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ABSTRACT

Background: The complex etiology of child growth failure and anemia—commonly used indicators of child under-
nutrition—involving proximate and distal risk factors at multiple levels is generally recognized. However, their independent and
joint effects are often assessed with no clear conceptualization of inferential targets.

Methods: We utilized hierarchical linear modeling and a nationally representative sample of 139,116 children aged 6–59 months
from India (2015–2016) to estimate the extent to which a comprehensive set of 27 covariates explained the within- and between-
population variation in height-for-age, weight-for-age, weight-for-height, and hemoglobin level.

Results: Most of the variation in child anthropometry and hemoglobin measures was attributable to within-population differences
(80–85%), whereas between-population differences (including communities, districts, and states) accounted for only 15–20%.
The proximate and distal covariates explained 0.2–7.5% of within-population variation and 2.1–34.0% of between-population
variation, depending on the indicator of interest. Substantial heterogeneity was observed in the magnitude of within-population
variation, and the fraction explained, in child anthropometry and hemoglobin measures across the 36 states=union territories of
India.

Conclusions: Policies and interventions aimed at reducing between-population inequalities in child undernutrition may require a
different set of components than those concerned with within-population inequalities. Both are needed to promote the health of
the general population, as well as that of high-risk children.
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INTRODUCTION

Poor nutritional status in early childhood remains highly
prevalent in low- and middle-income countries (LMICs)1,2

despite continued attention by global agencies, as exemplified
by the Millennium Development Goals,3 Global Nutrition Targets
2025,4 and Sustainable Development Goals,5 as well as
commitments from national governments in countries like India.6

Child growth failures and anemia are the most commonly used
indicators of nutritional status in children, especially in low- and
middle-income countries.7 Child undernutrition—as measured by
child anthropometry and hemoglobin level—result from a series
of complex interactions between socioeconomic conditions,
inadequate dietary intake of key nutrients, and exposure to
infectious diseases1,8–11 and are known to be detrimental to long-
term health, human capital potentials, and economic progress for
individuals and societies.12 Existing frameworks on causes of

child malnutrition generally recognize the complex etiology of
suboptimum growth with proximate and distal risk factors
operating at multiple levels.1,13 Yet, the independent and joint
effects of such risk factors on child undernutrition are often
assessed with no clear conceptualization of the inferential
targets.14

Applying individual and population perspectives in tandem to
understand within- and between-population variations in health is
potentially important in three aspects. First, from a theoretical
perspective, the determinants of population averages may be
fundamentally different from the determinants of individual
cases.15–17 Despite the inter-relatedness of these two types of
inferential questions, a population-based perspective to health
dominates the epidemiologic literature and results in an exclusive
focus on the comparison of mean values of health outcomes and
exposures between populations,16,18 often defined as countries in
global health research.14 At the same time, the within-population
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distribution is assumed be constant over time and across different
populations, so it is often overlooked as being uninformative.15,19

Second, in the few studies that have attempted to quantify and
explain within- and between-population variance in adult and
child anthropometry across LMICs, the majority of variation
(80–90%) was found to be attributed to within-population
differences as opposed to between-population differences.17,20

Despite the disproportionately large within-population variation,
only 2% was explained by basic socioeconomic factors for
women’s body mass index (BMI) across 58 LMICs,17 and,
similarly, only 1% was explained by mean values of maternal
covariates of child anthropometric status and failure across 57
LMICs.20 Moreover, the within-population variability and its
systematic components were found to be heterogeneous across
countries in both studies.17,20

Third, a sizeable magnitude of the within-population differ-
ences may be systematically patterned21 and increase over time,22

raising further concerns for clearly defined targets of inference for
policies and interventions.14 For instance, interventions aimed to
reduce between-population inequalities may require an entirely
different set of components than those aimed to reduce within-
population inequalities, and both are needed to promote the health
of the general population, as well as that of high-risk individuals.20

The present study aims to build on this nascent area of research
by exploring the within- and between-population variation in child
undernutrition, as measured via anthropometric status and hemo-
globin level. We specifically advance prior work20 by utilizing the
latest nationally representative survey from India (2015–2016)
and considering a more comprehensive set of 27 socioeconomic
and maternal=paternal covariates to estimate their total and
individual contributions to explain the within- and between-
population differences in child anthropometry and hemoglobin
measures across all India and by 36 states and union territories.

METHODS

Survey data and study population
Data for this study were derived from the 4th National Family
Health Survey (NFHS-4), also equivalent to the 2015–2016
Demographic Health Survey (DHS) for India. The NFHS-4 was
implemented with support from the Government of India Ministry
of Health and Family Welfare and collected data related to child=
maternal health, fertility, health-related behaviors and attitudes,
household and environmental characteristics, nutrition, gender,
women’s empowerment, and domestic violence.23 The NFHS-4,
for the first time, included data from all 640 districts and 36 states
and union territories within the country.23 Survey respondents
were selected following a stratified two-stage sampling frame by
states and urban and rural areas within each state.24 Out of a total
of 199,314 children aged 6–59 months eligible for the study,
14,399 children were excluded for missing height or weight
measures, 1,328 were excluded for missing hemoglobin data, and
44,471 children were removed due to missing information on one
or more of the selected covariates, yielding a final analytic sample
of 139,116 children. A subset of 25,603 children with additional
information on paternal data was used for a secondary analysis
(Figure 1).

Defining within- and between-population units of
inference
In this study, the within-population (between-individual) unit of

inference refers to children. The between-population unit of
inference collectively refers to communities, districts, and states
given the hierarchical nature of the NFHS-4 data, as well their
administrative, geographic, and political significance. By survey
design, children in our final analytic sample were hierarchically
nested within 26,986 communities across 640 districts and 36
states=union territories. In India, communities (or the primary
sampling units) represent the local environment of villages for
rural areas and urban frame survey blocks for urban areas.23

Districts are the lowest administrative unit at which the elected
district councils plan the provision of diverse services and
infrastructures, and states are the political unit at which federal
policies operate.25 The selected units in our analysis, therefore,
are consistent with prior multilevel analysis of India,25 and our
conceptualization of within- and between-population units of
inference aligns with recent studies.17,20

Outcome variables
The primary outcome variables for this study were child
anthropometry and hemoglobin measures, which are routinely
used as proxy indicators of child undernutrition in the literature.
Child anthropometry measures based on height and weight are
important indicators for assessing population level nutrition status
and diagnosing individual children who are undernourished, as
well as for designing and evaluating programs and policies.7,26

Hemoglobin, a common marker for anemia, may represent
underlying poor nutrition, vitamin and mineral (especially iron)
deficiencies, inflammation, or disease.11 In the NFHS-4, height,
weight, and hemoglobin level were objectively measured by field
interview teams. Weight was measured using digital solar-
powered scales along with adjustable Shorr measuring boards.23

Standing height was obtained for children older than 24 months
while recumbent length was measured with children lying on
the board placed on a flat surface for children younger than 24
months.23 The raw height and weight measures were transformed
into age- and sex-specific z-scores using the WHO child growth
standards26: height-for-age z-scores (HAZ), weight-for-age z-
scores (WAZ), and weight-for-height z-scores (WHZ). Measures
of hemoglobin were also standardized (HZ) using the z-score
method. For an additional analysis, the dichotomous form of each
measure was constructed: stunting defined as HAZ < −2 standard
deviation (SD); underweight as WAZ < −2SD; wasting as
WHZ < −2SD; and anemia as the original hemoglobin level
<11 g=dL, according to the WHO criteria for children aged 6–59
months.1,27

Independent variables
To assess the maximum upper bound of the systematic
components in variability of child anthropometry and hemoglobin
level, a total of 24 covariates related to child, maternal, and
household characteristics were selected for the primary analysis
based on conceptual frameworks on proximate and distal
determinants of child undernutrition,1,13 prior epidemiological
studies,8,9,28–33 and components of nutrition interventions and
programs.10,34–36 Three additional paternal characteristics were
included for the secondary analysis, hence a total of 27
covariates. All variables are summarized in Table 1.

Statistical analysis
We utilized multilevel statistical models to simultaneously assess
factors driving the between- and within-population differences in
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child anthropometric status and hemoglobin measures, while also
accounting for the complex sampling design of the data.37 This
statistical approach has been widely used in public health
literature where the scientific interest is in simultaneously
examining compositional and contextual factors on health
outcomes.38–41 Its application has been recently extended to
better understand between- and within-population differences in
adult women’s BMI17 and child anthropometric failures.20

To fully account for the hierarchical structure of the data, and
being informed of important administrative and geographic units
in India from prior literature, we specified the following random
effects linear regression model with child i (level-1) nested within
community j (level-2), district k (level-3), and state l (level-4):

Yijkl ¼ �0 þ �Xijkl þ ðe0ijkl þ u0jkl þ v0kl þ f0lÞ
where Y represents the outcome (HAZ, WAZ, WHZ or HZ); X is
a vector of covariates; and e0ijkl, u0jkl, v0kl, and f0l are residuals
specific to each level (individual, community, district, and state)
respectively. Under the independently and identically distributed

(iid) assumption, each set of residuals follows a normal distribu-
tion with a mean of 0 and a variance of e0ijkl � Nð0; �2

e0
Þ, u0jkl �

Nð0; �2
u0
Þ, v0kl � Nð0; �2

v0
Þ, and f0l � Nð0; �2

f0
Þ. The variance

estimates for communities, districts, and states were summed
for the between-population variation (ie, �2

u0
þ �2

v0
þ �2

f0
). Hence,

the proportion of variation in the outcome attributable to
the between-population differences was calculated as

�2
u0
þ�2

v0
þ�2

f0

�2
e0
þ�2

u0
þ�2

v0
þ�2

f0

� �
� 100 and the proportion attributed to the

within-population differences as
�2
e0

�2
e0
þ�2

u0
þ�2

v0
þ�2

f0

� �
� 100. Vari-

ance partitioning coefficient, or intraclass correlation coefficient,
is often the parameter of interest in conventional multilevel
analysis that is interpreted for the significance of variability
across different units of inference.42,43

For the primary analysis, we first adjusted for child’s age- and
sex-only (model 1), and then additionally included all 22
covariates together in a combined model (model 2). The
difference in the within- and between-population variation from

199,314 singleton children aged 6–59 
months alive at the time of survey with non-

pregnant mothers

15,727 excluded due to missing child 
anthropometric or hemoglobin measures

• 5,861 not measured (refused/other reason)
• 8,538 height/weight missing 
• 1,328 hemoglobin

25,605 children for the secondary analysis

183,587 eligible children with outcome
measures

Excluded due to missing covariates 
• 2,584 paternal height/weight missing

44,471 excluded due to missing following 
variables:

• 698 maternal height/weight
• 4,423 dietary diversity
• 7,620 breastfeeding initiation
• 162 infectious disease
• 694 safe stool disposal
• 1,212 vitamin A supplementation
• 2,031 vaccination
• 472 iodized salt
• 27,142 household air quality
• 2 family planning needs 
• 13 ORT for children with diarrhea
• 2 care for children with cough

28,189 children with paternal data 

139,116 children for the primary analysis

Figure 1. Flow diagram showing exclusions and final sample sizes of the study population, Indian National Family Health Survey
2015–2016
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model 1 to model 2 was compared using a percent-change
calculation, in order to quantify the contribution of covariates in
explaining variation in child anthropometry and hemoglobin. In
multilevel analysis, changes in the value of between-group
variation after adding individual-level variables are examined
to understand the degree to which group variability is accounted
for by omitted individual-level variables.42,43 We applied this
assessment to calculate percent explained as the change
in variance estimates from model 1 to 2: for example,

½�2
u0
þ�2

v0
þ�2

f0
�model 1�½�2

u0
þ�2

v0
þ�2

f0
�model 2

½�2
u0
þ�2

v0
þ�2

f0
�model 1

� �
� 100 for percent explained

in between-population variation and
½�2

e0
�model 1�½�2

e0
�model 2

½�2
e0
�model 1

� �
� 100

for percent explained in within-population variation. We utilized
cluster bootstrapping with 1,000 replicates to calculate 95%
confidence intervals (CIs) for the percent-explained estimates.
This approach takes random samples at each level of the data (ie,
states, districts, communities, and individuals) in order to account
for its hierarchical nature and the original sampling procedure.44–46

Cluster bootstrapping has been shown to yield consistent estimates
of model parameters and variance components in multilevel
models, as well as more closely mimic the variation properties of
hierarchical data compared to other bootstrapping approaches.45–47

Additionally, state-specific analysis was conducted to assess
the differential magnitude of variance explained by the same

Table 1. List of covariates included in the primary and secondary analysis

Primary analysis: 24 covariates

• Child’s Age Categorized as 6–11, 12–23, 24–35, 36–47, and 48–59 months.

• Child’s Sex A binary variable for boys and girls.

• Child’s birth order Categorized as 1st, 2nd or 3rd, 4th or 5th, and 6th or above.

• Place of residence Census based urban versus rural.

• Household wealth index In the NFHS-4, household wealth index was created using principal component analyses of household
characteristics and assets, and categorized into quintiles.

• Maternal education Categorized in five levels: no schooling, primary, secondary, higher secondary, and college education.

• Maternal height Women’s height was obtained directly by field interview teams using adjustable Shorr measuring boards, and was
categorized as: <145, 145–149.9, 150–154.9, 155–159.9, and ≥160 cm.

• Maternal BMI Women’s weight was measured using digital Secascales, and maternal BMI was categorized as <18.5, 18.5–24.9,
and ≥25 kg=m2.

• Maternal age at marriage Defined dichotomously for married or cohabitating mothers using the age of 18 years as cutoff.

• Dietary diversity Based on a 24-hour recall of food intake in the NFHS questionnaire, a score for child’s dietary diversity was
developed by assigning 1 point for consumption of milk, meat, lentils, starchy staples, vitamin A fruits, other
fruits, dairy, and oils=fats=butter, and the score was grouped into quintiles.

• Timing of breastfeeding initiation A dichotomous variable for initiating breastfeeding ≥1 hour of birth or <1 hour of birth.

• Source of drinking water A dichotomous variable indicating safe source of drinking water for water piped into dwelling or yard=plot, public
tap=standpipe, tube well or borehole, protected well or spring, rain water, and bottled water, and unsafe otherwise.

• Sanitation facility A dichotomous variable indicating improved sanitation facility for households with access to flush to piped sewer
system, septic tank, or pit latrine, ventilated improved pit latrine, pit latrine with slab, and composting toilet, and
unimproved otherwise.

• Stool disposal A dichotomous variable indicating safe or unsafe disposal of child’s stools.

• Infectious disease A dichotomous variable indicating whether the child experienced infectious disease (eg, diarrhea, cough=fever)
two weeks prior to the survey.

• Household air quality A categorical variable indicating higher air quality for households using non-solid fuels, lower air quality for using
solid fuels in separate kitchen, and the worst quality for using solid fuels in non-separate kitchen.

• Use of iodized salt A dichotomous variable indicating whether the household used iodized salt.

• Vitamin A supplementation A dichotomous variable indicating whether vitamin A supplementation was given to the child.

• Full vaccination A dichotomous variable indicating whether the child was fully vaccinated with measles, BCG, DPT 3, and Polio 3.

• Family planning needs Unmet need for family planning was coded as 1 if woman reported unmet need for spacing or limiting, and
0 otherwise.

• Skilled birth attendant Indicator variable was created for births attended by skilled health personnel (doctor, nurse, or midwife).

• Antenatal care (ANC) visits The number of ANC visits was categorized as <4 or ≥4 based on the new WHO recommendation.

• Oral rehydration therapy (ORT) for diarrhea A binary variable indicating whether ORT was given for a child with diarrhea.

• Care seeking for cough=fever A binary variable indicating whether care was sought for a child with cough as a proxy measure for care seeking
for pneumonia.

Secondary analysis: 3 additional covariates

• Paternal education Categorized in five levels: no schooling, primary, secondary, higher secondary, and college education.

• Paternal height Men’s height was obtained directly by field interview teams using adjustable Shorr measuring boards, and was
categorized as: <155, 155–159.9, 160–164.9, 165–169.0, and ≥170 cm.

• Paternal BMI Men’s weight was measured using digital Secascales, and paternal BMI was categorized as <18.5, 18.5–24.9, and
≥25 kg=m2.
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covariates across states. For the secondary analysis, we con-
sidered three additional paternal covariates (hence a total of
27 covariates) for a subset of the sample surveyed for father’s
data (model 3). We also conducted two sensitivity analyses.
First, each of the selected covariates was individually added to
model 1 in a stepwise manner to assess which individual
covariates explained the most between- and within-population
differences. Second, multilevel logistic regression models were
conducted to examine the binary outcome variables (stunting,
wasting, underweight, and anemia). All analyses were conducted
using the R programming. The cluster bootstrapping procedure
described above was operationalized via a user-defined func-
tion in base R. All multilevel models were fit using the ‘lmer’
function from the ‘lme4’ package for fitting linear mixed effects
models.48

Ethics statement
The study was reviewed by Harvard T.H. Chan School of Public
Health Institutional Review Board and was considered exempt
from full review because the study was based on an anonymous
public use data set with no identifiable information on the study
participants.

RESULTS

Sample characteristics
Of 139,116 children included in the primary analysis, the overall
mean values of HAZ, WAZ, WHZ, and HZ were −1.51 (SD,
1.63), −1.52 (SD, 1.21), −0.95 (SD, 1.35), and 0 (SD, 1),
respectively. For the corresponding binary variables, 38.6% were
stunted, 19.6% experienced wasting, 34.2% were underweight,
and 55.2% were anemic.

Variance decomposition
The total variance estimated from the age- and sex-adjusted
model was 2.59 for HAZ, 1.44 for WAZ, 1.83 for WHZ, and 1.04
for HZ. Of the total variance in HAZ, 85.4% was attributable
to the within-population differences while the remaining 14.6%
was attributed to the between-population differences (Table 2).
Similarly, 81.1% and 84.3% of the total variation in WAZ and
WHZ was attributed to the within-population differences while
18.9% and 15.7% was attributed to the between-population
differences, respectively. For HZ, 80.1% of the total variation
was accounted for by within-population differences, and the
remaining 19.9% was attributable to the between-population
differences. The proportion of between-population variation
broken down by states, districts, and communities is presented
in eTable 1. In general, communities were more variable than
states and districts for all outcomes.

Variance explained by all covariates
Despite the large variation in HAZ observed within-populations,
only 5.4% (95% CI, 4.8–6.1%) was explained by the addition
of 22 sociodemographic and maternal health covariates (Table 2;
the regression coefficients are presented in eTable 2). On the
other hand, despite between-population variation accounting for
a smaller proportion of the total variance, the addition of all
covariates explained 33.3% (95% CI, 32.6–34.0%) of the
between-population differences in HAZ. Similarly, adjusting for
all covariates explained 7.5% (95% CI, 7.3–7.7%) of the within-
population variation and 39.4% (95% CI, 38.2–39.6%) of the
between-population variation in WAZ. A smaller fraction of the
variation in WHZ was explained by the same set of covariates:
2.0% (95% CI, 1.4–2.6%) of within-population and 12.8% (95%
CI, 12.1–13.5%) of between-population. For the standardized
hemoglobin measure, the addition of sociodemographic and

Table 2. Variance estimates in child anthropometry and hemoglobin level using four-level random intercepts models, and % explained by
a comprehensive set of covariates, National Family Health Survey (NFHS-4)

Primary Analysis (n = 139,116) Secondary Analysis (n = 25,605)

Variance estimates (95% CI) % Explained (95% CI) Variance estimates (95% CI) % Explained (95% CI)

Model 1 Model 2 Model 1 vs Model 2 Model 1 Model 3 Model 1 vs Model 3

Height-for-age z-scores
Between-population 0.38 (0.37, 0.38) 0.25 (0.24, 0.26) 33.3 (32.6, 34.0)% 0.78 (0.76, 0.80) 0.63 (0.62, 0.64) 20.1 (18.7, 21.6)%
Within-population 2.21 (2.20, 2.22) 2.09 (2.07, 2.11) 5.4 (4.8, 6.1)% 1.86 (1.84, 1.88) 1.76 (1.74, 1.78) 5.2 (4.3, 6.1)%

Weight-for-age z-scores
Between-population 0.27 (0.27, 0.27) 0.16 (0.15, 0.17) 39.4 (38.2, 39.6)% 0.49 (0.48, 0.51) 0.35 (0.34, 0.36) 28.9 (27.0, 30.7)%
Within-population 1.17 (1.16, 1.18) 1.08 (1.07, 1.09) 7.5 (7.3, 7.7)% 0.97 (0.96, 0.98) 0.90 (0.89, 0.91) 7.9 (6.7, 9.1)%

Weight-for-height z-scores
Between-population 0.29 (0.29, 0.29) 0.25 (0.25, 0.25) 12.8 (12.1, 13.5)% 0.59 (0.58, 0.60) 0.53 (0.52, 0.54) 9.9 (9.2, 10.7)%
Within-population 1.55 (1.54, 1.56) 1.52 (1.51, 1.53) 2.0 (1.4, 2.6)% 1.27 (1.26, 1.28) 1.24 (1.23, 1.25) 2.4 (1.9, 2.9)%

Standardized Hemoglobin
Between-population 0.21 (0.20, 0.22) 0.20 (0.19, 0.21) 2.1 (1.5, 2.8)% 0.46 (0.45, 0.47) 0.45 (0.44, 0.46) 1.6 (1.1, 2.0)%
Within-population 0.83 (0.83, 0.83) 0.83 (0.83, 0.83) 0.2 (0.0, 0.4)% 0.61 (0.60, 0.62) 0.61 (0.60, 0.62) 0.5 (0.2, 0.7)%

CI, confidence interval.
Model 1: age and sex.
Model 2: Model 1 + birth order, residence (urban=rural), household wealth, mother’s height, mother’s BMI, mother’s age at marriage, child’s dietary diversity,
breastfeeding, drinking water availability, sanitation, safe stool disposal, infectious disease, household air quality, iodized salt, vitamin A supplementation, full
vaccination, family planning, skilled birth attendant, antenatal care visits, child diarrhea in past 2 weeks, mother sought care for child with cough=fever.
Model 3: Model 2 + father’s height, father’s BMI, father’s education, father’s age.
% Explained refers to the change in variance estimates from Model 1 to Model 2 (or Model 3). For example, % explained in between-population variation from

Model 1 and Model 2 is calculated
½�2

u0
þ�2

v0
þ�2

f0
�model 1�½�2

u0
þ�2

v0
þ�2

f0
�model 2

½�2
u0
þ�2

v0
þ�2

f0
�model 1

� �
� 100 and % explained in within-population variation from Model 1 and Model 2 is

calculated as
�

½�2
e0
�model 1�½�2

e0
�model 2

½�2
e0
�model 1

�
� 100. 95% confidence intervals for % explained calculated via bootstrapping with 1,000 bootstrap re-samples.
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maternal covariates explained only 0.2% (95% CI, 0.0–0.4%) of
the within-population variation and 2.1% (95% CI, 1.5–2.8%) of
the between-population variation. A secondary analysis with a
subset of 25,603 children showed that additional data on father’s
height, BMI and education did not offer further explanation of the
between- and within-population variation in all indicators of child
undernutrition (Table 2; eTable 3).

State-specific analysis
In state-specific analyses, we consistently found the majority of
variation to be within-population, which was poorly explained by
the comprehensive set of covariates. The within-population
variance in HAZ from age- and sex-adjusted models ranged from

1.18 in Lakshadweep to 3.26 in Dadra and Nagar Haveli,
accounting for 70% of total variation in Meghalaya to close to
100% in Chandigarh (Figure 2A). The proportion of within-
population variation in HAZ explained by covariate adjustment
ranged from as low as 2.8% in Nagaland to more than 10% in 10
states, including up to 30.6% in Goa and 40.5% in Chandigarh. For
the majority of states, 20% to 70% of the between-population
variation in HAZ was explained by the same covariates. Likewise,
the degree of variation and contribution of systematic components
also varied substantially across states for WAZ (Figure 2B), WHZ
(Figure 2C), and HZ (Figure 2D). The proportion of within-
population variation in WAZ ranged from 79% in Odisha to 100%
in Lakshadweep, of which <10% was explained by the covariates

A) Height-for-age z-score

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Lakshadweep

Andhra Pradesh 

Telegana 

Manipur 

Chandigarh

Punjab 

West Bengal 

Himachal Pradesh

Tripura

Delhi 

Uttar Pradesh

Andaman and Nicobar Islands 

Odisha

Chhattisgarh 

Mizoram

Nagaland

Assam 

Rajasthan

Madhya Pradesh

Kerala

Bihar 

Puducherry

Goa

Jharkhand

Gujarat

Haryana

Maharashtra

Daman and Diu

Uttarakhand

Jammu and Kashmir

Tamil Nadu

Meghalaya

Arunachal Pradesh 

Karnataka

 Sikkim

Dadra and Nagar Haveli 

Variance estimate in height-for-age z-score

Continued on next page:
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in 21 states. Despite the smaller between-population variation in
WAZ across all states, >30% was explained in 26 states
(Figure 2B). For WHZ, <5% of the within-population variation
was explained across 23 states while >20% of the between-
population variation was explained within 12 states (Figure 2C).
The largest within-population and between-population variation
in HZ was found in Puducherry (99.7%) and Goa (31.4%),
respectively. The proportion explained by covariates ranged from
<1% in 8 states, including Uttar Pradesh and Bihar, to 41.6% in
Chandigarh for the within-population variation and from <1% in 8
states, including Sikkim and Dadra and Nagar Haveli, to almost
100% in Puducherry and Chandigarh for the between-population
variation in HZ (Figure 2D).

Additional analyses
Examining each covariate separately revealed differential ability
to explain individual and population variance in child anthro-
pometry and hemoglobin level. For HAZ, the percent explained
in the between-population variance was greatest for the following
covariates: household wealth (22.1%; 95% CI, 21.4–23.1%),
maternal education (19.9%; 95% CI, 19.1–20.6%), household air
quality (17.0%; 95% CI, 16.4–17.6%), maternal height (13.5%;
95% CI, 12.8–14.0%), sanitation (13.5%; 95% CI, 13.2–13.8%),
safe stool disposal (11.0%; 95% CI, 10.5–11.6%), maternal BMI
(9.7%; 95% CI, 9.3–10.1%), ANC visits (6.1%; 95% CI,
5.9–6.4%), urban=rural residence (5.7%; 95% CI, 5.4–6.1%),
birth order (4.9%; 95% CI, 4.9–5.0%), skilled birth attendant
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(4.2%; 95% CI, 4.0–4.4%), and mother’s age at marriage (4.0%;
95% CI, 3.7–4.3%) (Table 3). The remaining covariates each
explained <1% of the total between-population variance in HAZ.
At the same time, all the covariates, except for maternal height
(3.5%; 95% CI, 3.3–3.8%), household wealth (1.7%; 95% CI,
1.6–1.8%), and maternal education (1.2%; 95% CI, 1.1–1.4%),
each explained <1% of the within-population variance in HAZ.
Similar patterns were found for WAZ, WHZ, and HZ (Table 3).

The variance partitioning by between- and within-population,
as well as the contribution of the covariates, remained consistent
in the multilevel logistic regression models for stunting,
underweight, and wasting (eTable 4). Most of the variation
(83–89%) was attributed to the within-population differences. Of

this between-population variation, 4.1–62.2% was explained by
the combined set of covariates.

DISCUSSION

We present three salient findings from this comprehensive
assessment of variation in child anthropometry and hemoglobin
measures in India. First, most of the variation in HAZ, WAZ,
WHZ, and HZ was attributable to within-population differences
(80–85%), whereas the between-population differences (including
communities, districts, and states) accounted for a much smaller
portion of the total variance (15–20%). Second, a comprehensive
set of proximate and distal covariates explained 0.2–7.5% of the
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within-population variation and 2.1–39.4% of the between-
population variation, depending on the indicator of interest.
Third, while a disproportionately large unexplained within-
population variation in child anthropometry and hemoglobin
measures was consistently found across all 36 states=union

territories, both the magnitudes of variability as well as their
systematic components were substantially heterogeneous.

Our analysis utilized the latest nationally representative data
from India that are generally known to be of high quality.23 While
the dataset was large and high quality, there were missing

D) Standardized hemoglobin (hemoglobin z-score)
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Figure 2. Between- and within-population variation in A) height-for-age z-score, B) weight-for-age z-score, C) weight-for-height
z-score, and D) standardized hemoglobin from four-level random intercepts models before and after adjusting for a
comprehensive set of covariates, National Family Health Survey (NFHS-4)
Model 1: age and sex.
Model 2: Model 1 + birth order, residence (urban/rural), household wealth, mother’s height, mother’s BMI, mother’s age
at marriage, child’s dietary diversity, breastfeeding, drinking water availability, sanitation, safe stool disposal, infectious
disease, household air quality, iodized salt, vitamin A supplementation, full vaccination, family planning, skilled birth
attendant, antenatal care visits, child diarrhea in past 2 weeks, mother sought care for child with cough/fever.
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observations in the data, which we excluded from analysis. This
may bias the estimates in our multilevel models if missing
observations are not missing completely at random. Additionally,
while anthropometry and hemoglobin measures were objectively
measured by trained field investigators, most of the covariates
were self-reported by mothers.23 Adjusting for self-reported
indicators with potential measurement errors, likely being
random, may lead to conservative estimates of the proportion
explained in variation. The variance partitioning coefficient in any
multilevel analysis is inherently sensitive to the choice of random
effects simultaneously considered in the model.49 The choice of
multilevel structure in our analysis was informed by both the
hierarchical nature of the NFHS-4 data structure as well as a
review of literature on the multiple units of administrative,
geographic, and political significance in India.25 The extent to
which variation in child anthropometry and hemoglobin is
explained inevitably depends on the selected set of variables in
the data set and their quality. Nevertheless, our findings largely
align with a prior study on anthropometric growth failure across
multiple LMICs.20 We found a larger fraction of the within-
population variation in child undernutrition indicators being
explained, given a more comprehensive set of covariates
considered.

Our findings are highly relevant to the current policy
discussion in India for the following reasons. Child anthro-
pometric failures and anemia are among the key indicators used
by the National Institution for Transforming India (NITI) to
monitor progress in child nutrition.6 For instance, the National
Nutrition Strategy (NNS) explicitly targets to prevent and reduce
prevalence of underweight (ie, low weight-for-age) in children

(0–3 years) by three percentage points per annum by 2022 and
anemia among young children, adolescent girls, and women in
the reproductive age group (15–49 years) by one-third of the
current level by 2022.6 Improvement in the mean levels, as well
as reduction in the variability, of anthropometric status and
hemoglobin level is necessary to achieve these goals.14,20 That is,
both universal strategies affecting the general well-being of the
population and targeted strategies to specifically intervene on the
high-risk subgroups should be conceptualized and practiced
together.14,15,18,20,36

While we consistently found larger unexplained within-
population differences across all indicators of child under-
nutrition, there were some notable differences supporting prior
studies on differential causes and patterns of HAZ, WAZ, and
WHZ.8,9,30 The within-population differences remained the
greatest for HAZ, even after adjustment for a comprehensive
set of covariates, followed by WHZ, WAZ, and HZ. The
between-population differences from the mutually adjusted
models were equivalent for HAZ and WHZ and smaller for HZ
and WAZ. At the same time, a larger proportion of the between-
and within-population variation was explained for WAZ and
HAZ. The larger overall variability in HAZ may reflect the nature
of chronicity in deprivation that are known to be more strongly
correlated with maternal nutrition as well as socio-environmental
conditions.8,29 Indeed, maternal nutritional status (BMI and
height) and socioeconomic factors (household wealth, maternal
education, safe stool disposal, and household air quality)
explained a larger fraction of the between-population variance
for HAZ and WAZ, but not for WHZ and HZ. Variability in
WHZ perhaps could be better explained in the presence of data on

Table 3. Contribution of individual covariates in explaining between- and within-population variation in child anthropometry and
hemoglobin level, National Family Health Survey (NFHS-4; n = 139,116)

Covariates

Height-for-age z-scores Weight-for-age z-scores Weight-for-height z-scores Standardized Hemoglobin

% Explained (95% CI) % Explained (95% CI) % Explained (95% CI) % Explained (95% CI)

Between-population Within-population Between-population Within-population Between-population Within-population Between-population Within-population

Birth order 4.9 (4.9, 5.0)% 0.2 (0.1, 0.3)% 3.8 (3.7, 5.0)% 0.2 (0.1, 0.3)% 0.3 (0.2, 0.4)% 0.1 (0.0, 0.1)% 0.3 (0.1, 0.4)% 0.0 (0.0, 0.0)%
Residence 5.7 (5.4, 6.1)% 0.0 (0.0, 0.0)% 4.8 (4.5, 5.1)% 0.0 (0.0, 0.0)% 0.7 (0.5, 0.9)% 0.0 (0.0, 0.0)% 0.6 (−0.6, −0.4)% 0.0 (−0.0, 0.0)%
Household Wealth 22.1 (21.4, 23.1)% 1.7 (1.6, 1.8)% 23.6 (22.9, 24.3)% 1.7 (1.5, 2.0)% 5.3 (5.3, 6.2)% 0.5 (0.4, 0.6)% −2.0 (−3.0, −2.0)% 0.1 (0.0, 0.1)%
Maternal Education 19.9 (19.1, 20.6)% 1.2 (1.1, 1.4)% 19.6 (18.9, 20.3)% 1.2 (1.1, 1.3)% 3.8 (3.7, 4.2)% 0.3 (0.2, 0.5)% 3.4 (3.1, 3.7)% 0.1 (0.0, 0.2)%
Mother height 13.5 (12.8, 14.0)% 3.5 (3.3, 3.8)% 12.5 (12.0, 13.1)% 3.5 (3.2, 3.8)% 2.0 (1.9, 2.2)% 0.2 (0.1, 0.2)% 0.1 (0.1, 0.3)% 0.0 (0.0, 0.1)%
Mother’s BMI 9.7 (9.3, 10.1)% 0.5 (0.4, 0.5)% 19.7 (19.3, 20.2)% 0.5 (0.5, 0.6)% 10.8 (10.4, 11.4)% 1.2 (1.0, 1.4)% 1.0 (0.9, 1.2)% 0.0 (0.0, 0.1)%
Age at marriage 4.0 (3.7, 4.3)% 0.1 (0.1, 0.1)% 4.3 (4.1, 4.5)% 0.1 (0.0, 0.1)% 1.0 (0.9, 1.1)% 0.0 (0.0, 0.0)% 0.1 (0.1, 0.1)% 0.0 (−0.0, 0.1)%
Dietary diversity 0.1 (0.0, 0.1)% 0.0 (−0.1, 1.0)% 0.4 (0.3, 0.5)% 0.0 (0.0, 0.0)% 0.3 (0.2, 0.4)% 0.1 (0.0, 0.1)% 0.0 (0.0, 0.0)% 0.0 (−0.1, 0.1)%
Breastfeeding 0.0 (0.0, 0.1)% 0.5 (0.4, 0.6)% −0.1 (−0.2, 0.0)% 0.5 (0.4, 0.6)% −0.2 (−0.3, −0.1)% 0.0 (0.0, 0.0)% 0.0 (0.0, 0.1)% 0.0 (−0.1, 0.1)%
Drinking water −0.1 (−0.2, −0.1)% 0.0 (0.0, 0.0)% −0.2 (−0.2, −0.1)% 0.0 (0.0, 0.0)% 0.0 (−0.1, 0.0)% 0.0 (0.0, 0.0)% 0.0 (0.0, 0.0)% 0.0 (0.0, 0.0)%
Sanitation 13.5 (13.2, 13.8)% 0.0 (0.0, 0.0)% 17.8 (17.1, 18.5)% 0.0 (0.0, 0.0)% 5.5 (5.2, 6.0)% 0.1 (0.0, 0.1)% 2.3 (2.2, 2.5)% 0.0 (0.0, 0.0)%
Stool disposal 11.0 (10.5, 11.6)% 0.3 (0.2, 0.3)% 13.0 (12.3, 13.8)% 0.3 (0.3, 0.4)% 3.4 (3.2, 3.7)% 0.1 (0.0, 0.1)% 0.8 (0.7, 1.0)% 0.0 (0.0, 0.1)%
Infectious Disease 0.2 (0.0, 0.0)% 0.0 (0.0, 0.0)% −0.1 (−0.2, −0.1)% 0.0 (−0.1, 0.1)% −0.3 (−0.4, −0.2)% 0.1 (0.0, 0.1)% 0.0 (0.0, 0.1)% 0.0 (−0.0, 0.0)%
Home air quality 17.0 (16.4, 17.6)% 0.5 (0.4, 0.6)% 17.4 (17.0, 17.9)% 0.5 (0.4, 0.6)% 3.8 (3.6, 4.1)% 0.2 (0.1, 0.3)% −0.3 (−0.6, −0.1)% 0.0 (0.0, 0.0)%
Iodized salt 0.5 (0.4, 0.6)% 0.0 (0.0, 0.0)% 0.8 (0.8, 0.9)% 0.0 (0.0, 0.0)% 0.3 (0.2, 0.4)% 0.0 (0.0, 0.0)% 0.2 (0.0, 0.3)% 0.0 (0.0, 0.0)%
Vitamin A suppl. 0.3 (0.3, 0.4)% 0.0 (0.0, 0.0)% 0.2 (0.2, 0.2)% 0.0 (0.0, 0.0)% −0.1 (−0.1, −0.1)% 0.0 (0.0, 0.0)% 0.0 (−0.0, 0.0)% 0.0 (0.0, 0.0)%
Full vaccination 0.3 (0.2, 0.3)% 0.0 (0.0, 0.0)% 0.4 (0.4, 0.5)% 0.0 (0.0, 0.0)% 0.0 (0.0, 0.1)% 0.0 (0.0, 0.0)% 0.2 (0.2, 0.3)% 0.0 (0.0, 0.0)%
Family planning 0.0 (0.0, 0.0)% 0.0 (0.0, 0.0)% 0.0 (0.0, 0.1)% 0.0 (0.0, 0.0)% −0.0 (−0.1, 0.1)% 0.0 (0.0, 0.0)% 0.0 (−0.1, 0.0)% 0.0 (0.0, 0.0)%
Birth attendant 4.2 (4.0, 4.4)% 0.0 (0.0, 0.0)% 3.5 (3.3, 3.7)% 0.0 (0.0, 0.0)% 0.3 (0.2, 0.4)% 0.0 (0.0, 0.0)% −0.2 (−0.3, −0.1)% 0.0 (0.0, 0.0)%
Antenatal care visits 6.1 (5.9, 6.4)% 0.1 (0.0, 0.0)% 5.4 (5.1, 5.7)% 0.1 (0.0, 0.0)% 0.2 (0.1, 0.3)% 0.2 (0.1, 0.3)% 0.0 (−0.1, 0.0)% 0.0 (0.0, 0.0)%
Child diarrhea 0.2 (0.2, 0.3)% 0.0 (0.0, 0.0)% 0.4 (0.3, 0.4)% 0.0 (0.0, 0.0)% 0.2 (0.1, 0.2)% 0.1 (0.0, 0.2)% 0.1 (0.1, 0.2)% 0.0 (0.0, 0.0)%
Child cough=fever 0.0 (0.0, 0.1)% 0.0 (0.0, 0.0)% −0.1 (−0.1, 0.0)% 0.0 (0.0, 0.0)% −1.5 (−0.2, −0.1)% 0.0 (0.0, 0.0)% 0.0 (0.0, 0.0)% 0.0 (0.0, 0.0)%

BMI, body mass index; CI, confidence interval.
Each value represents the percent reduction in response to the addition of the listed risk factor over and above adjustment for age and sex.
Between-population columns give the percent reduction for the total population-level (district+community+state). 95% confidence intervals for percent
reductions calculated via bootstrapping with 1,000 bootstrap re-samples.

Explaining Variation in Child Anthropometry and Hemoglobin Measures

494 j J Epidemiol 2020;30(11):485-496



infectious diseases and causes of acute starvations.30 We found
the smallest variability in HZ given the universally high
prevalence of anemia across all India.50,51 Multifarious etiology
of anemia, ranging from short and severe disease processes to
chronic undernutrition and vitamin deficiency,52–54 may explain
the poor predictability of our selected covariates in explaining
variation in HZ.

Further breaking down population variation in child anthro-
pometric status=failure and hemoglobin=anemia into multiple
administrative and political units suggests greater importance of
local areas (communities) over districts or states. Prior multilevel
analysis of poverty,25 catastrophic health spending,55 and
undernutrition56 in India found the importance of micro-
geographies that have been overlooked in policy discussions.
The systematic component of variation ranged from 3.4–62.4%
for states, 3.5–43.7% for districts, and 1.3–36.6% for commun-
ities, indicating a greater degree of clustering of covariates at
larger geographic levels. It is also important to note that policies
and programs designed with the exact same components may
have differential impact on child undernutrition across states
given the heterogeneity in the within-population variation and the
proportion explained by same set of covariates.

The observed differences in population and individual
variability in child undernutrition and the differing ability of a
comprehensive set of proximate and distal covariates, jointly and
individually, to explain these differences necessitate more
targeted policy and practice interventions. In research concerning
child nutrition, the inferential target should be more explicitly and
clearly defined to be more informative as to where the majority
of inequality exists and to what extent within- and between-
population inequalities can be prevented and reduced. Given
the persistently high burden of child undernutrition in India
and other LMICs, efforts to improve the mean measures and
underlying variability should occur in tandem, not separately.
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