 176). An 
alternative to targeting the receptors directly is modulating the 
function of downstream signaling mediators such as RIPK2. 
RIPK2 inhibitors have shown benefit in inflammatory disease 
including in the SAMP1/YitFc model of Crohn’s disease-like 
ileitis (177–179) although there are no clinical studies as yet in 
intestinal inflammation.

Polymorphisms in the NLRP3 gene are associated with Crohn’s 
disease (180) although the effect size of this may be small (181). 
Mice deficient in NLRP3 are more susceptible to chemical colitis 
through lack of IL-18 (182) but, in contrast, excessive IL-1β and 
IL-18 production is seen in human IBD tissues suggesting acti-
vation of NLRP3 may mediate chronic intestinal inflammation 
[discussed in Ref. (123)]. To this end, inhibitors of the NLRP3 
inflammasome such as Astragalus polysaccharide (183, 184), 
INF39 (an acrylate derivative) (185), and levornidazole (186) 
have been shown in experimental models to improve colitis. The 
peptide SPA4 has anti-inflammatory actions through indirect 
suppression of the NLRP3 inflammasome by interacting with 
TLR4 (187) although this has not yet been used in colitis models. 
However, the plant flavonoid alpinetin does improve DSS colitis 
through a similar mechanism of modulation of the NLRP3 and 
TLR4 pathways (188). Recently, a novel inhibitor of NLRP3, 
CY-09, was identified which binds to the NACHT domain of the 
complex to inhibit activation in murine macrophages and human 
PBMCs, and in a relevant murine model of NLRP3-associated 
inflammation (189). Ongoing study is required to elucidate 
whether this compound is of benefit in intestinal inflammation. 
Interfering with inflammasome-related cytokines may hold 
promise for the management of human IBD. A UK-based, multi-
centre, randomized, double-blind, placebo-controlled trial of the 
IL-1 receptor antagonist Anakinra alongside corticosteroids in 
acute severe colitis is planned.1 A comprehensive review of the 

1 https://www.bsg.org.uk/resource/iaso-trial-of-anakinra-for-acute-severe-
ulcerative-colitis.html [accessed 9th Feb 2018].
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role of the NLRP3 inflammasome in intestinal health and disease 
has recently been published (190).

Potential Therapeutic Targets Altering 
Signaling through TLRs
TLR2
TLR2 has been shown to be essential for tight junction function 
in the intestine through MyD88 and PI3K/Akt (191). In this 
study, mice deficient for TLR2 or MyD88 demonstrated tight 
junction dysfunction when challenged with DSS while oral treat-
ment with a TLR2 ligand, Pam3CSK4, improved barrier function 
and reduced colonic inflammation. Another group has shown 
that deletion of TLR2 in the multidrug resistance model of colitis 
resulted in more aggressive disease (192). The commensal micro-
biota may yield benefits for modulating inflammation through 
TLR2. Polysaccharide A (PSA) is produced by the mammalian 
intestinal commensal Bacteroides fragilis. PSA acts via TLR2 on 
APCs to modulate Th1/Th2 balance (193) and via plasmacytoid 
DCs to induce regulatory T cells (194). In a Helicobacter hepaticus 
model of colitis, co-colonization with B. fragilis resulted in a 
milder disease (195). Similar effects were seen with purified PSA 
alone (195). Oral PSA was of benefit in a 2,4,6-trinitrobenzene-
sulphonic acid (TNBS) chemical colitis model through increased 
production of the anti-inflammatory cytokine IL-10 (195). These 
effects on IL-10 levels have been replicated in germ-free mice 
challenged with DSS. In those mice which had prior administra-
tion of B. fragilis, this resulted in improved histology, reduced 
mortality, reduced pro-inflammatory TNF-α mRNA, and 
increased IL-10 mRNA (196). Surprisingly, despite the improved 
colitis, a significant increase in colonic pro-inflammatory IL-17 
mRNA was seen in the Bacteroides group. A subsequent study 
by the same group confirmed the essential role of TLR2 in the 
modulation of colitis by B. fragilis. TLR2−/− mice did not gain 
appreciable benefit from Bacteroides administration as measured 
by colon length and histological scores, and these mice also fail to 
upregulate IL-10 transcription following bacterial administration 
(197). Similar to the findings for PSA and B. fragilis, curli fibers 
(amyloid fibers in enteric biofilms) are recognized by TLR2, result 
in IL-10 production, and ameliorate TNBS-induced colitis (198).

Other avenues have corroborated the role of TLR2 in mediat-
ing inflammation. The TLR2 agonists lipoarabinomannan and 
lipoteichoic acid reduced indomethacin-induced murine ileitis 
via modulation of TLR4 pathways on macrophages and effects 
on leukocyte migration (199). The lipoxin A4 agonist, BML-111, 
alters the expression of TLR2 and 4 in a murine cecal ligation/
puncture model of sepsis with improvements in pro-inflammatory 
IL-6 and TNF-α production (200). In addition to directly acting 
agonists, interfering with TLR2 dimerization has been shown to 
ameliorate DSS colitis through effects on monocyte activation 
(201) and to improve Pam3CSK4-induced hepatic inflammation 
(202). VB-201, an oxidized phospholipid mimic which is orally 
available, binds to TLR2 and CD14 to limit downstream inflam-
matory pathways and has beneficial effects on atherosclerosis 
(203) and experimental autoimmune encephalomyelitis (204). In 
addition to directly modulating TLR signaling pathways, effects 
are mediated through inhibition of monocyte migration (205).  

A phase 2 study of VB-201 in mild-to-moderate ulcerative colitis 
has been completed but the results have not yet been published 
(NCT01839214). A humanized IgG4-monoclonal anti-TLR2 
antibody (OPN-305) is effective in a porcine model of cardiac 
ischemia–reperfusion injury (206) and has been shown to be 
well tolerated and effective in reducing IL-6 production from 
peripheral whole blood in a phase 1, randomized, double-blind, 
placebo-controlled clinical trial (207).

TLR3
TLR3, which responds to viral double-stranded RNA and is the 
only TLR not to signal through MyD88 (208), is expressed in 
human IBD tissues and stimulates the production of the antimi-
crobial peptide lipocalin-2 in the HT29 colonic epithelial cell line 
(209). Activation of TLR3 using poly(I:C) has been shown to ame-
liorate DSS colitis (210) through maintenance of epithelial barrier 
integrity (211). The enteric virome and an intact TLR3 signaling 
pathway is important in maintaining intestinal health. Treatment 
of wild-type mice with antiviral agents before administration of 
DSS results in worsened colitis, similar to TLR3−/−TLR7−/− dou-
ble knockout, and this is probably mediated through effects on 
IFNβ production by plasmacytoid DCs (212). Preconditioning 
of human umbilical cord-derived mesenchymal stem cells with 
poly(I:C) enhanced the immunosuppressive effects in both TNBS 
(213) and DSS (214) models of colitis. Although not yet used 
in human IBD, the TLR3 agonist rintatolimod has benefits in 
chronic fatigue syndrome/myalgic encephalomyelitis (215, 216), 
a disease of uncertain etiology but with evidence of viral triggers 
to the disease and impaired natural killer cell function (217).

Poly(I:C) is rapidly hydrolyzed in serum but can be stabilized 
with poly-l-lysine and carboxymethylcellulose (polyICLC) to 
resist this (218). PolyICLC is under evaluation as part of cancer 
therapy as a vaccine adjunct and may have roles in modulating 
cross-presentation of antigens by APCs to naïve CD8+ lympho-
cytes [reviewed in Ref. (219)]. Although not yet used in models 
of intestinal inflammation, polyICLC is protective in models 
of infections caused by influenza (220) or Dengue virus (221), 
murine cryptococcosis (222), and has been shown to enhance 
T cell responses in the lung of non-human primates when coad-
ministered with anti-CD40 (223). An alternative to PolyICLC is 
PIKA, a stabilized double-stranded RNA, which has been shown 
to promote the maturation of DCs (224) but has been studied 
less extensively.

TLR4
In addition to the studies on SPA4 (187), alpinetin (188), and 
BML-111 (200) detailed above, other lines of enquiry suggest 
that modulation of TLR4 signaling may yield benefit in the 
management of intestinal inflammation. Unlike studies on TLR3 
where enhanced signaling is effective the evidence with TLR4 
is predominantly in blocking signaling. An in vitro study using 
SPA4 demonstrated a reduction in NF-κB-dependent cytokine 
production, migration, and invasion of the SW480 colonic cancer 
cell line suggesting that interfering with TLR4 signaling may be of 
benefit in colitis-associated cancer (225). To this end, transgenic 
mice with constitutively activated TLR4 are more susceptible 
to both DSS colitis and colitis-induced neoplasia (226) and the 
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TLR4 antagonist 1A6 inhibits neoplasia in this model (226). 
Previously, it had been shown that 1A6 improved DSS colitis, 
but not the adoptive transfer model of colitis, although adverse 
effects on mucosal healing were noted (227). An alternative 
TLR4 antagonist, CRX-526, blocks the ability of LPS, the natural 
ligand for TLR4 (208), to induce pro-inflammatory cytokines and 
improves both DSS and multidrug resistance gene 1a-deficient 
models of colitis (228).

Infection of rhesus macaques with Shigella dysenteriae caused 
colitis, which was inhibited by oral administration of a small, 
non-absorbable polypropyletherimine dendrimer glucosamine 
(229), which acts to inhibit LPS signaling through TLR4–MD2 
(230, 231).

The small molecule, TAK-242 (resatorvid), binds to the 
intracellular domain of TLR4 to inhibit signaling by interfering 
with the interaction between TLR4 and its adaptor molecules to 
inhibit NF-κB activation and interleukin-1 receptor-associated 
kinase (232). Two phase 3 clinical trials of resatorvid in severe 
sepsis have been performed (NCT00143611 and NCT00633477). 
Unfortunately, neither trial has been published nor the product 
was discontinued by the company leaving open the question as to 
its efficacy in intestinal inflammation.

Alkaline phosphatase has been shown to detoxify LPS by 
dephosphorylation of the lipid A component (233–235). The 
potential benefit of alkaline phosphatase in inflammation was 
demonstrated in mice and piglets challenged with LPS (236) and 
in zebrafish was shown to be important in mucosal immunity 
to gut microbiota (237). In patients with IBD (both ulcerative 
colitis and Crohn’s disease), there is reduced expression of 
alkaline phosphatase in both the inflamed and non-inflamed epi-
thelium (238). Furthermore, oral administration of acid-resistant 
alkaline phosphatase (to prevent degradation in the stomach) 
to rats undergoing DSS challenge ameliorated colitis (238). An 
uncontrolled phase 2 trial of intraduodenal alkaline phosphatase 
in patients with ulcerative colitis demonstrated reductions in 
C-reactive protein, fecal calprotectin, and clinical activity indices 
with no particular safety concerns identified (239). Thus, modifi-
cation of TLR4 signaling through detoxifying its primary ligand 
is promising in intestinal inflammation, and this has been the 
subject of a recent review article (240).

Contrary to the beneficial effects of the pharmacological inhi-
bitors on TLR4-induced inflammation, there is some evidence, 
related to the pediatric condition necrotizing enterocolitis, that 
TLR4 signaling may be essential for controlling inflammation. 
Use of probiotic-conditioned media from Bifidobacterium longum 
subsp infantis prevents IL-6 induction in immature enterocytes 
but requires an intact TLR4 signaling pathway through TLR4–
IRAK1–AP1 (241). Therefore, TLR4 inhibition may not be of 
benefit in all types of intestinal inflammation. A phase 2 clinical 
trial of Bifidobacterium infantis 35624 in maintenance of remis-
sion in ulcerative colitis was registered in 2007 but the outcome 
is not known (NCT00510978). However, a different strain of this 
bacterium (strain 24737) is a component of the probiotic VSL#3 
which has been shown in a recent systematic review to be of 
benefit in inducing remission in ulcerative colitis (242).

Altering TLR4 expression has also shown promise for under-
standing and modulating intestinal inflammation. The colons of 

mice deficient in corticotropin-releasing factor express less TLR4 
mRNA and develop a more severe colitis in response to DSS 
(243). The flavonoid Baicalin improves colitis to a similar degree 
as mesalazine with a reduction in colonic TLR4 as measured by 
immunohistochemistry and a reduction in NF-κB-dependent 
pro-inflammatory cytokine production (244). TLR4 expression is 
reduced in enteric glial cells by the endocannabinoid-related lipid 
ligand palmitoylethanolamine, in a PPARα-dependent manner, 
to inhibit NF-κB activation, which is associated with a reduction 
in severity of DSS colitis (245).

Although no clinical studies of TLR4 modulation in intestinal 
inflammation have yet been performed, the TLR4 antagonist 
eritoran tetrasodium (E5564) has been used in a phase 3, rand-
omized, double-blind, placebo-controlled clinical trial of sepsis 
(246). Although there was no benefit of eritoran in mortality rates 
from severe sepsis, there were no differences in adverse events 
between groups and this may pave the way for further studies of 
TLR4 modulation for other conditions.

TLR5
The role of TLR5 in intestinal inflammation is less clear. TLR5−/− 
mice develop a spontaneous colitis (247) and mice treated with 
purified Salmonella-derived flagellin as a TLR5 agonist are pro-
tected from Clostridium difficile colitis (248). Furthermore, the 
TLR5 agonist CBLB502 has antioxidant actions and scavenges 
oxygen free radicals (249) through which it may exert anti-
inflammatory properties. However, flagellin enemas have been 
shown to exacerbate established DSS colitis (250) although in a 
non-TLR5-dependent manner (251), highlighting the need for 
further studies.

TLR7–9
The TLR7 agonist imiquimod, administered orally, induces 
type-1 IFN responses in the colonic mucosa to ameliorate DSS 
colitis and has effects in vitro on antimicrobial peptide produc-
tion (252). A further study has confirmed a similar benefit in 
the TNBS model of colitis extending the mechanism of action 
to regulation of regulatory T  cells (253). The development of 
2′-O-methyl modifications to RNA has been used to develop 
TLR7 antagonists (254, 255), which may improve understanding 
of the signaling pathway in intestinal inflammation.

TLR7, along with TLR8 and 9, is an endosomal PRR (256). 
Inhibition of both TLR7 and 9 with IMO-3100, an oligonucleo-
tide antagonist, or of TLR7, 8 and 9 with IMO-8400, resulted in 
a decrease in IL17A expression in an IL-23-dependent murine 
model of skin inflammation (257). Similar effects have been 
seen in human peripheral blood mononuclear cells (258) and, 
specifically for IMO-8400, on the induction of psoriatic lesions 
by inhibiting Th1/17 cytokines (259). Short-term treatment of 
patients with psoriasis in a phase 2a clinical trial yielded clinical 
benefit without significant adverse events (260). It is plausible 
therefore that this approach may yield benefit in Crohn’s disease 
which is also associated with IL-12/23 dysfunction (261).

TLR9 detects bacterial immunostimulatory DNA sequences. 
Synthetic DNA oligonucleotides (ODNs) ameliorate colitis 
whether induced by DSS, hapten, or in the IL10−/− mouse (262). 
However, it appears that the effects of ODNs are dependent on 
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TABLe 1 | A summary of compounds targeting Toll-like receptors to modulate animal and/or human intestinal inflammation.

Target Compound effect on target Animal models effect on 
inflammation

Human trials effect Key references

TLR2 Polysaccharide A Sensed by TLR2 Helicobacter hepaticus, 
2,4,6-trinitrobenzenesulphonic acid (TNBS), 
dextran sulfate sodium (DSS)

Improvement (193–197)

Purified curli fibers Sensed by TLR2 TNBS Improvement (198)

Lipoarabinomannan/lipoteichoic acid Agonist NSAID-induced ileitis Improvement (199)

TLR2-p Blockade of dimerization DSS Improvement (201)

VB-201 Inhibitor UC (phase 2) Unknown Unpublished

TLR3 Poly(I:C) Agonist DSS, TNBS Improvement (210, 211, 213, 
214)

TLR4 Alpinetin Inhibitor DSS Improvement (188)

1A6 Inhibitor DSS Improvement (227)

Non-absorbable polypropyletherimine 
dendrimer glucosamine

Inhibitor Shigella colitis Improvement (229)

Alkaline phosphatase Detoxifies LPS DSS Improvement UC (phase 2) Improvement (238, 239)

Bifidobacterium infantis 35624 Interferes with TLR4 signaling UC (phase 2) Unknown Unpublished

Corticotrophin releasing factor deficiency Downregulated TLR4 DSS Worsen (243)

Baicalin Interferes with TLR4 signaling DSS Improvement (244)

Palmitoylethanolamine Interferes with TLR4 signaling DSS Improvement (245)

TLR5 Salmonella-derived flagellin Agonist Clostridium difficile colitis Improvement (248)

TLR7 Imiquimod Agonist DSS, TNBS Improvement (252, 253)

TLR9 CpG oligodeoxynucleotides (ODNs) Agonist DSS, hapten, IL10−/− Improvement or 
worsena

(262, 263)

Adenoviral oligonucleotides Inhibits CpG ODNs DSS, SCID transfer, IL10−/− Improvement (264)

Chloroquine Suppresses TLR2/9 signaling DSS Improvement (267)

DIMS0150 (Cobitolimod, Kappaproct) Agonist UC (phase 3) Improvement (268, 270)

BL7040 (Monarsen, EN101) Agonist UC (phase 2) Improvement (274)

aEffect dependent on whether prophylactic or therapeutic administration.

12

C
orridoni et al.

Innate Im
m

unity in IB
D

Frontiers in M
edicine | w

w
w

.frontiersin.org
February 2018 | Volum

e 5 | A
rticle 32

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


FiGURe 2 | Targeting pattern-recognition receptor signaling in human intestinal inflammation. (A) The small molecule VB-201 interferes with downstream signaling 
from TLR2 and has been trialed in ulcerative colitis. (B) Similarly, Bifidobacterium infantis 35624, which probably acts to interfere with the TLR4 signaling pathway, 
has been trialed in maintaining remission in ulcerative colitis. The results of these two trials are not known. TLR4 is found on the cell membrane in immune cells but 
in intestinal epithelial cells has been demonstrated intracellularly where it responds to internalized lipopolysaccharide. (C) Alkaline phosphatase detoxifies LPS to 
inhibit TLR4 signaling and has been shown to be of benefit in ulcerative colitis. It is not known whether it might interfere with intracellular TLR4. Similar benefits have 
been seen with the TLR9 agonists DIMS0150 and BL7040 (D). (e) TOP1288, a narrow spectrum kinase inhibitor, has effects on p38, Src, Lck, and Syk to reduce 
colonic IL-6 and -8 in ulcerative colitis. (F) The exact role of apilimod in innate immune sensing is not well understood but there are effects on endosomal maturation 
and TLR9 sensing—this was not, however, effective in a trial in Crohn’s disease. (G) Laquinimod exerts some effects on antigen presentation by dendritic cells with 
some improvement in remission in Crohn’s disease.
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time of administration relative to induction of colitis. ODNs 
given therapeutically after colitis has developed worsen disease 
whereas when given prophylactically there is a reduction in 
inflammation thought possible due to a tolerance effects on IFNγ 
or on increasing IL-10 production (263). The same group went 
on to show that intestinal inflammation following DSS challenge 
is reduced in TLR9−/− mice compared with wild-type and that 
administration of adenoviral ODNs (which blocks the effects of 
DNA sequences) to wild-type mice with established colitis results 
in amelioration of disease (264). The findings were replicated in 
the severe combined immunodeficiency disease transfer model 
of colitis and in the IL10−/− mouse and the authors conclude that 
DNA sequences from gut microbes perpetuate chronic inflamma-
tion through TLR9 and that adenoviral ODNs may be of benefit 
in intestinal inflammation (264). In vitro studies of the c41 ODN, 
from Pseudomonas aeruginosa, in a murine macrophage cell line 
and in human monocytes demonstrates that this sequence binds 
to TLR9 without triggering downstream cascades but prevents 
other ODNs from binding and so has uses as a TLR9 antagonist 
(265). A subsequent study demonstrated more diverse actions 
of c41 on TLR activation suggesting wider effects than simply 

TLR9 (266). Similar to c41, the antimalarial drug chloroquine 
has diverse effects on TLR signaling but particularly via TLR9 to 
alleviate murine colitis (267).

Unlike many of the TLRs, TLR9 modulation has been studied 
clinically in patients with ulcerative colitis using a TLR9 agonist, 
DIMS0150 (also known as cobitolimod/Kappaproct). A single 
dose instilled to the mucosa of the transverse or descending 
colon at colonoscopy resulted in 43% clinical response at week 
1, 71% at week 4, and 86% at week 12 (268). Remission rates 
were slightly lower than response but similarly increased to week 
12. Clinical scores were mirrored by endoscopic improvement. 
Note was made of improved steroid sensitivity in patients treated 
with DIMS0150. An analysis of steroid-response genes identified 
from the pilot study (CD163, TSP-1, IL-1RII) were validated in 
a prospective cohort of patients treated with rectal placebo or 
DIMS0150 demonstrating utility of this gene panel in identifying 
patients most likely to benefit from TLR9 agonist therapy (269). 
Unfortunately, a larger randomized, double-blind, placebo-con-
trolled trial of 131 patients with ulcerative colitis failed to reach 
its primary endpoint to demonstrate benefit of DIMS0150 over 
placebo at week 12 although some benefits were seen at earlier 
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timepoints including on mucosal healing at week 4 (270). The 
treatment was not associated with serious adverse events and, as 
the authors conclude, further trials are merited. A second trial is 
currently in the recruitment stages (NCT03178669).

Similar to DIMS0150, a synthetic oligonucleotide acting as 
a TLR9 agonist, BL-7040 (previously known as Monarsen and 
EN101), which can be administered orally may also have poten-
tial in the management of human IBD. Originally designed as a 
therapy for myasthenia gravis due to its effects on acetylcholinest-
erase transcripts (271), BL-7040 was shown to be an activator 
of TLR9 signaling to increase levels of indoleamine and IFNα 
(272). It has subsequently been demonstrated that this compound 
induces miRNA changes to activate the alternative pathway of 
NF-κB activation through TLR9 (273). These preclinical findings 
have been extended to a phase 2a trial in ulcerative colitis, which 
confirmed the safety of BL-7040 in intestinal inflammation and 
demonstrated an improvement in colitis in half of the patients 
who completed the full study protocol (274).

Other Targets influencing innate immune 
Signaling in intestinal inflammation
Modulation of signaling cascades downstream of TLRs themselves 
have also shown promise for intestinal inflammation. The MyD88 
inhibitor TJ-M2010-5 improved azoxymethane/DSS colitis and 
consequent colitis-associated colonic cancer (275). Nur77 is a 
transcription factor which is associated, from GWAS, with IBD 
and interacts with TRAF6 to interfere with TLR–IL1-R signaling 
to inhibit NF-κB cytokine production (276). Cytosporone B is an 
agonist of Nur77 and ameliorates DSS colitis (276).

Apilimod inhibits the lipid kinase activity of phosphatidylin-
ositol-3-phosphate-5-kinase (PIKfyve) resulting in inhibition 
of IL-12/23p40 (277). Although initially promising, a phase 
2 trial of apilimod in 220 patients with active Crohn’s disease 
failed to show benefit over placebo, although was well toler-
ated (278). A novel PIKfyve inhibitor, APY0201, administered 
orally ameliorated intestinal inflammation in the IL10−/− cell 
transfer model and showed effects in vitro on IL-12/23 produc-
tion in macrophages (279). A more in depth understanding of 
the PIKfyve pathway may yet yield opportunities for reducing 
intestinal inflammation.

The narrow spectrum kinase inhibitor TOP1288 targets p38, 
Src, Lck, and Syk and has been shown to have anti-inflammatory 
effects relevant for colitis both in  vitro and in  vivo (280, 281). 
Recently, a clinical trial of six patients with active ulcerative colitis 

despite oral mesalazine was conducted with TOP1288 (282). The 
drug had minimal systemic bioavailability, was well tolerated and 
demonstrated promising reductions in colonic IL-6 and 8. Other 
therapies involving modulation of innate immune cell function 
under evaluation for intestinal inflammation include laquinimod 
which exerts at least some effects through effects on antigen 
presentation (283, 284). A phase 2 clinical trial of laquinimod 
in Crohn’s disease was safe and demonstrated benefit on clinical 
remission especially at lower doses (285).

CONCLUSiON

Pattern-recognition receptor-mediated control of innate immu-
nity has a fundamental role in both mounting immune defense 
and maintaining intestinal homeostasis. In this review, we have 
summarized emerging key functions of this receptor class that, if 
dysregulated due to functional or genetic defects, may be respon-
sible for the induction of intestinal inflammation such as IBD. 
Attempts are being made to manipulate PRR-directed pathways 
for therapeutic purposes (summarized in Table 1 and Figure 2). 
Although the number of clinical trials that have been performed 
using this approach is currently small there are a number of 
compounds in the preclinical evaluation stage. The results from 
trials performed to date have not been greatly successful in IBD. It 
is likely a better molecular understanding of PRR biology within 
human intestinal cells and in vivo models is required to harness 
the full potential of this approach clinically.
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